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Abstract: The study of memory effect in an economic order quantity model has a great impact on the inventory system.
Although business policy almost depends on the past experiences of the system, usually the classical inventory model does
not include the past experience or memory effect, i.e. one important part of the system is ignored. Our purpose is to include
memory or past experience in the inventory model. The purpose of this paper is to incorporate the existence of dynamic
memory in an inventory model with shortage via fractional calculus. To derive the memory dependent inventory model
associated with inventory holding cost, shortage cost has been developed. Analytical solution of the proposed inventory
model has been solved via primal geometric programming method. Numerically long memory effect or short memory
effect of the inventory system has been established. In this paper, an effort has also been made to compare the memory
effect on the minimized total average cost and the optimal ordering interval using different numerical examples.
Key words: fractional Laplace transforms method, differential equation with memory kernel, classical inventory model,
memory dependent Inventory model

I. INTRODUCTION

The origin of the fractional calculus goes back to
L’Hospital and Leibnitz in the seventeenth century. The
modern work devoted exclusively to the subject of frac-
tional calculus has been published [1–8]. Since that mo-
ment many monographs dedicated to this subject have been
published [1–8]. Until the present arms fractional calculus
have been discussed as a comparatively esoteric mathemat-
ical theory without applications but in the recent few years
fractional calculus has appeared with its application back-
grounds in different mathematical problems [1, 5, 6, 22–24],
Physics [8], Economics [2–5], etc. Many well-known scien-
tists like Leibniz, Euler, Lagrange, Fourier, Abel, Liouville,

Riemann, Grunwald, Holmgren, Peacock, Tarday, Cauchy,
Hadamard, Hardy, Riesz, Weyl, etc. [9] worked on the frac-
tional calculus to develop fractional derivative and integra-
tion. Fractional derivative and integration are generalized
as non-integer order. Riemann-Liouville (R-L) fractional in-
tegration, Caputo fractional derivative [9, 10], Jumarie frac-
tional derivative [9, 10] play a crucial role in developing any
real life problems. It is worth noting that the standard classi-
cal mathematical models of the integer order derivatives do
not work as a generalized version, but as a particular case
of generalized version and are also not able to take into ac-
count memory of the system.

On the other hand, the first order ordinary derivative is
equivalent to the physical meaning of speed (the physical



72 R. Pakhira, U. Ghosh, S. Sarkar

meaning of speed is path length traveler per unit of time).
But the physical interpretation of the fractional order deriva-
tive and integration is an index of memory [1]. In the present
paper, the fractional calculus has been applied to illustrate
the memory effect of the inventory system. The authors be-
lieve that the research in the area of the fractional calculus
will constitute an important tool in the scientific progress
of mankind.

It is known that having the ability to measure inventory
in a time with accurate policy is critical without arranging
the inventory model from a company’s balance sheet chart.
Owing to the above problem, inventory literature was born
by a cited article of Harris-Willsons [11, 12] square root for-
mulae. Most of these inventory models are proposed on the
economic order (EOQ) model by many researchers [13–16].
In this paper, the classical inventory model has been devel-
oped on the basis of the fixed shortage time. The objective
of this paper is to generalize the classical model using frac-
tional derivatives and fractional integration as well as taking
into account memory effect of the inventory model. Authors
expect that memory dependent inventory model has more
importance compared to the memory less inventory model
or classical model.

In a real market or real inventory system the demand
of the product changes with respect to time as well as space
or situation. It is known that when an object gets popularity
in the market then its demand will increase or if it makes bad
impression then its demand will decrease. In some sense de-
mand of any object is not the same in all shops: increase or
decrease of the selling depends dealings of the shopkeeper,
i.e. the selling of any product depends on the quality as well
as the shopkeeper’s attitude. Thus, this system depends on
previous history, not only on the present state of the process,
so it is legal to include the memory effect in the inventory
system. We think that the memory effect should be incorpo-
rated in different human related physical problems and ob-
serve the different situation for low or strong memory effect
or long memory effect, short memory effect.

Here, we have suggested fractional order derivative to
take into account the memory effect. But why?

