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Abstract: This memoir is dedicated to the late Francis Hayin Ree, a formative influence shaping my work in statistical me-
chanics. Between 1963 and 1968 we collaborated on nine papers published in the Journal of Chemical Physics. Those dealt
with the virial series, cell models, and computer simulation. All of them were directed toward understanding the statistical
thermodynamics of simple model systems. Our last joint work is also the most cited, with over 1000 citations, “Melting
Transition and Communal Entropy for Hard Spheres”, submitted 3 May 1968 and published that October. Here I summa-
rize my own most recent work on compressible time-reversible two-dimensional maps. These simplest of model systems
are amenable to computer simulation and are providing stimulating and surprising results.
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I. FRANCIS HAYIN REE
[JULY 1936–JANUARY 2020]

In 1962 I was hired as a physicist (despite Master’s and
Doctor’s degrees in physical chemistry) by the Lawrence Ra-
diation Laboratory in Livermore, California. I had read that
Berni Alder and Tom Wainwright were developing molecu-
lar dynamics there [1], working with hard disks and spheres,
closely related to my parallel hard-square and hard-cube the-
sis work under Andy De Rocco at Ann Arbor [2, 3]. Francis
Ree was already established at Livermore, on LRL’s square
mile. He was fresh from his own doctoral work, at the Uni-
versity of Utah under Henry Eyring, on random walks [4].
Both of us were happy to have access to Livermore’s tremen-
dous computational power, along with help from the Labo-
ratory’s hundreds of stimulating Ph Ds. Francis and I shared
the computational services of Warren Cunningham. Warren
kindly punched the cards and fetched the printouts, by Lab-
oratory bicycle, as we explored the application of statistical
mechanics to simple models, settling into lifelong regimens
of research and publication.

II. NONEQUILIBRIUM SIMULATIONS VERSUS
CARBON COMPOUNDS

From the hard-sphere equation of state and integral equa-
tions for few-body distribution functions Francis concocted
general predictive recipes for pressure-volume-energy equa-
tions of state for air, water, hydrocarbons, and high explo-
sives. His enthusiasm for phase transitions, honed on sim-
ple statistical models and the rare gases, carried over to car-
bon with its graphite and diamond phases. Francis generated
accurate thermodynamic data for pentaerythritol tetranitrate,
a high-explosive relative of nitroglycerine. He described the
behavior of polybutene and phase-diagram behaviors of the
rare gases, graphite and diamond, as well as many of car-
bon’s compounds, both organic and inorganic [5]. He be-
came a permanent member of the Korea Academy of Sci-
ence and Technology. He received the Department of En-
ergy’s Award of Excellence and two Lawrence Livermore
National Laboratory Distinguished Achievement Awards af-
ter contributing thirty years’ work to the Livermore Labora-
tory. A scholar and a gentleman.
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By 1970 Francis’ and my research paths had separated.
Berni Alder had helped me to a Professorship at the Univer-
sity of California’s Department of Applied Science. There
I worked with my first Ph D student, Bill Ashurst. We set
out to develop nonequilibrium atomistic solution techniques,
“nonequilibrium molecular dynamics” [6]. Meanwhile Fran-
cis was drawn to more realistic representations of the rel-
atively complex systems supporting the Livermore Labora-
tory’s weapons programs. He carried out over 100 research
inquiries with dozens of coauthors. Most of his work had
its base in relatively esoteric elaborations of equilibrium
statistical mechanics. That underlying theory was applied
to down-to-earth practical applications for materials relevant
to weapons research.

