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Abstract: Gibbs’ canonical ensemble describes the exponential equilibrium distribution f(q, p, T ) ∝ e−H(q,p)/kT for an
ergodic Hamiltonian system interacting with a ‘heat bath’ at temperature T . The simplest deterministic heat bath can be
represented by a single ‘thermostat variable’ ζ. Ideally, this thermostat controls the kinetic energy so as to give the canonical
distribution of the coordinates and momenta {q, p}. The most elegant thermostats are time-reversible and include the extra
variable(s) needed to extract or inject energy. This paper describes a single-variable ‘signum thermostat.’ It is a limiting case
of a recently proposed ‘logistic thermostat.’ It has a single adjustable parameter and can access all of Gibbs’ microstates for
a wide variety of one-dimensional oscillators.
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I. INTRODUCTION

J. Willard Gibbs [1] showed that an oscillator with Hamil-
tonian H in thermal equilibrium with a source of heat (a
‘heat bath’) at temperature T will have an energy that fluc-
tuates in time but with a canonical distribution proportional
to e−H/kT , where k is Boltzmann’s constant, hereafter taken
as unity. The simplest such example is a harmonic oscillator
such as a mass m suspended by an ideal spring with spring
constant κwhose kinetic energy is 1

2mv
2 = 1

2mp
2 and whose

potential energy is V (q) = 1
2κq

2. For simplicity, we take
m and κ equal to unity. The corresponding Hamiltonian is
H(q, p) = q2/2 + p2/2, leading to the equations of motion
q̇ = ∂H/∂q = p and ṗ = −∂H/∂p = −q. Hamiltonian
systems conserve the total energy and are thus isoenergetic.

For most of the 19th and 20th centuries, physicists imag-
ined controlling the energy of an oscillator using a heat bath
at an average temperature T in contact with the oscillator. The
number of degrees of freedom in the heat bath was assumed

large enough so that the heat flow to or from the oscillator
is negligible relative to the whole. In 1984 Shuichi Nosé
proposed a method for replacing the heat bath with a single
additional degree of freedom added to the oscillator equations
of motion [2, 3]. Since his original proposal, several models
have been developed that are consistent with Gibbs’ canoni-
cal distribution for the oscillator, the simplest of which is the
Nosé–Hoover system [4],

q̇ = p
ṗ = −q − ζp
ζ̇ = p2 − T.

(1)

If ζ were a positive constant, this system would be a damped
harmonic oscillator. However, by allowing ζ to change in
time, being alternately positive and negative, energy is added
to the oscillator when its energy is too low and removed from
it when its energy is too high. The ζ̇ equation thus acts like
a ‘thermostat.’ As a result, the long-time average energy is
kept constant at 〈p2〉 = T but with large fluctuations about
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the average. Equation (1) is sometimes written with different
or additional parameters, but it is inherently a one-parameter
system through an appropriate transformation of the variables,
and so the use of T as the parameter is somewhat arbitrary.

The resulting system shares many of the properties of
a Hamiltonian system except that the energy is allowed to
fluctuate in time rather than being rigidly fixed. Such sys-
tems are said to be isothermal rather than isoenergetic and
to be nonuniformly conservative [5]. As with other conser-
vative systems, Eq. (1) is time-reversible since the transfor-
mation (q, p, ζ, t) → (q,−p,−ζ,−t) leaves the equations
unchanged. This three-dimensional modification of the sim-
ple harmonic oscillator has chaotic solutions as required for
the orbit to visit all points in (q, p) phase space as expected
for a physical oscillator in contact with a real heat bath.

However, Eq. (1) fails to generate the entire canonical
distribution, f(q, p, ζ) = f(q)f(p)f(ζ) = e−q

2/2T e−p
2/2T

e−ζ
2/2T /(2πT )3/2, but traces out only a small part of it de-

pending on the initial values of (q, p, ζ). For initial conditions
chosen randomly from Gibbs’ Gaussian measure, 94% of
the orbits are quasiperiodic and lie on two-dimensional tori
that surround an infinite number of stable one-dimensional
periodic orbits. The remaining 6% of the initial conditions lie
in a surrounding three-dimensional chaotic sea [6]. In theory,
trajectories within the sea come arbitrarily close to any point
within it.

Nosé left us with the problem of finding an ergodic dy-
namics, one accessing all of phase space starting from almost
any initial condition. Over the past thirty years, a variety of
motion equations designed to improve on Nosé’s approach
were developed [7-15]. The goal was a simple, deterministic,
time-reversible dynamics accessing every (q, p, ζ) state for
any initial condition.