It is known that the time rate of change of integer orders
is determined by the property of differentiable functions of
time only in infinitely small neighborhood of the considered
point of time. Hence, an instant change of the marginal out-
put is assumed, when the input level changes. Therefore, the
dynamic memory effect is not present in classical calculus
and it is not able to discuss all state of the system i.e. (the
present system depends on the past) [1–7]. But in fractional
derivative the rate of change is affected by all points of the
considered interval, so it is able to incorporate memory of the
system and fractional order is physically treated as an index
of memory. So, it can remove amnesia from the system.

Our analysis has established the existence of the memory
effect in the EOQ model. It is observed from the numerical
example that in the long memory effect the minimized to-

tal average cost is very low compared to the memory less or
short memory effect. In the long memory effect, the optimal
ordering interval is much higher compared to the short mem-
ory effect. Hence, in the long memory effect business takes
much more time to reach the minimum value of the total av-
erage cost compared to the short memory effect. When the
demand rate is proportional to square of the time, the mini-
mized total average cost with the memory effect is low com-
pared to the quadratic type demand rate, constant demand
rate, and linear type demand rate. Hence, when the system is
strong with its past experience, profit is maximum compared
to short gained past experience.

The rest part of the paper has been furnished as fol-
lows, In Sec. II., the review of fractional calculus has been
discussed, the classical inventory model has been given
in Sec. III., the memory dependent inventory model with
analytic calculation has been proposed in Sec. IV., nu-
merical examples and sensitivity analysis have been con-
ducted in Sec. V., graphical presentation has been arranged
in Sec. VI., and finally some conclusions are given to show
the effect of the work in Sec. VII.

II. REVIEW OF FRACTIONAL CALCULUS

There are several definitions of the fractional derivative,
the mostly used to definitions are given below.

II. 1. Riemann Liouville fractional derivative
Left Riemann-Liouville (R-L) definition of fractional

derivative of αth order (where m ≤ α < m + 1) for any
integrable functionf(x) on [a, b] is denoted RL

a Dx
α (f(x))

and defined as
RL
a Dx

α (f(x)) =

=
1

Γ(m+ 1− α)

(
d

dx

)m+1 ∫ x

a

(x− ξ)(m−α)
f (ξ) dξ.

(1)
The above results create a difference between ordinary
derivative and fractional derivative. To eradicate this diffi-
culty, M. Caputo [9, 10] proposed a new definition of frac-
tional order derivative for any differentiable functions.

II. 2. Caputo fractional order derivative
For any differentiable function f(x) on [a, b] Caputo

fractional order derivative [15] of αth order is denoted
C
aD

α
x (f(x)) and defined as

C
aD

α
x (f(x)) =

1

Γ(m− α)

∫ x

a

(x− ξ)(m−1−α)
f (m) (ξ) dξ,

(2)
where: m− 1 ≤ α < m.

The Caputo definition contains both merit and demerit.
Demerit of this definition is that the function should be (m)
times differentiable; otherwise this definition will not be
valid. On the other hand, merit of this definition is, Caputo
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fractional order derivative of any constant function is zero
as in ordinary derivative. In the main work of the paper, the
Caputo fractional derivative operator has been symbolized
as C

0 D
α
t .

II. 3. Fractional Laplace Transform Method
Laplace transformation plays an important role in inte-

ger and fractional order differential equations. The Laplace
transform of the function [9, 10] f(t) is denoted by F (s)
and defined as

F (s) = L(f(t)) =

∫ ∞
0

e−stf(t)dt, (3)

where s>0 and s is called the transform parameter. The
Laplace transformation of integer order derivative is defined
as

L (fm (t)) = smF (s)−
m−1∑
k=0

sm−k−1fk (0) , (4)

where fm (t) denotes mth order ordinary derivative of f
with respect to t. For non-integer order α, it is defined in
generalized form as

L (fα (t)) = sαF (s)−
m−1∑
k=0

skf
α−k−1

(0) , (5)

where (m− 1) < α ≤ m.

II. 4. Differential equation with memory kernel
If we consider any first order differential equation in the

form as

d (f1 (x))

dx
= −f2 (x) , (6)

then in terms of the memory kernel it can be written as fol-
lows [1]

d (f1 (x))

dx
= −

∫ x

a

K (x− ξ) f2 (ξ) dξ. (7)

To derive the concept of memory effect via fractional calcu-
lus, we consider K (x− ξ) = (x−ξ)(α−2)

Γ(1−α) and substitute it in
(7) and we get

d (f1 (x))

dx
= −

∫ x

a

(x− ξ)(α−2)

Γ (1− α)
f2 (ξ) dξ =

= −aD−(α−1)
x (f2 (x)) .