Meanwhile my own work progressed along lines more
academic than applied, facilitated by my joint appoint-
ments in the University and the Laboratory. Bill Ashurst and
I mostly restricted our collaborative work to the Lennard-
Jones pair potential, a crude representation of argon, de-
veloping simulations of its equilibrium and nonequilibrium
properties (viscosity and thermal conductivity). In invent-
ing nonequilibrium boundary conditions for the latter we
soon discovered, in retrospect and to our surprise, that all
the nonequilibrium motion equations we had fashioned were
time-reversible, so that any short trajectory fragment, ad-
vancing from one time to another, could be precisely re-
versed. One could do so by changing the signs of the mo-
menta as well as all of the time-reversible friction coeffi-
cients (described in the next Section) used to impose thermal
boundary conditions on the simulations. The most surprising
consequence of the simulations, that irreversible behavior
was generated by time-reversible equations of motion, fas-
cinated us just as it had Boltzmann a century earlier. In the
next Section we explore examples of time reversibility with
two models, one of them with the desirable property of “er-
godicity” and the other one not.

III. NONEQUILIBRIA, TIME REVERSIBILITY,
AND ERGODICITY

III. 1. Nonequilibrium Thermostatted Systems
Following my six years’ experience working with Fran-

cis on virial series (density expansions of the pressure), and
equation of state problems I was convinced that equilibrium
statistical mechanics and corresponding computer simula-
tions were understood sufficiently well. I set out to study
nonequilibrium systems driven by differences in velocity or
temperature. Invariably I sought out the simplest possible
systems for detailed studies. According to kinetic theory dif-
fusion can be studied by following a single moving parti-
cle through an array of scatterers. Simulating viscous flow
requires at least two oppositely-moving particles, and heat
flow three, or so I thought then.

Some 30 years later, in 1997, Harald Posch and I formu-
lated two new single-particle models for thermostatted heat

conductivity [7]. In both these cases we studied the motion
of a single nonequilibrium oscillator exposed to a smoothly-
varying temperature gradient (dT/dq) with a maximum
value of ε:

T (q)≡1+ε tanh(q)→{1−ε< T <1+ε ; | (dT/dq) | ≤ ε} .

This coordinate-dependent temperature T (q) was controlled
with either a single Nosé-Hoover [8] “thermostat” variable ζ:

{ q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − T (q) } [NH] ,

or, following my 1996 work with Brad Holian [9], with two
such control variables, ζ and ξ:

{q̇ = p; ṗ = −q − ζp− ξp3; ζ̇ = p2 − T (q); ξ̇ = p4 − 3p2}
[HH = PH] .

Here the time-reversible controls, ζ and ξ, provided the ini-
tial conditions allow it, drive a purely-kinetic heat current
(p3/2) and generate a nonequilibrium steady state in three-
dimensional (q, p, ζ) or four-dimensional (q, p, ζ, ξ) phase
space. The steady state is the time-averaged probability den-
sity in the phase space. In the “equilibrium” case, where tem-
perature is constant, T = 1, the time-averaged second and
fourth moments are constrained by ζ and ξ to the values from
Gibbs’ canonical ensemble with T ≡ 1, 〈p2, p4〉 = 1, 3.

The three- and four-dimensional descriptions of
a nonequilibrium oscillator turned out quite differently to
the predictions of Gibbs’ ensembles. Nonequilibrium distri-
butions are typically “fractal” and can be quite intricate far
from equilibrium. Fig. 1 compares a two-dimensional (q, p)
phase-space cross section cut through a four-dimensional
representation of HH=PH dynamics to the corresponding
cross section using HH=SHH dynamics.

Fig. 1. p(q) sections with ζ = ξ = 0 for two versions of a con-
ducting oscillator with both quadratic and quartic moments con-
trolled by the PH and SHH generalizations of the Hoover-Holian
motion equations given in the text. Here the maximum temperature

gradient ε is 0.40

In both cases the imposed temperature varies in space,
T (q) ≡ 1 + 0.4 tanh(q). In my more recent 2014 work
with Clint Sprott [10] and my Wife Carol we used a more-
elaborate motion equation for the quartic control variable ξ:

{q̇ = p; ṗ=−q − ζp− ξp3; ζ̇=p2−T (q); ξ̇=p4−3p2T (q)}
[HH = SHH] .
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The comparison of the two fractal cross sections given in
Fig. 1 shows that the two similar ξ̇ control equations pro-
duce very different fractals far from equilibrium.