II. LOGISTIC THERMOSTAT OSCILLATOR

In response to the 2016 Ian Snook prize challenge [15],
Diego Tapias, Alessandro Bravetti, and David P. Sanders [16]
proposed a variant of the Nosé–Hoover oscillator using what
they call a ‘logistic thermostat’ given by

q̇ = p

ṗ = −q −
(
T

Q

)
tanh

(
ζ

2Q

)
p

ζ̇ = p2 − T.

(2)

For Q sufficiently small, they show that the resulting sys-
tem is ergodic as confirmed through (1) inspection of the
Poincaré sections for lack of holes, (2) independence of the
Lyapunov exponents on the initial conditions, (3) compari-
son of the time-averaged dynamical moments of q, p, and ζ
with the analytic moments for their respective ergodic Gibbs’
distributions, and (4) convergence of the global joint distri-
bution to f(q, p, ζ) = e−q

2/2T e−p
2/2T sech2(ζ/2Q)/8πQT ,

as measured by the Hellinger distance.

For example, Q = 0.1, T = 1 gives the flow whose
ζ = 0 cross section is shown in Fig. 1. (We do not call this
a ‘Poincaré section’ because crossings in both directions are
plotted.) In this and the similar plots to follow, the value of the
local largest Lyapunov exponent is shown with a continuum
of colors from blue for the most negative to red for the most
positive with green indicating values near zero. The horizontal
stripes at p = ±

√
T are the ζ-nullclines where ζ̇ = 0 and the

orbit is locally tangent to the ζ = 0 plane. Despite the intricate
and unexplained structure in the local Lyapunov exponent, the
phase-space distribution f(q, p, 0) is featureless without evi-
dent regions of quasiperiodicity. The global Lyapunov expo-
nents for all initial conditions are (0.2804, 0,−0.2804), and
the system is nonuniformly conservative and time-reversible
with a chaotic sea that fills all of space. The authors also
show similar ergodic behavior for the cubic and two-well
Duffing oscillators, corresponding to quartic and ‘Mexican-
hat’ potentials, respectively, but using Q = 0.02 for the latter
case.

Fig. 1. Cross section of the flow for the logistic thermostat oscillator
in Eq. (2) with Q = 0.1 and T = 1 in the ζ = 0 plane showing that
the chaotic sea fills all of space without quasiperiodic ‘holes.’ The
colors indicate the value of the local largest Lyapunov exponent (red

positive and blue negative)

III. SIGNUM THERMOSTATTED LINEAR
OSCILLATOR

Since limQ→0 tanh(ζ/2Q) = sgn(ζ), Eq. (2) suggests
taking the limit Q,T → 0 but with α = T/Q constant giving

q̇ = p
ṗ = −q − αsgn(ζ)p

ζ̇ = p2 − T.
(3)
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This bang-bang controller is arguably a better model for a real
thermostat where the furnace abruptly turns on full when the
temperature drops below a set point and the air conditioner
turns on full when the temperature rises above that point.
However, the signum function limits the rate at which heat
can be delivered to or extracted from the oscillator, unlike the
proportional controller in Eq. (1), and that rate is governed by
the parameter α. In this sense, the oscillator is more weakly
coupled to the heat bath than in the Nosé–Hoover case but
with a faster response.

Although Eq. (3) corresponds to the logistic thermostat
only in the zero-temperature (T → 0) limit, the solution is
apparently ergodic for α greater than about 1.8 for all values
of T . For example, α = 2, T = 1 gives the flow whose ζ = 0
cross section is shown in Fig. 2. The Lyapunov exponents are
(0.3032, 0,−0.3032), and the system is nonuniformly conser-
vative and time-reversible with a chaotic sea that fills all of
space.

Fig. 2. Cross section of the flow for the signum thermostatted linear
oscillator in Eq. (3) with α = 2 and T = 1 in the ζ = 0 plane

Furthermore, the probability distribution of q and p is
canonical, f(q, p) = e−q

2/2T e−p
2/2T /2πT , while the prob-

ability f(ζ) is governed by Tf ′(ζ) = −αf(ζ)sgn(ζ), whose
normalized solution is f(ζ) = (α/2T )e−α|ζ|/T . Thus the
numerically calculated distributions shown in Fig. 3 for
α = 2 and T = 1 provide additional evidence of ergod-
icity. The thin black line at the edge of the red region is
the theoretical distribution. The measured even moments
agree to within statistical fluctuations with the theoretical
(ergodic) predictions of f(q) and f(p) given by 〈qm〉 =
〈pm〉 = (m − 1)!! = {0, 1, 3, 15, 105, 945, 10395, ...}, and
f(ζ) given by 〈ζm〉 = m!/αm = {0, 0.5, 1.5, 11.25, 157.5,
3543.75, 116943.75, ...} for α = 2.