(8)

Now, taking both sides (α− 1) derivative and we get the re-
quired fractional order memory dependent differential equa-
tion

aD
α
x (f1 (x)) = −f2 (x) . (9)

Here, the rate of memory kernel decays depending on the
fractional parameter α. The strength of the memory is con-
trolled by the fractional orderα. When α → 1, the system

becomes week in the sense of memory and when α = 1,
the system becomes memory less.
Long Memory: The strength of memory is controlled by
the order of fractional derivative or fractional integration.
If the order of fractional derivative or fractional integration
lies in the range (0, 0.5), then the system may be called to
have long memory effect.
Short Memory: If the order of fractional derivative or frac-
tional integration is in the range [0.5, 1), then the system
is affected by short memory.

Fig. 1. Plot of memory kernel function
(
k (x− ξ) = (x−ξ)(α−2)

Γ(1−α)
,

for ξ = 3
)

for different value of α

It is clear from Fig. 1 that the pick of the curve gradually
decreases depending on α. Hence, memory strongly depends
on the fractional order α.

III. CLASSICAL MODEL

The classical or memory less inventory model has been
developed [13] on the basis of the assumptions below. First,
we have formulated the classical inventory model.

III. 1. Assumptions
Here, the following assumptions are made in developing

the inventory model.
• The inventory consists of only one type of items.
• The lead time is zero or negligible.

• Demand rate is
{ (

a+ bt+ ct2
)

for 0 ≤ t ≤ t1
D0 for t1 ≤ t ≤ T

• The planning horizon is infinite.
• Shortage occurs during t1 ≤ t ≤ T .
• During the stock out period or shortage time, there is

complete backlogging.

III. 2. Notations
The notations which are used to develop the inventory

model are listed below.



74 R. Pakhira, U. Ghosh, S. Sarkar

Tab. 1. Symbols and items which are used in the inventory model

Symbols Items Symbols Items

(i) I1 (t) Positive inventory level at time t. (ii) I2 (t) Negative inventory level at time t.

(iii) C1 Holding cost per unit per unit time. (iv) C2 Shortage cost per unit per unit time.

(v) T Length of the ordering cycle. (vi) TCavα,β
Total average cost per unit per unit time

with fractional effect.

(vii) T ∗ Optimal ordering interval. (viii) TC∗ Minimized total average cost.

(ix) C3 Ordering cost per unit per order. (x) (Γ, .) Gamma function

(xi) HCα,β Inventory holding cost with memory effect. (xii) (B, .) Beta function

(xiii) PCα,β
Purchasing cost per unit time with memory

effect.
(xiv) SCα,β Shortage cost per unit with memory effect.

(xv) T ∗
α,β

Optimal ordering interval with memory
effect.

(xvi) TC∗
α,β

Minimized total average cost with memory
effect.

III. 3. Mathematical Formulation
As the positive inventory level I1 (t) reduces due to

quadratic type demand during the time interval [0, t1] and
negative inventory level I2 (t) undergoes due to constant de-
mand in the time interval [t1, T ]. During the positive inven-
tory [0, t1] the demand rate is

(
a+ bt+ ct2

)
and during the

shortage time interval [t1, T ] demand rate is D0. The classi-
cal inventory system is governed by the two ordinary differ-
ential equations as in the following form

d (I1 (t))

dt
= −(a+ bt+ ct2)

for 0 ≤ t ≤ t1 with I1 (t1) = 0,
(10)

d (I2 (t))

dt
= −(D0)

for t1 ≤ t ≤ T with I2 (t1) = 0.
(11)

We do not want to describe the derivation of the whole
classical inventory model because our focus is to develop
the memory dependent inventory model or fractional order
inventory model.