III. 2. Time Reversibility, Dissipation,
and the Second Law of Thermodynamics

Notice that both the Nosé-Hoover and the Hoover-Holian
sets of motion equations are “time-reversible”. By this
I mean that changing the signs of the time, the momen-
tum p, and the friction coefficients ζ and ξ precisely re-
verses the time-development of the coordinate q. An unde-
sirable feature of the simpler Nosé-Hoover thermostat model
is that it often lacks ergodicity [8, 10] when applied to small
systems. In the conducting oscillator example problem the
three-dimensional (q, p, ζ) phase space contains infinitely-
many stationary states, mostly two-dimensional tori with no
nonequilibrium heat flux. This disturbing abundance of un-
physical solutions can be cured by introducing the additional
control variable ξ which originated in the Hoover-Holian ex-
ample [9].

With ξ included, the resulting phase-space distributions
are typically fractal (fractional-dimensional) attractors, as
suggested by the two sample cross-sections of Fig. 1. In such
fractals the distribution of time-reversible (q, p, ζ, ξ) states
describes an irreversible dissipative flow of kinetic energy
from a mirror-image repellor to its attractor. The resulting
hot-to-cold direction of the mean energy flow is just that
mandated by the macroscopic Second Law of Thermody-
namics. Though the additional control variable ξ increases
the dimensionality of phase space from three to four this ex-
tra complexity seems a reasonable price to pay for the sim-
plicity of ergodicity.

III. 3. Ergodicity and Ergodic Nonequilibrium Fractals
At equilibrium ergodicity is crucial for the validity of

Willard Gibbs’ statistical mechanics. Gibbs was able to for-
mulate macroscopic thermodynamic properties as micro-
scopic phase-space averages provided that all the phase-
space states included in the averages were accessible dy-
namically, one from another. An “ergodic” system is one
in which the phase-space average is equivalent to a long-
time dynamical average. Evidently the thermostatted Nosé-
Hoover oscillator just considered is not ergodic – each of the
three solutions of Fig. 2 is confined to its own one- or two-
dimensional portion of the three-dimensional (q, p, ζ) space.
In striking contrast the two similar Hoover-Holian oscilla-
tors of Fig. 1 used two friction coefficients and provided
ergodic nonequilibrium steady states independent of initial
conditions [8–10].

The fractal nature of nonequilibrium flows is typical of
ergodic stationary states [11, 12]. Such fractals are invari-
ably chaotic and anisotropic, with an overall positive Lya-
punov exponent describing the mean (time-averaged) sepa-
ration rate of two nearby phase-space trajectories. Addition-
ally, one or more negative exponents cause the overall nega-

Fig. 2. Three disconnected solutions for the Nosé-Hoover oscillator
with ε = 0.42. The red and green toroidal solutions and the black
dissipative limit cycle all satisfy exactly the same nonequilibrium

motion equations, with T (q) = 1 + ε tanh(q)

tive sum responsible for the zero-phase-volume steady-state
structures of fractal phase-space attractors: d ln(⊗)/dt ≡
≡

∑
λi < 0. Here ⊗ is an infinitesimal element of comov-

ing phase-space volume. Because the summed-up Lyapunov
exponents on the repellor (with their opposite signs) are pos-
itive rather than negative any nearby trajectory undergoes an
exponentially-fast departure from the well-named repellor to
the dissipative strange attractor. The typical case, in which
both structures have a presence throughout the phase space,
renders the mental picture of repellor-to-attractor flow some-
what paradoxical.

By 1987 it became clear that phase-space distributions
for nonequilibrium stationary states were typically fractal
and ergodic in character [11, 12] with a wide assortment of
fractional dimensions which were defined and described by
Rényi, Mandelbrot, and a huge literature of follow-on work.
Harald Posch and I found that two-dimensional maps, clearly
simpler than three- and four-dimensional flows, could be
chosen to model the properties of time-reversible nonequi-
librium simulations [13]. We chose to study the compress-
ible time-reversible Baker Map shown at the left of Fig. 3.