Fig. 3. Probability distributions and their even moments for the three
variables of the signum thermostatted linear oscillator in Eq. (3)
with α = 2 and T = 1. The expected distributions are shown as

black lines

Finally, Eq. (3) has the nice property that the q̇ and ṗ
equations are linear except at ζ = 0, and so the dynam-
ics is independent of the amplitude of the oscillation. Said
differently, T is an amplitude parameter that only affects
the magnitude of the variables and thus can be taken as unity
without loss of generality. If the system is ergodic for any tem-
perature, it is ergodic for every temperature, and it has only a
single bifurcation parameter α, which facilitates analysis of
the system, especially since the system is two-dimensional
and linear for ζ 6= 0.

The dependence of the Lyapunov exponents and the kur-
tosis Kp = 〈p4〉/〈p2〉2 − 3 (which is zero for a Gaussian)
on the parameter α is shown in Fig. 4. For each of the 500
values of α, initial conditions are chosen randomly from the
canonical distribution so that the instances and prevalence of
quasiperiodic solutions (where the Lyapunov exponents are
zero) are evident. A wider range of initial conditions would
allow a better estimate of the value of α at the onset of ergod-
icity but at considerable computational cost. A much longer
calculation at α = 2 with a million randomly chosen initial
conditions did not reveal any quasiperiodic solutions, and
so the evidence is strong that the system is ergodic with the
canonical phase-space distribution.

These calculations are crucially dependent on using a
good adaptive integrator with stringent error control because
of the discontinuity in the signum function at ζ = 0. This
causes no difficulty in calculating orbits and Poincaré sec-
tions because the flow is continuous, but the singularity in the
Jacobian matrix can render Lyapunov exponent calculations
unreliable. However, the error in the calculated Lyapunov ex-
ponent is found to be proportional to the integration step size
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∆t, and four-digit accuracy requires ∆t ≈ 10−12 in the vicin-
ity of ζ = 0 when using a fourth-order adaptive Runge–Kutta
integrator patterned after the one in Press, et al. [17].

Fig. 4. Variation of the Lyapunov exponents (LEs) and the kurtosis
of p (Kp) as a function of the bifurcation parameter α for the signum
thermostatted linear oscillator in Eq. (3) with T = 1 showing the

ergodic region for α > 1.8

There are two methods to verify the correctness of the
calculation. One method avoids integrating over the singu-
larity, but calculates the contribution of the singularity an-
alytically [18]. The other replaces sgn(ζ) with tanh(Nζ)
and demonstrates convergence as N → ∞ [19]. The sec-
ond method was used here, where a value of N = 500 ap-
proaches four-digit accuracy. Even so, the least significant
digit of the quoted Lyapunov exponents is only an estimate.
Precise values are not essential for distinguishing chaos from
quasiperiodicity and for testing ergodicity.

IV. SIGNUM THERMOSTATTED NONLINEAR
OSCILLATOR

Just as with the logistic thermostat, the signum thermo-
stat can give ergodic solutions for nonlinear oscillators. An
example is given by

q̇ = p
ṗ = −qn − αsgn(ζ)p

ζ̇ = p2 − T,
(4)

where n is a positive odd integer, corresponding to a sym-
metric potential V (q) = qn+1/(n + 1). Using values of
n = 3, α = 3, and T = 1 gives the cross section at ζ = 0
shown in Fig. 5. The absence of quasiperiodic holes suggests

that the dynamics is ergodic, and this is confirmed by calcu-
lation of the distribution functions. Similar results occur for
higher odd powers of n.

Fig. 5. Cross section of the flow for the signum thermostatted non-
linear oscillator in Eq. (4) with n = 3, α = 3, and T = 1 in the

ζ = 0 plane

The corresponding Hamiltonian is given by H(q, p) =
qn+1/(n + 1) + p2/2, and thus the probability distribution
function is f(q, p) = e−q

4/4e−p
2/2/6.4262... for n = 3 and

T = 1. The Lyapunov exponents are (0.4077, 0,−0.4077),
and the system is time-reversible and nonuniformly conserva-
tive.