IV. FRACTIONAL ORDER INVENTORY MODEL
FORMULATION WITH MEMORY KERNEL

To establish the influence of memory effects, first the dif-
ferential equations (10, 11) can be written using the kernels
function as follows [1]

dI1(t)

dt
= −

∫ t

0

k (t− t′) (a+ bt′ + c(t′)2)dt′, (12)

dI2(t)

dt
= −

∫ t

0

k (t− t′)D0dt
′, (13)

in which k(t − t′) is the kernel function. This type of ker-
nel guarantees the existence of scaling features as it is of-
ten intrinsic in most natural phenomena. Thus, to gener-
ate the fractional order model we consider k(t − t′) =

1
Γ(α−1) (t − t′)α−2 where 0 < α ≤ 1 and, Γ (α) denotes
the gamma function.

Using the definition of fractional derivative [9, 10] we
can re-write the Eq. (12, 13) to the form of fractional differ-
ential equations with the Caputo-type derivative in the fol-
lowing form

dI1(t)

dt
= −0D

−(α−1)
t

(
a+ bt+ ct2

)
, (14)

dI2(t)

dt
= −0D

−(α−1)
t (D0) . (15)

Now, applying fractional Caputo derivative of order (α− 1)
on both sides of the Eq. (14, 15) and using the fact the Caputo
fractional order derivative and fractional order integral are
inverse operators, the following fractional differential equa-
tions can be obtained for the model

C
0 D

α
t (I1 (t)) = −(a+ bt+ ct2), (16)

C
0 D

α
t (I2 (t)) = −D0, (17)

along with boundary condition I1(t1) = 0, I2(t1) = 0.

IV. 1. Analysis of the fractional order inventory model
Thus the fractional order inventory model can be gov-

erned by the two fractional order differential equations
in the following form as

dα (I1 (t))

dtα
= −

(
a+ bt+ ct2

)
,

where 0 ≤ t ≤ t1 with I1 (t1) = 0,
(18)
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dα (I2 (t))

dtα
= −D0,

where t1 ≤ t ≤ T with I2 (t1) = 0,
(19)

(α is considered as differential memory index).
After solving the equation (18, 19), we get the inventory

level in the following form:

I1 (t) =
a

Γ (1 + α)
(tα1 − tα) +

+
b

Γ (2 + α)

(
tα+1
1 − tα+1

)
+

2c

Γ (3 + α)

(
tα+2
1 − tα+2

)
,

(20)

I2 (t) =
D0

Γ (1 + α)
(tα1 − tα) . (21)

As the inventory level decreases with respect to time t, so the
maximum positive inventory level is

M = I1 (0) =
a

Γ (1 + α)
(tα1 ) +

b

Γ (2 + α)

(
tα+1
1

)
+

+
2c

Γ (3 + α)

(
tα+2
1

)
.

(22)

The maximum backorder units during the shortage period is

S = −I2 (T ) =

(
D0

Γ (1 + α)
(Tα − tα1 )

)
. (23)

Therefore, the order size during [0, T ], is denoted by Q and
defined as

Q =
(

(maximum positive inventory level) +

+ (maximum backlogged demand

during shortage period)
)

=

= M + S =

(
a

Γ (1 + α)
(tα1 ) +

b

Γ (2 + α)

(
tα+1
1

)
+

+
2c

Γ (3 + α)

(
tα+2
1

))
+

(
D0

Γ (1 + α)
(Tα − tα1 )

)
.

(24)

Inventory holding Cost with the memory effect is denoted by
HCα,β [6] and defined as

HCα,β = C1D
−β (I1 (t)) =

=
C1

Γ (β)

∫ t1

0

(t1 − t)(β−1)
I1 (t) dt =

=
C1

Γ (β)

(
atα+β

1

Γ (1 + α)

((
1

β

)
−B (α+ 1, β)

)
+

+
btα+β+1

1

Γ (2 + α)

((
1

β

)
−B (α+ 2, β)

)
+

+
2ctα+β+2

1

Γ (3 + α)

((
1

β

)
−B (α+ 3, β)

))
,

(25)

where 0 ≤ t ≤ t1 (β is considered as integral memory
index ).