Fig. 3. Tricolor representations of the N2 and N3 maps. In both
cases the rectangular areas prior to mapping are deformed without
rotation, shrinking and expanding in orthogonal directions. Itera-
tions of these linear maps and their inverses provide fractal struc-
tures resembling those generated with nonlinear dissipative flows.

See Fig. 4
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Iterating the map converts one (q, p) state to another and an-
other and another . . . , rather like the sequence of discrete
movie frames used to describe a continuous motion. Exten-
sions of this work [14], some very recent [15, 16], have con-
fronted us with some surprising and stimulating results. I de-
scribe those next.

IV. MAPS CARICATURING
NONEQUILIBRIUM STATISTICAL FLOWS

Time-reversible molecular dynamics can be applied
equally well to equilibrium systems and to nonequilibrium
atomistic flows of mass, momentum, and energy. Despite re-
versibility the motion equations used to model steady flows
invariably produce dissipative irreversibility, as is required
by the Second Law of Thermodynamics [11, 12]. One can
best seek to grasp an understanding of how reversible equa-
tions provide irreversible behavior by the study of small sys-
tems well suited to support using computer graphics. Such
investigations revealed that the mechanism for computa-
tional irreversibility is a consequence of the fractal repellor-
to-attractor nature of time-reversible nonequilibrium phase-
space states.

I turn here from flows to maps, stressing recent results.
This choice simplifies and clarifies analyses. Like flows,
maps are deterministic, can be time-reversible, and often
generate fractals. Their phase-space compressibility rate,
(d ln⊗/dt) =

∑
λi, is closely related to the Gibbs-entropy

production production rate Ṡ = k ln ⊗̇ and to the fractal in-
formation dimension, just as is the case with flows. Here ⊗
is an infinitesimal element of phase volume comoving with
the flow and k is Boltzmann’s constant.

There is one interesting qualitative difference between
flows and maps: irreversibility in flows stems from nonlin-
earity while even the simplest linear maps can illustrate the
dissipative behavior obeying the Second Law. Let us next
compare the compressible but time-reversible linear Baker
Map of 30 years ago to a similar one which lacks time re-
versibility but retains the dissipative fractal character of typ-
ical nonequilibrium flows.

V. OF TWO LINEAR BAKER MAPS,
N2 IS REVERSIBLE WHILE N3 IS NOT

Two-Dimensional Maps are analogous to cross-sections
of Three-Dimensional Flows. Here we consider the interest-
ing fractal structures generated by two similar simple linear
maps, N2 and N3, which operate within the finite diamond-
shaped domains shown in Figs. 3 and 4. The reason for
the diamond-shaped (q, p) domains chosen here is linked
to time reversibility. Time Reversibility is a stringent con-
straint on maps. It requires that the “before” and “after” re-
gions have identical shapes and sizes. This requirement is

Fig. 4. Results obtained by iterating N2 and N3 and their inverses
once, twice, and nine times. Notice that the iterations for N2 for-
ward and backward are mirror images due to the time-reversibility
of those maps. The lack of this symmetry for iterations of N3 and
N3−1 shows that those more complex maps lack time-reversibility

easily satisfied with N2 where there is a single discontinu-
ity in the mapping between two rectangles with different ar-
eas. Here time reversibility is easy to check. We adopt the
conventional three-step meaning: the effect of the mapping
can be reversed to reach the previous condition, by carry-
ing out three successive steps, T∗N2∗T. These correspond
to [1] time-reversal, [2] forward mapping, and [3] a second
time reversal. Here T is the time-reversal map [T(±q,±p) =
= (±q,∓p)], changing the sign of the momentum p but leav-
ing the coordinate q unchanged.