Note that since the oscillator is nonlinear, T is no longer
an amplitude parameter. However, making the linear transfor-
mation (q, p, ζ, t)→ (T

1
n+1 q, T

1
2 p, T

n+3
2n+2 ζ, T

1−n
2n+2 t) elimi-

nates the T in the ζ̇ equation and replaces α in the ṗ equation
with αT

1−n
2n+2 . Thus Eq. (4) is still a single-parameter system.

This result also follows from the fact that Eq. (4) has only five
terms, four of whose coefficients can be set to unity through a
linear rescaling of the four variables (q, p, ζ, t). If the system
is ergodic with α = 3 and T = 1 for a given n as appears
to be the case, there is a value of α = 3T

1−n
2n+2 that makes it

ergodic for any value of T with that choice of n.

V. SIGNUM THERMOSTATTED DUFFING
OSCILLATOR

The signum thermostat also gives ergodic solutions for
the two-well Duffing oscillator given by

q̇ = p
ṗ = q − q3 − αsgn(ζ)p

ζ̇ = p2 − T.
(5)
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The corresponding potential is V (q) = −q2/2 + q4/4 and
is called a ‘Mexican hat’ because of its shape in the two-
dimensional case. Using values of α = 5 and T = 1 gives
the cross section at ζ = 0 shown in Fig. 6. The absence of
quasiperiodic holes suggests that the dynamics is ergodic.

Fig. 6. Cross section of the flow for the signum thermostatted two-
well Duffing oscillator in Eq. (5) with α = 5 and T = 1

in the ζ = 0 plane

The Hamiltonian is given byH(q, p) = −q2/2 + q4/4 +
p2/2, and thus the probability distribution function for T = 1

is f(q, p) = eq
2/2−q4/4e−p

2/2/9.7887.... The Lyapunov ex-
ponents are (0.5012, 0,−0.5012), and the system is time-
reversible and nonuniformly conservative.

As with the previous nonlinear oscillator, T is not an
amplitude parameter, but in this case there is not a linear
transformation of variables that preserves the form of the
equations, and so it is a two-parameter system. This follows
from the fact that Eq. (5) has six terms, only four of whose
coefficients can be set to unity through a transformation of
the variables. A complete examination of the two-parameter
space would be a worthy project.

VI. SIGNUM THERMOSTATTED PENDULUM

A more challenging problem is to use the signum thermo-
stat to obtain ergodic solutions for the simple pendulum. It
appears that no combination of α and T suffice for the simple
signum thermostat, but there is a solution for the system given
by

q̇ = p
ṗ = − sin(q)− α(ζ − sgn(ζ))p

ζ̇ = p2 − T,
(6)

which can be viewed as a superposition of the Nosé–Hoover
thermostat and the signum thermostat (but with a sign rever-
sal in the latter). For T = 1, there is a range of approximately
1.6 < α < 2.0 where the solution appears ergodic as shown
in Fig. 7.

Fig. 7. Variation of the Lyapunov exponents (LEs) and the kurtosis
of p (Kp) as a function of the bifurcation parameter α for the signum
thermostatted pendulum in Eq. (6) with T = 1 showing the ergodic

region for 1.6 < α < 2.0

Fig. 8 shows a cross section at ζ = 0 for α = 1.8 and
T = 1. No quasiperiodic holes are evident. Since the solution
is periodic in q with a wavelength of 2π, only a single wave-
length of the orbit is shown for −π < q < π with periodic
boundary conditions.

The Hamiltonian is given by H(q, p) = 1 − cos q +
p2/2 with a corresponding probability distribution function
for T = 1 of f(q, p) = e−1+cos qe−p

2/2/7.3355... and
f(ζ) = e1.8(|ζ|−ζ

2/2)/8.3648.... The Lyapunov exponents
are (0.1079, 0,−0.1079), and the system is time-reversible
and nonuniformly conservative.

As with the other nonlinear oscillators, T is not an ampli-
tude parameter, and it cannot be transformed away. In fact,
the system has three parameters because there are six terms,
one of which (sin q) is specified by two parameters, an ampli-
tude and a wavelength. Conveniently, ergodicity occurs when
two of the parameters are taken as unity making the system
especially elegant. Exploration of the full three-dimensional
parameter space would be a challenging study and could re-
veal regions where the ordinary signum thermostat produces
ergodicity.
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Fig. 8. Cross section of the flow for the signum thermostatted pen-
dulum in Eq. (6) with α = 1.8 and T = 1 in the ζ = 0 plane

VII. SIGNUM THERMOSTATTED SQUARE-WELL
OSCILLATOR

The final example is the infinite square-well oscillator in
which V (q) = 0 for−1 < q < 1 and V (q) =∞ for q = ±1.
The equations of motion are

q̇ = p

ṗ = −αsgn(ζ)p

ζ̇ = p2 − T,

(7)

but with reflecting boundaries at q = ±1. The reflection
is accomplished by applying the transformation (q, p) →
(2sgn(q)−q,−p) whenever |q| > 1. However, it appears that
this system does not have chaotic solutions for any choice of
α and initial conditions. In fact, with only four terms, Eq. (7)
has no adjustable parameters, and so α can be set to 1.0 with-
out loss of generality through a linear transformation of the
variables.