Shortage cost with the memory effect is denoted by
SCα,β and defined as follows

SCα,β (T ) = −C2t1D
−β
T (I2 (t)) =

=
C2

Γ (β)

∫ T

t1

(T − t)(β−1)

(
D0

Γ (1 + α)
(tα − tα1 )

)
dt =

= − C2D0t
α
1

Γ (β+1) Γ (1+α)
T β+

C2D0αt
α+1
1

(1+α) Γ (β) Γ (1+α)
T β−1 +

+
C2D0

Γ (β) Γ (1 + α)

(
1

(1 + α)
− (β − 1)

(2 + α)

)
T β+α+

+
C2D0 (β − 1) tα+2

1

(2 + α) Γ (β) Γ (1 + α)
T β−2,

(26)(
expanding (T−t)(β−1) ∼= T β−1

(
1− (β − 1) t

T

)
, neglect-

ing higher term as
(
t
T

))
.

Purchasing cost for the fractional order model is denoted
by PCα,β and defined

PCα,β = P ×Q = P

(
a

Γ (1+α)
(tα1 )+

b

Γ (2+α)

(
tα+1
1

)
+

+
2c

Γ (3 + α)

(
tα+2
1

)
+

D0

Γ (1 + α)
(Tα − tα1 )

)
.

(27)
Therefore, total average cost for the fractional order inven-
tory model is as

TCα,β =
(HCα,β + SCα,β + PCα,β + C3)

T
=

=

(
HCα,β+C3+P

(
a

Γ (1 + α)
(tα1 )+

b

Γ (2 + α)

(
tα+1
1

)
+

+
2c

Γ (3 + α)

(
tα+2
1

))
− PD0t

α
1

Γ (1+α)

)
T−1+

PD0

Γ (1+α)
Tα−1+

− C2D0t
α
1

βΓ (β) Γ (α+1)
T β−1+

(
C2D0αt

α+1
1

Γ (β) Γ (α+1) (α+1)

)
T β−2+

+

(
C2D0

Γ (β)Γ (α+1) (α+1)
− C2D0 (β − 1)

Γ (β) Γ (α+1)(α+2)

)
Tα+β−1+

+
C2D0 (β − 1) tα+2

1

(α+ 2) Γ (β) Γ (α+ 1)
T β−3.

We consider different cases of the total average cost de-
pending on the different values of the memory indexes α, β:
(i) 0 < α ≤ 1.0, 0 < β ≤ 1.0. (ii) β = 1.0, 0 < α ≤ 1.0.
(iii) α = 1.0, 0 < β ≤ 1.0.

(i) Case-1: 0 < α ≤ 1.0, 0 < β ≤ 1.0.
In this case, the inventory model can be written as follows MinTCα,β (T ) =AT−1 +B1T

α−1 + CT β−1+

+DT β−2 + ETα+β−1 + FT β−3

Subject to T ≥ 0

(28)
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where, A = P

(
atα

1

Γ(1+α) +
btα+1

1

Γ(2+α) +
2ctα+2

1

Γ(3+α) −
D0t

α

1

Γ(α+1)

)
+

+ C3 + HCα,β , C = − C2D0t
α

1

βΓ(β)Γ(α+1) , B1 = PD0

Γ(α+1) ,

D =
C2D0αt

α+1

1

(α+1)Γ(β)Γ(α+1) , E = C2D0

Γ(β)Γ(α+1)

(
1

(α+1) −
(β−1)
(α+2)

)
,

F =
C2D0(β−1)tα+2

1

(α+2)Γ(β)Γ(α+1) .

(a) Primal Geometric Programming Method
To solve (28) analytically, the primal geometric program-
ming method has been applied. The dual form of (28) has
been introduced by the dual variable (w). The correspond-
ing primal geometric programming problem has been con-
structed in the following form as

Max d(w)=

(
A

w1

)w1
(
B1

w2

)w2
(
C

w3

)w3
(
D

w4

)w4
(
E

w5

)w5
(
F

w6

)w6

.

(29)
Normalized condition is as

w1 + w2 + w3 + w4 + w5 + w6 = 1. (30)

Orthogonal condition is as

− w1 + (α− 1)w2 + (β − 1)w3 + (β − 2)w4+

+ (α+ β − 1)w5 + (β − 3)w6 = 0,
(31)

and the primal-dual relations are as follows

AT−1 = w1d (w) , B1T
α−1 = w2d (w)

CT β−1 = w3d (w) , DT β−2 = w4d (w)
ETα+β−1 = w5d (w) , FT β−3 = w6d (w)

 . (32)

