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Abstract: The thermophysical properties of metal alloys are often investigated via molecular dynamics (MD) simulations.
An exact and reliable estimation of the thermophysical parameters from the MD data requires a properly and carefully
elaborated methodology. In this paper, an improved two-phase sandwich method for the determination of the metal melting
temperature is proposed, based on the solid-liquid equilibrium theory. The new method was successfully implemented using
the LAMMPS software and the C++11 Standard Libraries and then applied to aluminum and copper systems. The results
show that the proposed procedure allows more precise calculations of the melting temperature than the widely used one-
phase boundary methods.
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I. INTRODUCTION

Investigations of the thermophysical properties of met-
als and alloys play an important role for understanding
the many phenomena that occurr during metallurgical pro-
cesses. Obtaining such knowledge may lead to improve-
ments in the preparation of high-performance materials.
These materials are widely used, for example in aviation [1],
maritime [2] and automotive [3] industries. One of the most
investigated topics is the solid-liquid coexistence, which
is of great importance for metal alloy casting. One of the pa-
rameters describing this state is the equilibrium melting tem-
perature Tmelt.

The main purpose of calculating the equilibrium melt-
ing temperature is to determine whether the liquid alloy
is in its normal or undercooled state within the specified
range of temperatures. By determining the value of Tmelt
for varying compositions of a given alloy it is also pos-
sible to construct the upper part of its phase diagram
which represents the melting process. Due to the physi-
cal contact between the melt and the faces of the mold

it is often difficult to correctly measure the melting tem-
peratures in the vicinity of the equilibrium melting point.
This is caused by a rapid nucleation at the liquid-container
boundary which may lead to an underestimation of the melt-
ing temperature.

Therefore, calculation methods have developed rapidly
in recent years. These methods can be used to predict the
value of a Tmelt for various metals. These include molec-
ular dynamics simulations that are widely used to investi-
gate the coexistence of liquid and solid phases [4, 5] and
the thermophysical properties of a wide range of materials
in general [6]. Notable applications include transition met-
als [7, 8], selected rare-earth elements [9] and binary alloys
such as Al-Cu [10, 11] or Ni-Zr [12].

From the thermodynamic point of view, the equilib-
rium melting temperature can be defined as a temperature
at which the free enthalpy G(p, T = Tmelt) of the liquid
and the solid is identical. The calculations of Tmelt by sim-
ply heating a periodic fragment of bulk crystal and observ-
ing the changes in the thermodynamic functions of state (e.g.
the internal energy of the system) to find points of their dis-
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continuous changes lead to overestimated values. This oc-
curs due to the influence of the interfacial energy on the en-
ergetics of real, physical systems. Thus, in case of melting
temperature calculations it is important to properly prepare
the boundary between liquid and solid phases. Consider-
ing this requirement, there are currently three methods used
for predicting the equilibrium melting temperature which
are based on molecular dynamics simulations.

The first and most straightforward method is to carry
out solid phase simulations at increasing temperatures.
The melting point can be then approximated by the tem-
perature at which the internal crystal lattice structure breaks
down. An alternative way to carry out calculations via this
method is to cool down a system in a liquid state by sub-
sequently lowering the temperature at which it is equili-
brated. Due to the hysteresis effect, the values of Tmelt ob-
tained by heating or cooling the chosen simulation system
are significantly different from the equilibrium melting tem-
perature. These effects are known as overheating and un-
dercooling, respectively. Basing on the homogeneous nucle-
ation theory it is possible to relate these values to an approx-
imated value of Tmelt [13, 14]. However, this method has
been shown to render less precise results than methods based
on the two-phase approach [15].

The second method is the moving interface method.
Initially, a system is constructed near an estimated value
of Tmelt. It consists of a solid-liquid interface made from
solid and liquid phase layers aligned along a chosen co-
ordination axis. Then, the velocity at which the liquid-
solid interface moves vint is calculated. Next, the tempera-
ture is changed by the interval ∆T and the interface mov-
ing velocity is measured under new simulation conditions.
By investigating a sufficiently wide range of temperatures
in the vicinity of Tmelt, it is possible to plot an interface mov-
ing velocity-temperature curve. The extrapolation of this re-
lationship to the point where vint = 0 can be treated as an ap-
proximation of the melting point. One of the main difficul-
ties of this method is the definition of the solid-phase bound-
ary itself. A clear rule has to be established when a parti-
cle becomes a part of the liquid phase during simulations.
This can be done using structural analysis methods [16]
such as the Common Neighbor Analysis [17] or the Bond-
orientational order method [18, 19]. However, if this condi-
tion is defined inappropriately, i.e. without taking into ac-
count significant thermal excitations of the crystal lattice
in the vicinity of the melting point, it may lead to incorrect
values of Tmelt.