To reconcile the absence of chaos in Eq. (7) with the ob-
servation that Eq. (4) has chaotic solutions that can be made
ergodic for arbitrarily large n, where the limit n → ∞ rep-
resents a perfect square well, consider Eq. (4) with n = 99,
corresponding to a very deep but flat potential well given
by V (q) = q100/100. Values of α = 3, and T = 1 give
the cross section at ζ = 0 shown in Fig. 9. Evidently, the
dynamics is chaotic and ergodic. The Lyapunov exponents
are (0.3068, 0,−0.3068), and the system is time-reversible
and nonuniformly conservative.

Fig. 9. Cross section of the flow for the signum thermostatted non-
linear oscillator in Eq. (4) with n = 99, α = 3, and T = 1 in the
ζ = 0 plane. This system closely approximates an infinite square-

well potential

The corresponding Hamiltonian is given by H(q, p) =
q100/100 + p2/2, and thus the probability distribution func-
tion is f(q, p) = e−q

100/100e−p
2/2/5.21728.... Fig. 10 shows

good agreement between the expected and calculated distribu-
tions. The expected even moments of f(q) are 〈qm〉 =
{0, 0.3615, 0.2354, 0.1826, 0.1543, 0.1372, 0.1263...}, in
good agreement with the calculated values.

Fig. 10. Probability distributions and their even moments for the
three variables of the signum thermostatted nonlinear oscillator in
Eq. (4) with n = 99, α = 3 and T = 1. The expected distributions

are shown as black lines
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Not evident in the figure is the fact that f(p) converges
very slowly to the expected value of 1/

√
2πT in the vicinity

of p = 0. The reason is that if p is very small, it remains
small for a long time since the restoring force −q99 is tiny
except near q = ±1. The frequency of oscillation approaches
zero as |p| → 0. Furthermore, unlike the linear thermostat in
Eq. (1) where ζp can increase indefinitely, the signum ther-
mostat is limited to αp. Thus the thermostat continues to turn
up the furnace (increasing −ζ), but the heat delivered to the
oscillator is throttled by the signum function. Since p remains
near zero for a long time, it can only acquire the canonical
distribution by seldom visiting that region of phase space,
thus accounting for the slow convergence. The more closely
the nonlinear oscillator approaches the square-well limit, the
longer it takes for the oscillator to reach thermal equilibrium
with the heat bath and fill out the canonical distribution of
momentum and kinetic energy.

VIII. SUMMARY AND CONCLUSIONS

The signum thermostat in Eq. (3) with α = 2 is probably
the simplest paradigm for an oscillator in thermal equilibrium
with a heat bath. It has a number of advantages over the many
alternatives that have been proposed during the past thirty
years. It has an elegant simplicity, with a simple form and
a single parameter, thereby simplifying analysis. For many
one-dimensional oscillators, it can be rigorously shown that
if the system is ergodic for any temperature, then it is er-
godic for every temperature. The signum thermostat provides
a wide range of one-dimensional ergodic oscillators with the
canonical phase-space distribution predicted by Gibbs.

In addition to the several cases described in detail here,
the signum thermostat has been successfully tested with os-
cillators having a variety of other restoring forces includ-
ing − tan(q),− sinh(q),− arctan(q), q2 − q3, q2 − q5, and
q4 − q5, all with α = 3 and T = 1. In fact, the only case
for which it is known to fail is the square-well potential, and
even there it fails only in the limit of a perfect square well.

A logical next step would be to apply the signum ther-
mostat to systems with (many) more degrees of freedom.
Preliminary tests indicate that the orthogonal components of
the linear oscillator synchronize, with the system behaving
like a one-dimensional oscillator rotated in space according to
the initial conditions, while the nonlinear oscillators are more
nearly ergodic for all the thermostats. It will be left as a chal-
lenge for the mathematicians to calculate the conditions for
which the signum thermostat is guaranteed to exhibit ergodic-
ity with the canonical distribution or to find other conditions
where it fails to do so.
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