Using the above primal-dual relations the followings are
evaluated as

Aw2

B1w1
=

(
Dw3

Cw4

)α
,

Cw2

B1w3
=

(
Dw3

Cw4

)α−β
,

Dw5

Ew4
=

(
Dw3

Cw4

)α+1

,
Fw5

Ew6
=

(
Dw3

Cw4

)α+2

,

(33)

along with

T =
Dw3

Cw4
. (34)

Solving (30), (31) and (33) the critical value w∗1 , w∗2 , w∗3 ,
w∗4 , w∗5 , w∗6 of the dual variables w1, w2, w3, w4, w5, w6

can be obtained and finally the optimum value T ∗ of T has
been calculated from the equation of (34) substituting the
critical values. Now the minimized total average cost TC∗α,β
has been calculated by substituting T ∗ in (28) analytically.
The minimized total average cost and the optimal ordering
interval is evaluated from (28) numerically.

(ii) Case-2: β = 1.0, 0 < α ≤ 1.0.
In this case, the inventory model is

MinTCα,1 (T ) =AT−1 +B1T
α−1 + CT 0+

+DT−1 + ETα + FT−2

Subject toT ≥ 0

(35)

where,A = P

(
atα

1

Γ(1+α) +
btα+1

1

Γ(2+α) +
2ctα+2

1

Γ(3+α)−
D0t

α

1

Γ(α+1)

)
+C3+

+HCα,1, B1 = PD0

Γ(α+1) , C = −C2D0t
α

1

Γ(α+1) , D =
C2D0αt

α+1
1

(α+1)Γ(α+1) ,

E = C2D0

(α+1)Γ(β)Γ(α+1) , F = 0.

Using the similar analogy as previously, the minimized total
average cost and optimal ordering interval has been solved
from (35).

(iii) Case-3: α = 1.0, 0 < β ≤ 1.0.
In this case, the inventory model becomes,

MinTC1,β (T ) =AT−1 +B1T
0 + CT β−1+

+DT β−2 + ET β + FT β−3

Subject toT ≥ 0

(36)

where,A = P

(
at1
Γ(2) +

bt2
1

Γ(3) +
2ct3

1

Γ(4)−
D0t1
Γ(2)

)
+C3 +HC1,β ,

B1 = PD0

Γ(2) , C=− C2D0t1
βΓ(β)Γ(2) , D =

C2D0t
2

1

2Γ(β)Γ(2) , E = C2D0

Γ(β)Γ(2)×

×
(

1
2 −

(β−1)
3

)
, F =

C2D0(β−1)t31
3Γ(β)Γ(2) .

Using the similar way of Case-1,the minimized total average
cost and the optimal ordering interval has been solved from
(36).

V. NUMERICAL EXAMPLES

(i) To establish the memory effect in the inventory model,
we have found the optimal ordering interval

(
T ∗
α,β

)
, min-

imized total average cost
(
TC∗

α,β

)
for different values

of the memory index α, β considering the model parameters
as given in Tab. 2.

Tab. 2. Fixed values of the parameter in the numerical example

Parameter P C3 C1 C2 D0 a b c t1

Value 8 250 0.5 1.0 15 2 6 13 0.3456

It is observed from Tab. 3 that when memory of the sys-
tem is gradually increasing, minimized total average cost
is gradually decreasing, i.e. profit is high in long memory
effect compared to short memory effect. In long memory
effect, minimized total average cost is very low compared
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Tab. 3. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 679.3798
(maximum value) 16.1243

0.2↑ (growing
memory effect) 1.0 230.6127 35.6275

0.3↑ 1.0 114.7478 58.6401

0.4↑ 1.0 68.0305 84.6849

0.5↑ 1.0 44.6124 113.2369

0.6↑ 1.0 31.1730 143.6906

0.7↑ 1.0 22.7070 175.2772

0.8↑ 1.0 17.0060 206.9958

0.9↑ 1.0 12.9827 237.5986↓
(decreasing)

1.0 1.0 10.0566↑
(increasing) 265.6647

to short memory effect or memory less system. In long mem-
ory effect, business takes a long time to reach the minimum
value of the total average cost compared to low memory ef-
fect or memory less system.

(ii) Consider c = 0 keeping the other parameters fixed
as in the Tab. 2, i.e. demand rate is linear type with initial
demand.