The third method is the NVE ensemble method. For its
purpose a system similar to the moving interface method
can be used [20]. Alternatively, a system consisting of a liq-
uid phase layer located between two solid phase layers can
be constructed [21]. This method focuses on the fact that
the system consumes latent heat from its surroundings dur-
ing the solid phase melting. After that, a part of the sys-
tem’s kinetic energy is transferred into its potential energy.

Thus, the overall temperature of the system is lowered.
In case when the system is equilibrated in a microcanoni-
cal (NVE) ensemble at temperature T > Tmelt, it evolves
towards a lower temperature. Similarly, when the simulation
is performed at T < Tmelt an increase in temperature to-
wards the melting point is observed. The melting temper-
ature is approximated by the final temperatures at which
the system achieves the equilibrium state. It is crucial to en-
sure that the initial temperature is chosen as close as possi-
ble to the equilibrium melting temperature. When done cor-
rectly, the NVE method can determine the value of Tmelt

in a single simulation. This cannot be performed using the
moving interface method. However, the two methods can
be used to complement each other. First, the melting point
can be estimated by a moving interface method. Then, Tmelt

can be calculated precisely via the NVE method.
Finally, the most precise method used in evaluation

of the melting point is the so-called sandwich method
[22, 23]. A detailed description of its theoretical background
and problems which arise during its application will be pre-
sented in subsequent sections of this article. The main goal
of this paper is to establish a repeatable and precise im-
plementation of this method, by addressing the aforemen-
tioned challenges. Much attention has been paid to cre-
ate a computational scheme which can be performed using
the readily available scientific software and is characterized
by lower computational cost compared to the previously out-
lined methods.

The paper is organized as follows. In Section II. the ba-
sic principles and theoretical background of the sandwich
method are recalled. Moreover, the main challenges of this
method are addressed and solved in order to ensure pre-
cise calculations of the melting temperature and construc-
tion of a solid-liquid phase boundary. In Section III. a de-
scription of the sandwich method implementation is shown
to the reader, using the open-source LAMMPS software [24]
and a C++ program used to create a computational system
i.e. sandwiches. In Section IV. an example of implemen-
tation of the sandwich method is shown for several, avail-
able interatomic potentials. As a result, the values of Tmelt

are calculated and presented for pure aluminum and cop-
per. In Section V. a short discussion is presented in which
the authors evaluate whether the proposed implementation
of the sandwich method has met the previously posed cri-
teria. Additionally, plans and suggestions of future develop-
ment of this method are also briefly discussed.

II. METHODOLOGY

II. 1. Basic principles
The sandwich method can be considered as an extension

of the hysteresis method. As mentioned earlier, the existence
of undercooled and overheated states leads to two different
melting points T− and T+. The true value of Tmelt must
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be located in-between those points on the caloric curve of the
investigated element, i.e. inside its hysteresis loop, as shown
in Fig. 1 by the dimmed portion of the graph.
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Fig. 1. Example of a caloric curve showing two distinct points of
first order phase transitions (freezing and melting)

Therefore, the first step of the sandwich method is
to construct a caloric curve where the specific energy
(the internal energy per atom) of a one-phase system
eint is plotted against the temperature. This is done for
the sake of comparison with future two-phase systems. This
can be achieved by heating a bulk solid sample from tem-
perature Tmin up to Tmax and then cooling the same sys-
tem back to Tmin. Simulations are to be carried out in an
NpT ensemble. The specific energy of the system eint

is calculated at the temperatures: T = Tmin, Tmin +
+∆T, . . . , Tmax. The temperature resolution ∆T and sim-
ulation lengths have to be chosen to ensure that the cool-
ing or heating velocity does not lead to the formation
of meta-stable phases, e.g. an amorphous glass phase dur-
ing the cooling of a liquid phase system. Next, the tem-
peratures T− and T+ can be found via the caloric curve
analysis. For each sampling temperature Tsand laying be-
tween these values, e.g. for Tsand = T−, T−+ ∆T, . . . , T+

a two-phase sandwich is constructed as shown in Fig. 2. Ar-
eas (1) and (3) consist of a system in a solid state equilibrated
at T = Tsand during the caloric curve creation. Analogically,
layer (2) is made of the same element in a liquid state at tem-
perature Tsand.

For each set of temperatures Tsand ∈ (T−;T+), a sepa-
rate simulation is carried out where specific energy is calcu-
lated as previously. Initially, these calculations are carried
out at time lengths sufficient only for the system to start
equilibrating to either the solid or liquid phase. By a super-
position of the results obtained for these sandwiches with
the caloric curve, a rough estimation of the equilibrium melt-
ing point position can be made. Then, for temperatures Tsand

in the vicinity of this point it is important to ensure that

Fig. 2. Schematic showing the type of the simulation systems used
in the sandwich method

the system is equilibrated thoroughly, i.e. its energy has con-
verged to a stable value and completely melted or crystal-
lized. Therefore, simulation lengths must be considerably
larger than previously. If carried out correctly, an additional
discontinuity can be observed at the caloric curve, which cor-
responds to the equilibrium melting temperature Tmelt. It is
useful to first choose a small subset of temperatures Tsand,
e.g. which would be equal to Tsand = 800, 900, . . . , 1100 K
for T− = 700 K and T+ = 1200 K to ensure that the cal-
culations are carried out as efficiently as possible. Then, two
sampling points can be identified between which a disconti-
nuity of esand

int is observed. These points would act as limits
for a subsequent subset of temperatures Tsand. This proce-
dure is carried out until a set of temperatures Tsand equidis-
tant from each other by ∆T is reached. For this last set
of temperatures, the sampling stage of simulations is length-
ened for a precise estimation of Tmelt.