Fig. 5. The distributions of 50,000 random initial points after two
forward mappings of N2 and N3. The three different densities of
points, relative to a unit square, are 4, 1, and 1/4, giving identical

information dimensions for the two distributions shown here

Baker Maps take a point in two-dimensional (q, p) [co-
ordinate, momentum] space from one iteration to the next.
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Such a mapping can be applied to individual points or to ar-
eas in two-dimensional (q, p) phase space. Two similar lin-
ear Baker Maps, along with their inverses confined to the
same portion of two-dimensional space, are illustrated in
Figs. 3–7. I have written the analytic forms of all the maps so
that they occupy diamond-shaped domains with maximum
and minimum values of the horizontal coordinate q and the
vertical momentum p equal to±

√
2 so that the map area is 4

and the diamonds’ centers are at the origin.
In describing the density within these diamonds it is con-

venient to imagine them mapped to a unit square with the
density integrated over the square equal to unity. In speaking
of the density in discussing Figs. 5, 9 and 10 we will adopt
the picture that the probability density occupies a unit square
and that the total density integrates to unity.

In the (q, p) coordinate system appropriate to diamond
domains the analytic forms of the simplest time-reversible
N2 map and its inverse are as follows:

if(q-p.lt.-4*d)
qnew = + (11/ 6)*q - ( 7/ 6)*p + 14*d

if(q-p.lt.-4*d)
pnew = - ( 7/ 6)*q + (11/ 6)*p - 10*d

if(q-p.ge.-4*d)
qnew = + (11/12)*q - ( 7/12)*p - 7*d

if(q-p.ge.-4*d)
pnew = - ( 7/12)*q + (11/12)*p - 1*d

[Reversible Nonequilibrium Baker Map N2
with d = sqrt(1/72)]

The inverse mapping N2−1 follows easily from the linear
equations, with the result:

if(q+p.lt.-4*d)
qnew = + (11/ 6)*q + ( 7/ 6)*p + 14*d

if(q+p.lt.-4*d)
pnew = + ( 7/ 6)*q + (11/ 6)*p + 10*d

if(q+p.ge.-4*d)
qnew = + (11/12)*q + ( 7/12)*p - 7*d

if(q+p.ge.-4*d)
pnew = + ( 7/12)*q + (11/12)*p + 1*d
[Inverse of the Nonequilibrium

Baker Map N2]

The time-reversibility of the N2 map guarantees that the
inverse mapping is equivalent to the three-step process men-
tioned above, T∗N2∗T. For flows this reversal analog for
a timestep +dt corresponds to taking a negative timestep
−dt and then changing the sign of the momentum. Because
all the maps we consider here are Lyapunov unstable (more
about this later) the practical length of a reversed trajec-
tory is limited by the exponential growth of roundoff error.
With quadruple-precision arithmetic a typical sequence of
N2 or N3 mappings can be recognizably reversed for about
fifty iterations.

The N2 and N3 mappings of Figs. 3–7 are similar, but
differ in one fundamental way. The N3 mapping is not re-
versible, though Carol and I mistakenly thought that it was
[15]. The inverse mapping follows easily from the linear
equations just as in the N2 case. But the inverse is not at
all the same as the three-step mapping T∗N∗T which applies
in the time-reversible case.

if (q-p.lt.-8*d)
qnew = +19*q/ 6 - 17*p/ 6 + 34*d

if (q-p.lt.-8*d)
pnew = -17*q/ 6 + 19*p/ 6 - 26*d

if((q-p.ge.-8*d).and.(q-p.le.-4*d))
qnew = +19*q/ 6 - 17*p/ 6 + 18*d

if((q-p.ge.-8*d).and.(q-p.le.-4*d))
pnew = -17*q/ 6 + 19*p/ 6 - 18*d

if (q-p.gt.-4*d)
qnew = +11*q/12 - 7*p/12 - 7*d

if (q-p.gt.-4*d)
pnew = - 7*q/12 + 11*p/12 - 1*d

[Irreversible Nonequilibrium Baker Map
N3 with d = sqrt(1/72)]

if (q+p.ge.+4*d)
qnew = +19*q/12 + 17*p/12 - 17*d

if (q+p.ge.+4*d)
pnew = +17*q/12 + 19*p/12 - 7*d

if((q+p.lt.+4*d).and.(q+p.gt.-4*d))
qnew = +19*q/12 + 17*p/12 - 3*d

if((q+p.lt.+4*d).and.(q+p.gt.-4*d))
pnew = +17*q/12 + 19*p/12 + 3*d

if (q+p.le.-4*d)
qnew = +11*q/ 6 + 7*p/ 6 + 14*d

if (q+p.le.-4*d)
pnew = + 7*q/ 6 + 11*p/ 6 + 10*d
[Inverse of the Nonequilibrium

Baker Map N3]