Tab. 4. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 149.6354
(maximum value) 11.9781

0.2↑ (growing
memory effect) 1.0 65.6815 25.4371

0.3↑ 1.0 39.5173 41.2693

0.4↑ 1.0 26.9637 59.5881

0.5↑ 1.0 19.5944 80.2670

0.6↑ 1.0 14.7296 102.9165

0.7↑ 1.0 11.2780 126.8481

0.8↑ 1.0 8.7276 151.0789

0.9↑ 1.0 6.8151 174.1198

1.0 1.0 5.3904↑
(increasing)

195.6716↓
(decreasing above)

It is found from Tab. 4 that the same nature of changes
of minimized total average cost and optimal ordering inter-
val has been found like Tab. 3 but the numerical value is low
compared to Tab. 3.

(iii) Consider a = 0 keeping other parameters fixed as
in the Tab. 2, i.e. quadratic type demand rate with no initial
demand.

Tab. 5. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 674.3177
(maximum value) 16.1020

0.2↑ (growing
memory effect) 1.0 229.1122 35.5660

0.3↑ 1.0 114.0888 58.5263

0.4↑ 1.0 67.6811 84.5101

0.5↑ 1.0 44.4043 112.9967

0.6↑ 1.0 31.0388 143.3838

0.7↑ 1.0 22.6150 174.9045

0.8↑ 1.0 16.9400 206.5590

0.9↑ 1.0 12.9338 237.1002

1.0 1.0 10.0195↑
(increasing)

265.1079↓
(decreasing above)

It is observed from Tab. 5 that minimized total aver-
age cost is gradually decreasing with gradually increasing
memory effect but the numerical value of the optimal order-
ing interval is gradually increasing with gradually increasing
memory effect. The numerical values of the minimized total
average cost and optimal ordering interval are low compared
to Tab. 3.

(iv) Consider b = 0 keeping other parameters fixed as in
the Tab. 2, i.e. demand rate is square of the time with initial
demand.

Tab. 6. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 674.5641
(maximum value)

16.1031
(minimum value)

0.2↑ (growing
memory effect) 1.0 229.3058 35.5739

0.3↑ 1.0 114.2185 58.5487

0.4↑ 1.0 67.7702 84.5547

0.5↑ 1.0 44.4678 113.0701

0.6↑ 1.0 31.0856 143.4910

0.7↑ 1.0 22.6507 175.0490

0.8↑ 1.0 16.9679 206.7433

0.9↑ 1.0 12.9559 237.3258

1.0 1.0 10.0373↑
(increasing)

265.3753↓
(decreasing above)
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It is observed from the Tab. 6, that in long memory ef-
fect (here α = 0.1), minimized total average cost is very
low compared to the short memory effect or memory less
system. In long memory effect, business stay long time
compared to the short memory effect. The numerical value
of the minimized total average cost and optimal ordering in-
terval are low compared to the Tab. 3 but more compared
to the Tab. 4, 5.

(v) Consider a = 0, b = 0 keeping other parameters
fixed as in Tab. 2, i.e. demand rate is square of the time pro-
portional.

Tab. 7. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 669.4979
(maximum value)

16.0805
(minimum value)

0.2↑ (growing
memory effect) 1.0 227.8003 35.5121

0.3↑ 1.0 113.5585 58.4343

0.4↑ 1.0 67.4202 84.3792

0.5↑ 1.0 44.2594 112.8291

0.6↑ 1.0 30.9511 143.1833

0.7↑ 1.0 22.5585 174.6755

0.8↑ 1.0 16.9018 206.3056

0.9↑ 1.0 12.9069 236.8263

1.0 1.0 10.0001↑
(increasing)

264.8174↓
(decreasing above)

It is found from Tab. 7, in long memory effect or short
memory effect, the nature of the changing of the minimized
total average cost is same like Tab. 3, 5, 6 but the numerical
value is low compared to Tab. 3, 5, 6.

(vi) Consider a = 0, c = 0 keeping other parameters
fixed as in Tab. 2, i.e. demand rate is time proportional with
no initial demand.

Tab. 8 shows that the nature of changing of the mini-
mized total average cost and the optimal ordering interval
are the same as Tab. 3–7 but the numerical values are low
compared to Tab. 3–7, 9.

(vii) Consider b = 0, c = 0 keeping other parameters
fixed as in Tab. 2, i.e demand rate is constant which was ini-
tially established.