II. 2. Preparation of simulation systems
One of the major requirements of the sandwich method

is a reliable construction of the solid-liquid phase inter-
face. Initially, the systems obtained during the equilibration
of the liquid and solid system are in the form of orthog-
onal boxes with the dimensions of Lliq × Lliq × hliq and
Lsol×Lsol×hsol, respectively. The system used during sim-
ulations in the sandwich method can be described as an or-
thogonal box hsol in height and with the length of its edges
residing in the XY plane being equal to Lsol. The system
can be divided into three layers to ensure that the concen-
trations of liquid and solid phases are roughly equal to each
other. The thickness of the first and third layers is equal to
the quarter of the solid phase simulation box height hsol:
dsol = hsol/4. These layers consist of atoms in the solid
phase of a given element. A liquid phase layer is inserted be-
tween them, the thickness of which is equal to: dliq = hsol/2
However, such division is strictly geometric and it does not
take into account the thermal excitations of crystal lattices
situated in the outermost layers. When applied, it creates
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solid surfaces near the solid-liquid boundary with a high con-
centration of point defects. Therefore, an algorithm which
groups solid phase atoms in subsequent crystal planes along
the simulation box height is needed. This can be done by cal-
culating an interatomic distance vector rsol

ij for each unique
pair of solid phase atoms and finding an acute angle θhkl

ij

between such vector and a crystal plane with Miller indices
(hkl). The following equation can be used to calculate this
angle:

θhkl
ij = arcsin

(
rsol
ij

|rsol
ij |
· nhkl

)
, (1)

where nhkl is a normal to the plane with Miller indices (hkl).
A maximum value of θhkl

ij can be measured directly us-
ing, for example, visualization software such as OVITO [25]
by inspecting individual particles in a chosen crystal plane.

One of the problems of this approach is the compu-
tational complexity of choosing unique pairs of two solid
atoms in a system consisting of Nsol particles. If we use
the straightforward method of randomly selecting two atoms
in the system, we obtain a complexity proportional to the fac-
tor of N2

sol. For large systems, it is more efficient to use
the Verlet list method. Using this method, the neighbour-
hood of each particle in the system can be described using
two data structures, the number of its closest neighbours and
a list containing indices of each of them. During the first step
of the Verlet list creation, the distance between two randomly
selected atoms |rsol

ij | is calculated. If |rsol
ij | is smaller than

the predefined first coordination sphere radius rI
sol, they are

considered closest neighbours. It is important to use the val-
ues of rI

sol which correspond to the structure of an overheated
solid at temperature T+ for which the sandwich is to be con-
structed. This allows the computational complexity of subse-
quent interatomic distance calculations to be significantly re-
duced to the order ofO

(
N

3/5
sol

)
. After applying the equation

(1) to the closest neighbourhood of a given atom, it is possi-
ble to establish which atoms lie at the same crystal planes
(hkl). This allows dividing the solid phase into complete
crystal planes without introducing previously mentioned ad-
ditional point defects. A bulk solid phase simulation box is
constructed in this way and the periodic boundary conditions
are applicable to all three dimensions in this case.

Next, the liquid phase layer must be inserted in the cen-
tral section of the sandwich. One of the major obstacles
in this step are the differences between simulation box sizes
of one-phase solid and liquid systems. Due to the equili-
bration in an NpT ensemble during the caloric curve cre-
ation, the volumes of these systems differ in a way that
limits the possibility of preserving the periodic boundaries
of a liquid phase system by simply dividing it along its
height and inserting a part of it inside the sandwich directly.
One possibility is to search for areas in the liquid phase

called “windows” here, which still preserve its density ρliq

and their dimensions match the previously defined dimen-
sions of the middle sandwich layer. To measure the density
of a single window, it is important to properly define the part
of the sandwich volume which will be later used to calculate
this property. This definition has to be consistent throughout
the whole process of creating a sandwich.

After cutting out a window from the liquid phase system
for which ρ ≈ ρliq, it is inserted in the middle layer posi-
tion inside the sandwich. Then, the bond vectors rls

ij between
the solid-phase and liquid-phase atoms near the interphase
boundary are calculated:

rls
ij = rsol

j − rliq
i , (2)

where rsol
j is the position vector of one of the solid par-

ticles and rliq
i is the position vector of the liquid parti-

cle. Liquid particles which violate the following condition:
rls
ij = |rls

ij | < rsol
cut are promptly erased from the system.

