
CMST 24(3) 187–209 (2018) DOI:10.12921/cmst.2018.0000027

On Half Iterates of Functions Defined on Finite Sets

Paweł Marcin Kozyra

Institute of Mathematics
University of Silesia in Katowice

Bankowa 14, 40-007 Katowice, Poland
E-mail: pawel_m_kozyra@wp.pl

Received: 30 April 2018; revised: 28 August 2018; accepted: 30 August 2018; published online: 30 September 2018

Abstract: Four algorithms determining all functional square roots (half iterates) and seven algorithms finding one functional
square root of any function f : X → X defined on a finite set X , if these square roots exist, are presented herein. Time
efficiency of these algorithms depending on the complexity of examined functions is compared and justification of correctness
is given. Moreover, theorems which make finding half iterates possible in some cases or facilitate this task are formulated.
Key words: functional square root, half iterate, iterated function

I. INTRODUCTION

The n-th iterate of a function f : X → X is defined for
non-negative integers in the following way:
• f0 := idX
• fn+1 := f ◦ fn

where idX is the identity function on X and f ◦g denotes func-
tion composition. Fractional iterates (iterative roots of n-th or-
der) are defined as follows: f

1
n is a function g : X → X such

that gn = f , for all n ∈ N. In particular a functional square
root (half iterate) of f is function g such that g2 = g ◦ g = f .

The literature pertaining to finding functional square roots
involves mainly:
• works by Hellmuth Kneser’s, who studied the half iter-

ate of the exponential function [3]
• Charles Babbage’s research from 1815 of the solutions

of f
(
f(x)

)
= x over R, so called involutions of the

real numbers [4].
For the given function h the solution Ψ of Schröder’s equation

Ψ
(
h(x)

)
= sΨ(x),

where the eigenvalue s = h′(a) and h(a) = a enables find-
ing arbitrary functional n-roots [5–7]. In general, all func-
tional iterates of h are given by ht(x) = Ψ−1

(
stΨ(x)

)
, for

t ∈ R. In [8] M. Zdun dealt with the problem of existence and

uniqueness of continuous iterative roots of homeomorphisms
of the circle. Let S1 := {z ∈ C : |z| = 1} and F : S1 → S1

be a homeomorphism without periodic points. Zdun showed
that if the limit set of the orbit {F k(z), k ∈ Z} = S1, then
F has exactly n iterative roots of n-th order. Otherwise, F
either has no iterative roots of n-th order or F has infinitely
many iterative roots depending on an arbitrary function.

To determine the functional square roots of functions
defined on the finite sets the problem should initially be sim-
plified. Let S(n) denote the set of numbers {1, . . . , n} and
V ar(n) denote the set of all functions α : S(n) → S(n),
for n ∈ N. Note that for any function f : X → X , where
X = {x1, . . . , xn} is a finite set, there exists the function
α : S(n) → S(n) such that f(xi) = xα(i) for all i ∈ S(n).
Thus only half iterates in V ar(n) need to be considered. In
order to find the half iterates of α ∈ V ar(n) all functions
β ∈ V ar(n) could be taken into consideration and checked
whether β(β(i)) = α(i) for all i ∈ S(n). Unfortunately, such
procedure is extremely non-effective. The time of work of
such an algorithm is relatively very long, even for n smaller
than 10. Therefore, algorithms based upon other ideas have
been invented, which can relatively quickly inform us whether
there exist functional square roots and, if the roots exist, these
algorithms can find them. The time of finding of half iter-
ates is longer than the time of determining if they exist but

188 P.M. Kozyra

much shorter than the time of work of the primitive algorithm
described previously.

Sometimes it is convenient to represent a function α ∈
V ar(n) as corresponding to α the directed graphG = (V,E)
denoted by G(α), such that:

1. V = S(n);
2. e ∈ E iff e = (k, l) and α(k) = l for some
k, l ∈ S(n).

Standard terminology from the graph theory (see [1, 2]) is
used. If G(α) consists of many components then there is
possible further simplification of the problem of finding half
iterates of α. It will be proven that there exists a half iterate
of α iff

1. for each component in G(α) there exists its square root
(see Definition 7)
or

2. for each component G1 = (V1, E1) of G(α) which
has no square root there exists another component
G2 = (V2, E2) of G(α) of the same type as G1

(see Definition 6) such that there exists a square root
of the graph being the union of these components –
G3 = (V1 ∪ V2, E1 ∪ E2).