Tab. 9 clears that the nature of changing of the minimized
total average cost and optimal ordering interval are the same,
i.e. they are sequentially decreasing with respect to memory
index as Tab. 3–8 but the numerical values are low compared
to Tab. 3–7 except Tab. 8.

Hence, it is observed from Tab. 3–9 that when the de-
mand rate is the proportional time the numerical value of the
minimized total average cost is low compared to the other

Tab. 8. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 143.4975
(maximum value)

11.8747
(minimum value)

0.2↑ (growing
memory effect) 1.0 63.5948 25.2183

0.3↑ 1.0 38.5067 40.9354

0.4↑ 1.0 26.3886 59.1434

0.5↑ 1.0 19.2334 79.7164

0.6↑ 1.0 14.4869 102.2633

0.7↑ 1.0 11.1065 126.0936

0.8↑ 1.0 8.6022 150.2233

0.9↑ 1.0 6.7217 173.4655

1.0 1.0 5.208↑
(increasing)

194.6280↓
(decreasing above)

Tab. 9. Optimal ordering interval and minimized total average cost
for β=1.0, and α varies from 0.1 to 1.0 as defined in Sec. IV.1

α β T ∗
α,β TC∗

α,β

0.1 1.0 143.7971
(maximum value)

11.8799
(minimum value)

0.2↑ (growing
memory effect) 1.0 63.8650 25.2469

0.3↑ 1.0 38.7065 41.0017

0.4↑ 1.0 26.5358 59.2576

0.5↑ 1.0 19.3440 79.8854

0.6↑ 1.0 14.5719 102.4923

0.7↑ 1.0 11.1732 126.3872

0.8↑ 1.0 8.6553 150.5855

0.9↑ 1.0 6.7641 173.8986

1.0 1.0 5.3543↑
(increasing)

195.1303↓
(decreasing)

assumed demand rate like quadratic type demand rate, con-
stant demand rate, square of the time proportional etc. Hence
for time proportional demand rate, business gains more profit
without risk because business does not take too long to reach
the minimum value of the total average cost as well as mini-
mized total average cost is low.

VI. GRAPHICAL PRESENTATION

(a) Graphical comparison between positive inventory
level for long memory affected system as well as low
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Fig. 2. Scatter diagram inventory level versus time corresponding
low memory effect (α = 0.9) and long memory effect (α = 0.1)

of the system

memory affected system with respect to time is presented
in Fig. 2.

(b) Graphical comparison of the minimized total average
cost for different cases as found numerically in the above ta-
bles are presented in Fig. 3.

From Fig. 2, it is observed that in long memory effect
(α = 0.1) inventory level is high but in low memory effect
(α = 0.9) inventory level is low comparatively long memory
effect (α = 0.1). It is also noted that Inventory level with re-
spect to time is decreasing gradually for both cases for long
memory effect as well as low memory effect.

From the above Fig. 3, it is observed that for some
cases, minimized total average cost, which is very close,
goes through one line, and for other cases minimized total
average cost, which is very close, goes through another line.

VII. CONCLUSIONS

In this paper, we have established the memory effect
in an inventory system via fractional calculus. Here, we
have considered a memory dependent inventory model with
quadratic type demand rate and shortage. The demand rate of
the cosmetic product increases with time during the seasonal
period like Vaseline, ponds, Olive-oil during winter season
and Body spray, perfume, etc., during the summer season.
The demand rate most of the time practically increases with
time, which may be proportional to time or square of the
time, etc. Tab. 3–9 reveal when the system has no initial
demand and the demand rate is proportional to the time,
profit is maximum. One important observation is found that
in long memory effect, business takes more time to reach
the minimum value of the total average cost compared to the
short memory effect. The inventory level with respect to time
is plotted corresponding long memory affected system and
short memory affected system. This plot (Fig. 2) presents
that the inventory level for high memory affected system as
well as low memory affected system is totally different as in-
ventory level for low memory affected system is low but for

Fig. 3. Scatter diagram for memory index αversus minimized total
average cost as numerically described in example (i)–(vii)

long memory affected system, inventory level is high. This
paper may be extended for time delay in payment with mem-
ory effect. More new thoughts towards the memory depen-
dent inventory model may be improved considering practical
data from industries.
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