A similar procedure is followed at the boundaries of the
sandwich along the X and Y axes, where the periodic bound-
ary conditions must apply. Due to the straightforward way
in which liquid particles are inserted into the system, the in-
teratomic distances rliq

ij = |rliq
ij | must be checked for the liq-

uid atoms residing near those boundaries. An analogical sit-
uation occurs if for any pair of liquid atoms rliq

ij < rliq
cut,

the particle which originally resides inside the simulation
box is removed from the system. Here, we note that in this
case the cutoff radii rsol

cut and rliq
cut are defined as the small-

est possible interatomic distance permitted in the solid and
liquid phase systems. Their values can be read directly from
the radial distribution function of a given phase as the point
of beginning of the first coordination peak. Particles can be
removed either all at once, i.e. deleting all the incorrectly
placed atoms, or iteratively – one particle at a time. The lat-
ter option is more preferable since after erasing one atom
the violation of interatomic distances by its neighbours can
be eliminated in the process as well. This ensures that only
a minimum number of particles is erased from the liquid
window and its density still closely matches ρliq. The total
number of atoms inside the sandwich Nsand = Nsol + Nliq

has to be recorded in order to calculate its specific internal
energy esand

int in the future.
When the liquid phase layer has been inserted and the it-

erative repair algorithm has been applied, the system is ready
to be equilibrated at temperature Tsand, corresponding to
the equilibration conditions of its constituent phases. Simi-
larly to the caloric curve simulations an NpT ensemble is to
be chosen, using the same value of external pressure p as for
the liquid and solid phases separately. To account for the ini-
tial shock present in the system, the sandwich specific inter-
nal energy esand

int can be calculated as the time average over
the last nsamp timesteps leading up to the end of a simulation
run.
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III. IMPLEMENTATION

III. 1. Hysteresis loop calculations
Simulations of heating and cooling of a one-phase sys-

tem were carried out using the LAMMPS [24] software.
The initial simulation system was prepared in the form of an
orthogonal box containing 20 × 20 × 20 elementary cells.
Each of these cells was oriented along the z-axis in the [001]
crystallographic direction. The periodic boundary conditions
were imposed along all dimensions. This input geometry was
used only as an initial condition for simulations in T = Tmin.
For each of the subsequent calculations, the state of the sys-
tem was recorded at the end of the previous simulation, i.e.
it was used for T ′ = T −∆T .

Each system was simulated in an isobaric-isothermal en-
semble. For temperature T = Tmin, the initial velocities
of particles were generated via the Maxwell-Boltzmann dis-
tribution. The values of the initial and final temperatures
were set at Tmin = T ′melt−600 K and Tmax = T ′melt+600 K,
where T ′melt was an experimental value of the equilibrium
melting temperature for a given element. The temperature
resolution was set to ∆T = 5 K. The length of the simula-
tion runs for subsequent temperatures T was set to 150 000
timesteps, where one timestep δt = 1 fs. The first 50 000
timesteps were treated as an equilibration run and the rest
of the simulation run was devoted to the sampling of system
thermodynamic parameters, i.e. eint, T and pressure tensor
elements pij . During the calculations the microstate of the
system was registered at reach timestep for future construc-
tion of two-phase sandwiches.

Having known the total number of particles in the system
N at each temperature, the specific internal energy eint was
calculated using the following formula:

eint =
Eint

N
. (3)

The temperatures T− and T+ were estimated for a given
element by analyzing the specific internal energy hysteresis
loop eint(T ). In the case when the specific internal energy
of a system does not show any discontinuity at a single tem-
perature, but changes continuously towards the opposite part
of the hysteresis loop, the values of Tmin for freezing and
Tmax for heating are chosen as the last temperatures before
the decline or raise of eint, as shown in Fig. 3a. This is most
often observed at the cooling stage of simulations, where
for the applied potential model the cooling rate used dur-
ing equilibration of the system leads to the glass transition
of the undercooled liquid. If this effect leads in the end to the
formation of the amorphous glass phase instead of the equi-
librium crystal phase, the lengths of the equilibration and
sampling periods are doubled, so the cooling rate is lowered.
Another factor taken into account is the presence of other
meta-stable crystal phases occurring in the case of poten-
tial models such as the ADP model of Mishin et. al. [26].

This is evident by a slight difference of the specific inter-
nal energy of solid phase systems registered before and after
heating, as shown in Fig. 3b. In this case, the temperature
T− is chosen as previously for the systems, in which eint(T )
does not show a discontinuity in the vicinity of the freezing
point.
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Fig. 3. Two possible computational artifacts prone to appearing
during hysteresis loop simulations

In order to generate double interphase boundary systems
used for calculations of the equilibrium melting temperature
Tmelt, an application was created using the C++11 Standard
Library. The basic operating principle of this software is as
follows.