Fig. 6. Repellor (left) and Attractor (right) for N2, corresponding
to nine iterations, visually quite similar to the limiting infinite-
iterations case. 200,000 points are shown. The repellor/attractor
pair are mirror images of each other where the mirror is horizontal
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Fig. 7. Repellor (left) and Attractor (right) for N3. Notice that time-
reversibility symmetry is absent. The repellor generated by N3−1

is also fractal, but with a different information dimension than that
of the attractor, and with a much steeper falloff of density, as shown

in Fig. 9

Figs. 4–7 show the evolution of the fractals, comparing
the forward and backward developments for N2, N3, and
their inverses. Fig. 4 compares the distributions after one,
two, and nine forward mappings. The detailed structures of
the limiting attractors for all four maps are shown in Figs. 6
and 7. Notice particularly that the N3 attractor and repellor
are quite different fractals, not mirror images of one another
and with different fractal dimensions. This is confirmation
that N3 and its inverse are not time-reversible.

VI. THE IRREVERSIBLE N3 MAP
AND ITS INFORMATION DIMENSION

The N3 map was motivated by the idea to symmetrize
the “after” image of the N2 map shown in Fig. 3 to provide
the three equal-area regions shown at the right of the Figure.
Although the linear equations describing the N3 map and its
inverse are readily constructed and given above, we can see
that the attractor and repellor shown in Fig. 7 are not mirror
images. They are particularly simple from a structural point
of view. It is easy to verify that T∗N3∗T, where T reverses
the sign of the vertical (momentum) coordinate p, does not
result in the inverse N3−1.

Consider the action of N3 on a uniform distribution.
The first iteration results in three strips of equal width (red,
green, and blue at the right of Fig. 3), with densities {2, 12 ,

1
2}

and probabilities { 23 ,
1
6 ,

1
6}. The corresponding information

dimension is:

DI = 1 + [ 23 ln
2
3 + 1

3 ln
1
6 ]/ ln

1
3 = 1.78969 .

A second iteration (third row and second column of
Fig. 4 provides nine strips of width 1

9 , with densities
{4, 1, 1, 1, 14 ,

1
4 , 1,

1
4 ,

1
4}, giving for the information dimen-

sion:

DI = 1 + [ 49 ln
4
9 + 4

9 ln
1
9 + 1

9 ln
1
36 ]/ ln

1
9 = 1.78969 .

Continuing the iteration of the map produces no change, just
repetition of the result DI(N3) = 1.78969.

N2 on the other hand provides a different distribu-
tion of densities, but only different in their ordering:
{4, 1, 1, 1, 1, 14 ,

1
4 ,

1
4 ,

1
4}. Fig. 5 compares the distributions

according to N2 and N3 after just two iterations of the map-
ping, starting with a uniform distribution. The three differ-
ent densities of points shown in the distributions differ from
each other by powers of 4, as illustrated explicitly above. Ev-
idently, by construction, the information dimensions for the
two maps are identical, equal to 1.78969. In the next Section
we will see that this is false!

VII. SYMMETRY OF THE REPELLOR
AND ATTRACTOR

Fig. 8. Information dimensions for N2, N3, and N3−1 using 243
mesh points as functions of the number of map iterations. DI re-
mains the same for N2 and N3 through five iterations, but their lim-
iting information dimensions (circled) differ. Further mesh refine-
ments extend the agreement but in the end the convergence remains
nonuniform. The Kaplan-Yorke conjectured dimensions are shown
at the left and suggest that N3 and its inverse obey that conjecture

while N2 may not

Although the attractors of the N2 and N3 maps appear to
have the same information dimensions, as quantified above,
numerical work tells a different story, and in an interesting
way, illustrated in Fig. 8. There we choose a particular mesh,
3−5 = 1