III. 2. Constructing two-phase systems – sandwiches
III. 2. 1. Initial conditions

First, the program reads two LAMMPS trajectory files –
one for the solid phase system and one for the liquid one,
both equilibrated at the same temperature T . The parser
implemented for reading .lammpstrj files reads only a fi-
nal microstate of the system, i.e. the last snapshot of the
sampling period. The dimensions h and L of the simula-
tion box and the total number of particles N present in it
are the first parameters parsed from the trajectory file. Each
dimension is represented in that file as a minimum and max-
imum value of a given coordinate, e.g. we obtain xlo and xhi

along the X-axis. Thus, length L can be computed later as
a difference of these parameters. At this stage, the reference
atomic densities for solid and liquid phases are calculated
as a ratio of the number of atoms present in the simulation
box N and its volume: V = hL2. Next, the Cartesian coor-
dinates and velocities recorded at the last timestep are read
and each atom is assigned an atom type corresponding to the
type of phase to which it belongs. For example, when a solid
phase trajectory file is read, each atom is assigned a particle
type equal to 1. This is done to differentiate particles during
the construction and future simulations of sandwiches. Due
to the fact that LAMMPS only wraps atom coordinates in pe-
riodic boundary boxes on timesteps when Verlet lists are cre-
ated, these coordinates are then wrapped back into the sim-
ulation box if necessary. This is done simply by checking
if a given coordinate lies within the simulation box bound-
aries read at the beginning of the trajectory file. The data
obtained during the parsing of an input file is stored inside
a structure called phase, which contains information about
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the simulation box dimensions, the volume of the system,
the number and type (solid or liquid) of atoms. Information
about velocity and position vectors is stored within a pointer-
list of structures of the atom type. This structure contains
the position of a given particle expressed in absolute and
partial coordinates, its atom type, components of the veloc-
ity vector and a Boolean variable which states if the particle
was deleted from the system at any stage of the program.
Additionally, solid phase atoms are later assigned two ad-
ditional parameters. The first of these is an integer ranging
from 1 up to nplanes, which signifies into which crystal plane
the atom has been grouped. The second one is a Boolean
variable which tells the program if the atom has been as-
signed to any of those crystal planes. The parameter nplanes,
which is the number of crystal planes present in the solid
phase, is obtained from their identification performed after
reading the input files.

III. 2. 2. Identification of crystal planes in solid phase

After reading the input files, the program then proceeds
to analyze the solid phase data stored inside one of the phase
structures created previously. First, a neighbour list is created
based on the first coordination sphere radius for the solid
phase rI

sol. Its value is obtained from the radial distribution
function as the radius located between the first and second
coordination peaks. This is done to ensure that the whole
first coordination sphere is considered, with thermal excita-
tions of the crystal lattice taken into account. Additionally,
periodic boundary conditions are enabled in all the three
directions. As a result, a tree-like data structure is created,
in which each atom is assigned the indices of its closest
neighbours. Next, a breadth-first search (BFS) algorithm
is performed. As the first step, one of the atoms is chosen
randomly in the system as a “search key”. If it has been
assigned to any planes previously, it is promptly skipped.
Then, the equation (1) is applied for each of its neighbours.
The neighbours which satisfy these criteria are assigned
to the same crystal plane as the “search key” atom and then
taken as starting points of the next iteration of the algorithm.
In other words, after considering the neighbours of the first
“search key” atom, each of those neighbours serves as a root
of a subtree for which the same procedure is applied. This
happens until the queue of next subtree roots is empty, i.e.
all atoms laying in the same crystal plane have been found.
Then, the system is searched for the next “search key” atom
and another crystal plane is identified. At each step when
a new “search key” is found, a variable signifying the num-
ber of crystal planes nplanes is incremented. The BFS algo-
rithm is stopped when there are no more atoms which have
not been assigned to any crystal plane. Fig. 4 shows the crys-
tal planes identified by this procedure.

After the end of the identification process, an aver-
age height 〈zi〉, where i = 1, 2, . . . , nplanes, is calculated
for each crystal plane. Using those values it is possible

to geometrically divide the sandwich simulation box into
three distinct layers, whilst eliminating the occurrence of de-
fected solid phase planes. Moreover, an interplanar distance
dhkl can be obtained by dividing the simulation box height
hsol by the number of the identified crystal planes: dhkl =
= hsol/nplanes.

Fig. 4. Visualization of atoms grouped into subsequent crystal
planes along Oz axis in OVITO [25]

Thus, it is possible to properly define the volume occu-
pied by a single solid phase layer. For example, the thickness
d1 of the bottom layer (marked as layer 1 in Fig. 2) can be
expressed as:

d1 = 〈z〉max +
dhkl

2
, (4)

where 〈z〉max is the average height of the uppermost crystal
plane of that layer. A symmetrical expression can be written
for the uppermost layer:

d3 = (hsol − 〈z〉min) +
dhkl

2
, (5)

where 〈z〉min is the average height of the lowermost crys-
tal plane included in that layer. Due to the way in which
the simulation box has been divided, the values for 〈z〉min

and 〈z〉max are roughly 1/4 hsol and 3/4 hsol. Thus, the liq-
uid phase layer thickness must be approximately equal to:
d2 ≈ 1/2 hsol − dhkl. The solid phase atoms for which 〈zi〉
resides between the values 〈z〉min and 〈z〉max are flagged as
removed for further construction of sandwich systems.