243 , and compute the information dimension after
each of several iterations. Nine, as well as the limiting value,
are shown in the figure. Through the fifth iteration the infor-
mation dimensions for N2 and N3 agree precisely. After that
iteration the dimension of the N3 map remains unchanged
at 1.78969 while that of N2 continues to fall, as shown in
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Fig. 8. Careful numerical work on the N2 problem [16, 17]
has suggested two different values (!) for the information di-
mension of N2, neither of them equal to 1.78969: 1.7337 and
1.7415. The first of these is the Kaplan-Yorke estimate,

DKY = 1− (λ1/λ2) .

where the Lyapunov exponents λ1 > 0 and λ2 < 0 are
evaluated in the following Section. The second estimate
DI

?
= 1.7415 is the result of trillion-iteration simulations

of the N2 mapping using meshes that are integral powers of
(1/3) as high as 3−20. The resolution of this uncertainty has
been set as the 2020 Snook Prize problem [15].

VIII. LYAPUNOV INSTABILITY
OF COMPRESSIBLE MAPS

The Lyapunov exponents of maps, like those of flows,
describe the rate at which two nearby points separate.
The N2 map gives threefold expansion with orthogonal 3

2 -
fold compression one third of the time (see the blue panel
at the left of Fig. 3) and 3

2 -fold expansion with orthogonal
threefold compression two-thirds of the time (the red panel),
corresponding to the Lyapunov exponents:

λ1 = 1
3 ln(3) +

2
3 ln

3
2 = 1

3 ln
27
4 = +0.636514 ,

λ2 = 1
3 ln

2
3 + 2

3 ln
1
3 = 1

3 ln
2
27 = −0.867563 .

The N3 map can be analyzed similarly following Fig. 3, with
the results

λ1 = 1
3 ln(6) +

2
3 ln

3
2 = 1

3 ln
27
2 = 0.867563 ,

λ2 = 1
3 ln

1
3 + 2

3 ln
1
3 = 1

3 ln
1
27 = −1.098612 .

These results are of interest in view of the Kaplan-Yorke con-
jecture that the fractal dimension for such a map is given by
DKY = 1 − (λ1/λ2), 1.73368 for N2 and 1.78969 for N3.
Thus the unchanging information dimension for the N3 map
with increasing iterations agrees precisely with the Kaplan-
Yorke conjecture while that of the somewhat simpler N2 map
does not.

IX. ITERATION OF THE MAPS GIVES
FRACTAL ATTRACTORS

The two maps give similar strange attractors. We saw that
N3 has the more “conventional” behavior, relative to N2, in
that the information dimension after a single iteration [ap-
plied to a constant density throughout the diamond-shaped
domain] is the same as that for many iterations and is also

Fig. 9. Occupants of panels of width (1/3), (2/9), (4/27), . . . , or
(1/3)(2/3)k−1 with panel indices 1 ≤ k ≤ 9. Each point is taken
from a sampling of one billion iterations. Both N2 and N3−1 have
the same “unit-square-based” panel densities of (1/2)k−2. The N3
mapping here, for nine panels of equal width, produces densities

varying as powers of 4

equal to the information dimension which follows from the
Kaplan-Yorke conjecture

DI
?
= DKY = 1− (λ1/λ2) = 1.789690 .

Fig. 10. Mesh-dependent information dimension estimates for the
N3 and N3−1 map with meshes varying from (1/2)8 to (1/2)25