III. 2. 3. Sampling of liquid phase microstate

After inserting solid crystal planes into the sandwich
system with thicknesses d1 and d3, the program proceeds
to sample the liquid phase microstate using an orthogonal
box of dimensions d2 × Lsol × Lsol. Here, a slight modi-
fication to the value of d2 parameter is made. Using d2 ≈
≈ 1/2 hsol − dhkl, there are positions of liquid atoms which
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would be normally permitted in the interphase boundary, but
are not present there due to the insufficient thickness of the
liquid phase layer. Furthermore, this would also create pla-
nar voids in-between the solid and liquid phase layers. Thus,
by choosing d2 ≈ 1/2 hsol, we can eliminate both these con-
cerns by following the procedure presented in Section II. 2.

During the sampling process, M random points are cho-
sen inside the liquid phase simulation box. These points act
as centers for liquid layer “windows”, which will be later
inserted into sandwich systems. From now on, we will de-
note the position vector of one of these centers as r0 =
(x0, y0, z0). The boundaries of one of these windows can be
expressed as: αwlow = α0 − 0.5Lα and αwhi = α0 + 0.5Lα,
where α ∈ {x, y, z} and Lα is the dimension of the window
along α-axis. If any of these parameters exceeds any of the
sandwich simulation box boundaries, the periodic bound-
ary conditions are taken into consideration. Next, the spa-
tial coordinates of each particle in liquid phase systems are
checked to see which of them reside inside the window
boundaries. If an atom is contained within this box, its posi-
tion vector is expressed in terms relative to the chosen win-
dow center r0 as:

r′i = rliq
i − r0. (6)

Using this description of the atomic positions within the liq-
uid phase layer allows a simplified way of inserting those
particles into the sandwich simulation box. This can be done
by an inverse transformation where r0 is set to the center
point of the whole sandwich:

r0 =

(
Lsol

2
,
Lsol

2
,
hsol

2

)
, (7)

rliq
i = r′i + r0. (8)

For each liquid phase the window atomic density is calcu-
lated as a measure of its quality. It can be defined as a ratio
between the number of particles included within its bound-
aries Nin and its volume Vwin = d2L

2
sol : ρwin = Nin/Vwin.

Next, a ratio of ρwin to ρliq is calculated for each window and
all of them are sorted based on this parameter in an ascending
order. From this population of windows, M ′ best are chosen
as candidates for the next step. The parameters M and M ′

are usually chosen, so that: M ′/M ≈ 0.1 (10 %).

III. 2. 4. Testing of sandwiches

After finding a population of liquid windows suitable
for insertion as a middle layer in the sandwich, the pro-
gram proceeds to check which atoms violate the interatomic
distance requirements outlined in Section II. 2. Liquid par-
ticles are inserted into the sandwich simulation box using
Eq. (7) and Eq. (8). Next, a modified neighbour list is cre-
ated for each liquid atom in the system. Instead of using
the first coordination sphere radii rI

sol and rI
liq, the cutoff

radii rsol
cut and rliq

cut are used. Their definition is presented in
Section II. 2. The following rules are applied when checking
the interatomic distances rij . When atom i is of the liquid
type and atom j is of the solid type, the cutoff radius used
is equal to rsol

cut to account for the special cases presented in
the previous subsection. When both atoms are of the liquid
type, rliq

cut is used instead of rsol
cut. Thus, the Verlet list created

will contain only those atoms which are too close to each
other. This occurs mainly at the simulation box boundaries
in the middle sandwich layer and at the liquid-solid phase
boundaries. For each of those particles an imperfection fac-
tor ∆ri is assigned which can be calculated as:

∆ri =

∑nneigh

j (rcut − |rij |)
nneigh

, (9)

where nneigh is the number of neighbours of an i-th atom.
This data is kept in the Verlet list for each atomic pair along-
side information about interatomic distances, etc. In the liq-
uid phase region there is a high possibility that a significant
number of atoms will exhibit some kind of imperfection, i.e.
small values of ∆ri, due to the way its microstate was sam-
pled. To account for that, a histogram of ∆ri is created and
later analyzed in order to define a maximum value for this
parameter ∆rmax to be permitted in the sandwich system.
An example of such graph is shown in Fig. 5.

Fig. 5. Histogram of the imperfection parameter made before ap-
plying a repairing procedure for a sandwich system. The frequency
here is defined as the number of atoms which reside in the given
bin due to their values of ∆ri divided by the total number of liquid
particles in the system Nliq. Each bin has the width equal to 0.01 Å.