(fine lines), (1/3)5 to (1/3)18 (medium lines), and (1/6)3 to
(1/6)11 (thick lines). The rapid convergence of the N3 map data
with meshes of (1/3)n is promoted by its threefold symmetry, as

shown in Figs. 3 and 7
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Figs. 6 and 7 show the attractors and repellors for the two
maps. The N2 map shows the expected symmetry for time-
reversible maps. The repellor and attractor are mirror im-
ages of each other. The N3 map is different though its re-
pellor is “simpler” than the N2 fractals. The data in Fig. 8
indicate that N3 and its inverse have different information
dimensions. In fact the differences are qualitative. A look
at Fig. 7 correctly suggests that the fractal generated by N3
consists of three similar panels. The density pattern in the
southwest third of the figure is repeated, with a density four
times lower, in the middle and northeast thirds of the do-
main. On the other hand the attractor of the inverse map
N3−1 repeats its northwest third (with two-thirds the den-
sity) infinitely-many times toward the southeast in panels
of widths of (1/2)(2/3)k with overall densities 22−k for all
positive k. The N2 map and its inverse behave in exactly the
same way, with two thirds of their points in the densest third
of the diamond, giving densities of 22−k for all positive k.
Fig. 9 illustrates these fractal dependencies with a sampling
of a billion, e20.723, points.

Fig. 10 shows the convergence of finite-mesh samplings
of 1011 iterations, binned into meshes as small as (1/2)25,
(1/3)18, and (1/6)11. These data indicate that both N3 and
its inverse N3−1 satisfy the Kaplan-Yorke conjecture where
the Kaplan-Yorke values are shown as the zero-mesh limits.
Meanwhile the data for N2 are confusing. An explanation
or clarification of this confusion is the subject of the 2020
Snook Prize [18].

X. SUMMARY

The small-system explorations begun with Francis Ree,
emphasizing simple models well-suited to computer simu-
lation, have provided the details of the melting and freez-
ing transitions for hard particles as well as the connection
of thermostatted nonequilibrium simulations to the Second
Law of Thermodynamics and Irreversibility. The finding
of fractal phase-space structures led to the investigation of
maps, whose history goes back to Hopf’s work in 1937.
The maps, though simpler than flows, have very recently led
to findings that are a surprise, suggesting that there is more
to learn about the fractal structures that play an important
role in statistical mechanics.

XI. JOINT PUBLICATIONS OF FRANCIS REE
AND THE AUTHOR

We published nine joint works, all of them in the Jour-
nal of Chemical Physics, including one written jointly with
Berni Alder. The volume numbers are indicated in this list:
Fifth and Sixth Virial Coefficients for Hard Spheres and
Hard Disks 40; On the Signs of the Hard Sphere Virial Co-
efficients 40; Reformulation of the Virial Series for Clas-
sical Fluids 41; Dependence of Lattice Gas Properties on

Mesh Size 41 [with Berni Alder]; Calculation of Virial Co-
efficients. Squares and Cubes with Attractive Forces 43;
Thermodynamic Properties of a Simple Hard-Core Sys-
tem 45; Seventh Virial Coefficients for Hard Spheres and
Hard Disks 46; Use of Computer Experiments to Locate the
Melting Transition and Calculate the Entropy in the Solid
Phase 47; Melting Transition and Communal Entropy for
Hard Spheres 49.
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William G. Hoover and Francis H. Ree. The 1965 photo was taken at my
Green Valley Road home in Danville, California long before Diversity had re-
placed Excellence as the educational/political norm in American education.
Francis Ree was visiting for a waffle brunch served by my first Wife Victo-
ria Nathan Hoover. She and my children Frances (now Frances Wilson) and
Nathan still live with pleasure in California. My Wife Carol Griswold Hoover
and I much prefer Nevada. In the days of the photograph the usual interac-
tion of scientists was either in person or by handwritten letters. Francis and
I were fortunate, mainly through the mechanism of summertime Gordon Con-
ferences located in New Hampshire, to become well-acquainted with dozens
of colleagues specializing in computation and statistical mechanics. In all
of our joint work our academic address was the “Lawrence Radiation Lab-
oratory”. Our research was only very loosely supervised, first by Sid Fern-
bach, and later by Norris Keeler. Working at LRL was idyllic in those days.
Our nine joint publications record our indebtedness to and friendship with
many dozens of colleagues throughout the world and nearly always thanked
Warren G. Cunningham for his computational help. Berni Alder and Ted Ein-
wohner were our most frequently cited colleagues for their stimulating con-
tributions to our researches.
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