The data was averaged over 10 different prepared sandwiches

As seen on the example of a histogram, there is a domi-
nant group of particles for which the imperfection factor is in
an acceptable range (around 0.01 Å). Thus, the upper limit
of this histogram bin can be taken as a value for ∆rmax.
Any groups of atoms for which ∆ri > ∆rmax are classified
as defective atoms in the future iterative repair algorithm.
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To ensure that only a minimum number of liquid atoms
is removed from the system, an iterative scheme is imple-
mented. As the first step, a maximum value of ∆ri is found
using the previously created Verlet list. This coincides with
the rightmost bin in Fig. 5. Then, one of the atoms from this
group is removed from the system. This is done by delet-
ing information about this particle contained in its neighbour
entries from the Verlet list. Next, the parameter ∆ri is recal-
culated for all atoms still present in the neighbour list and
a new version of the histogram is created. This is repeated
until ∆ri for all atoms in the system is lower than the previ-
ously defined ∆rmax. After that, the final density ρfin of the
middle sandwich layer is calculated as a ratio of the number
of the liquid atoms left in the system N ′liq and the volume
of the repaired middle layer as V ′win = 0.5hsol. Using this
approach is more complex than deleting all faulty particles at
once; however, the results in sandwiches for which the den-
sity ρfin is still comparable with the reference density of the
liquid phase ρliq i.e: Nliq − Nliq → min. The effect of that
is shown in Fig. 6.
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Fig. 6. Histogram of the imperfection parameter after applying a re-
pairing procedure for a sandwich system. Each bin has the width
equal to 0.01 Å. All atoms in the system reside only in the first bin.
This means that the imperfection factor ∆ri for all particles has
been lowered to the maximum value of ∆rmax = 0.01 Å. The data

was averaged over 10 different prepared sandwiches

III. 2. 5. Validation of iterative repair algorithm

To further validate this implementation, a numerical ex-
periment was carried out to determine if there was any priv-
ileged way of choosing the initial liquid phase windows
for the repair algorithm. In other words, we want to check
the existence of a ”perfect” window by investigating if there
is any correlation between the initial ρwin and the final
ρfin window density. In theory, if there is any relationship
present between those parameters, there should also be a way
to choose only those initial windows with the density ρwin

so that
ρfin

ρliq
≈ 1. This would mean that an additional condi-

tion should be applied to filter out those “perfect” windows
(based on their ρwin) total population of M randomly cho-
sen samples. For this purpose, the M = 100 random liq-
uid windows were chosen as a test group. For each of them,
the liquid phase atomic density before and after the repairing

algorithm was calculated – ρwin and ρfin, respectively. The
results of this experiment are presented in Fig. 7.
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Fig. 7. Densities of chosen liquid windows before and after itera-
tive repair algorithm, related to the reference atomic density of the

liquid phase

Based on this data, it was determined that there was
no correlation between the initial and final atomic densities
of liquid phase windows using the iterative repair algorithm.
The way in which their location is chosen within a liquid
phase simulation box does not affect the construction of two-
phase sandwiches directly. Due to the removal of liquid par-
ticles at the interphase boundaries, the final atomic densities
are almost always lower relative to their initial value by a fac-
tor of ∼ 6%. Thus, the iterative repair algorithm does not
distinguish any privileged liquid phase windows for which it
is possible to obtain ρfin ≈ ρliq.

III. 2. 6. Writing LAMMPS geometry (data) files

After a group of M ′ liquid windows were tested, a sim-
ilar sorting algorithm was used as in Section III. 2. 3., us-
ing their final densities ρfin as sorted values. From this
group the Mbest number of windows is used for the creation
of LAMMPS data files containing sandwich systems. Here
this parameter is chosen, so that: Mbest/M

′ ≈ 0.1. This
means that only 1 % best out of M initial windows are con-
sidered as suitable to be used in molecular dynamics simula-
tions. Then, a sandwich is created for each of those samples
using Eq. (7) and Eq. (8). Having expressed the positions
of all particles in such Cartesian coordinates and the velocity
vector components stored from reading of one-phase input
files, it is now possible to create input geometry files to be
used in the LAMMPS software. Faulty liquid particles which
were identified during the repair algorithm were flagged as
removed by modifying the Boolean variable stored inside
their respective atom data structures. This means that by
checking the value of this variable, the program can write
data about particles which are still present inside the sand-
wich. Similarly, this is done for solid particles as well. The
total number of atoms Nsand in the system is taken as a sum
ofNsol and the number of liquid particles left after the repair
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scheme N ′liq. The simulation box boundaries are identical
to the boundaries of a one-phase solid system.

III. 2. 7. Molecular dynamics of sandwiches

Each sandwich created by the program is then equili-
brated in its respective temperature Tsand, i.e. in a temper-
ature in which the solid and liquid phases were sampled.
This is done using the LAMMPS software again. The sim-
ulations carried out during the rough estimation of Tmelt

were nsamp = 200000 timesteps in length. For precise
calculations of the equilibrium melting point, this parame-
ter was set to nsamp = 1000000 timesteps. One timestep
was equal to δt = 1 fs. All the simulations were carried
out in the NpT ensemble for the external pressure equal
to p = 0 bar, i.e. in vacuum.

IV. APPLICATION

The equilibrium melting temperatures Tmelt for alu-
minum and copper were calculated using the angular depen-
dent potential (ADP) developed by Apostol et. al. [26] and
the embedded atom method (EAM) potential of Mishin [27].

The hysteresis loop calculations and the sandwich
method simulations were carried out according to the spec-
ifications outlined in Sec. III.. The hysteresis loop shown
in Figs. 8 to 11 serves as an illustration of the equilib-
rium melting temperature Tmelt estimation in the sandwich
method. As written in Section II., the quantity of the sam-
pling points increases as each subset temperature Tsand ap-
proaches an estimated value of Tmelt. In case of shorter
lengths of simulations (nsamp = 200000 timesteps), the val-
ues of esand

int can be located between the lower and upper
bounds of the hysteresis loop. This effect occurs most promi-
nently in the vicinity of the melting point. To counter this,
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Fig. 8. Sandwich method hysteresis loop calculated for aluminum
using the ADP potential
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Fig. 9. Sandwich method hysteresis loop calculated for copper us-
ing the ADP potential

these systems were simulated once more using a larger num-
ber of sampling timesteps as discussed previously.

To eliminate problems which may result from the qual-
ity of the created simulation systems, 5 different sandwiches
were constructed for each sampling point Tsand. These are
labeled in different colors in the aforementioned figures.

In the case of the ADP potential, the difference
of specific energies between the equilibrium solid and
the quenched liquid was observed, although no formation
of the amorphous glass phase in the vicinity of the T− tem-
perature occurred. A structural analysis via the BOP method
was performed, which showed the existence of icosahedral
substructures within the cooled liquid systems.

The calculated values of the equilibrium melting temper-
ature Tmelt for each element and the potential model used
are shown in Tab. 1. These values are compared with the ex-
perimental data and the results obtained by other authors
by means of alternative methods.
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Fig. 10. Sandwich method hysteresis loop calculated for aluminum
using the EAM-Mishin potential
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Fig. 11. Sandwich method hysteresis loop calculated for copper
using the EAM-Mishin potential

Tab. 1. Equilibrium melting temperatures calculated using the im-
proved sandwich method, compared with experimental and ab in-
tio results. Error of measurements via the sandwich method was set
to the smallest resolution of temperatures used during the simula-

tions i.e. ∆T

Element Source Tmelt, K

Al ADP 1045 ± 5

EAM-Mishin 1050 ± 5

EAM-Mishin [28] 1044 ± 34

Ab intio [29] 890 ± 20

Experimental [30] 933.47

Cu ADP 1330 ± 5

EAM-Mishin 1320 ± 5

EAM-Mishin [28] 1333 ± 50

Ab intio [31] 1251 ± 15

Experimental [32] 1354 ± 5

V. SUMMARY

In contrast to alternative methods, the sandwich method
imposes strict requirements for the creation of simulation
systems and their equilibration. Imposing those constraints
upon the algorithm of the simulation system preparation
resulted in two-phase systems, where the influence of de-
fects such as the interphase boundary or defected crystal sur-
faces on the overall energetics of the system was minimized.
This can be seen when analyzing the hysteresis loops shown
in Fig. 8 and Fig. 9. In both cases all the simulation systems,
i.e. sandwiches underwent the phase transition process at ex-
actly the same temperature. This means that they represent
a set of initial states equivalent to each other from the macro-

scopic point of view, i.e. they represent the same thermody-
namic state being sampled at different instants of time. Ad-
ditionally, the two-phase sandwich method was improved in
terms of the measurement error of equilibrium melting tem-
perature. Moreover, this temperature was in this case well
defined, based on theory of the first order phase transitions.
These factors suggest that Tmelt can be calculated precisely
with our improved method.

The results obtained by the sandwich method for the
EAM-Mishin potential are in agreement with the alternative
one boundary method used by the authors of [28]. The dis-
crepancies between those results and ab intio or the ex-
perimental data can occur due to the fact that most of the
potentials for the Al-Cu systems are parameterized with
the θ and θ′ phases in mind. This means that those models
are best applicable in temperatures significantly lower that
the melting point of a given element. This is especially evi-
dent in case of aluminum. For the ADP model, we were un-
able to find any results for the equilibrium melting temper-
atures of the investigated elements obtained via other one-
phase methods. Given the fact that this model was param-
eterized with similar goals as EAM-Mishin, i.e. to predict
the existence of metastable AlCu2 phases, calculations were
carried out to check if the above hypothesis was correct.
By comparing the results obtained for the ADP model with
the reference data it can be seen that those discrepancies are
independent of the method used for the estimation of melting
points. Further investigations are to be carried out using the
potentials created specifically for modeling of phase transi-
tions which occur during melting of Al-Cu alloys.
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