For convenience, functions α ∈ V ar(n) with sequences
(α(1), . . . , α(n)) or with vectors [α(1), . . . , α(n)] will be
identified. For example, consider α = (2, 3, 3). Then G(α)
has the form as in Fig. 1.

Fig. 1. Graph G(α) corresponding to function α = (2, 3, 3)

Note that α has no functional square root. Suppose that
such half iterate β ∈ V ar(3) exists. Then in particular
β(1) ∈ S(3). Suppose that β(1) = 1. Then 2 = α(1) =
β(1) = 1 – contradiction. Similarly, if β(1) = 2, then
2 = α(1) = β(2), hence 2 = β(2) = α(2) = 3 – con-

tradiction, and if β(1) = 3, then 2 = α(1) = β(3), so
β(2) = α(3) = 3, therefore 3 = α(2) = β(3) = 2 – con-
tradiction. It is seen that the assumption of the existence of
a functional square root of α results in contradiction.

All algorithms presented have some common procedures.
One such common procedure is ppfsr which determines all
possible paths for the half iterates of α based on the above
reasoning, i.e.

1. the algorithm attributes all pendants (vertices whose
degree is 1) of G(α) to the set R;

2. in the next step for each cycle in G(α) the algorithm
adds to the R one chosen element belonging to the cy-
cle, if some component of G(α) forms this cycle (see
Definition 5 from the next section);

3. Further algorithm checks for all k ∈ R and b ∈ S(n)
if the assumption that β is a functional square root of
α and β(k) = b does not result in contradiction, as in
the previous example. If not, the algorithm creates path
(k, β(k), . . . , βm(k)), for some m ∈ S(n). Obviously
it must happen that (βi(k), . . . , βm(k)) forms a cycle
for some i ∈ {0, . . . ,m− 1}.

It may happen that a half iterate does not exist although paths
created by the algorithm ppfsr exist for all elements in the
set R also created in this algorithm. For example, consider
v = (3, 5, 3, 4, 3, 3, 4, 6, 1, 4). The graph G(v) correspond-
ing to v has the form seen in Fig. 2.

Fig. 2. Graph G(v) corresponding to function
v = (3, 5, 3, 4, 3, 3, 4, 6, 1, 4)

Then ppfsr(v) returns the list of the sets of possible paths
for the functional square roots of v:

On Half Iterates of Functions Defined on Finite Sets 189

[
{[2, 1, 5, 3, 3], [2, 6, 5, 3, 3], [2, 7, 5, 4, 3, 4],

[2, 8, 5, 6, 3, 3], [2, 9, 5, 1, 3, 3], [2, 10, 5, 4, 3, 4]},
{[7, 4, 4], [7, 3, 4, 3], [7, 10, 4, 4], [7, 1, 4, 3, 4],

[7, 5, 4, 3, 4], [7, 6, 4, 3, 4]}, {[8, 1, 6, 3, 3],

[8, 5, 6, 3, 3], [8, 2, 6, 5, 3, 3], [8, 7, 6, 4, 3, 4],

[8, 9, 6, 1, 3, 3], [8, 10, 6, 4, 3, 4]}, {[9, 5, 1, 3, 3],

[9, 6, 1, 3, 3], [9, 2, 1, 5, 3, 3], [9, 7, 1, 4, 3, 4],

[9, 8, 1, 6, 3, 3], [9, 10, 1, 4, 3, 4]}, {[10, 4, 4],

[10, 3, 4, 3], [10, 7, 4, 4], [10, 1, 4, 3, 4],

[10, 5, 4, 3, 4], [10, 6, 4, 3, 4]}
]
.

In the next step using the procedure delL all algorithms
presented here remove all paths p such that for all paths q,
beginning at some other point, paths p and q cannot be the se-
quences of the values of the consecutive iterates of some func-
tion, meaning there does not exist a function w such that p =
[r, w(r), . . . , wm(r)] and q = [s, w(s), . . . , wn(s)] for some
r, s ∈ R, r 6= s,m,n ∈ N and p, q ∈ ppfsr(v). For example,
consider the path p := [2, 1, 5, 3, 3] and suppose that for some
half iterate w of v holds: p = [2, w(2), w2(2), w3(2), w4(2)].
Then for some path q beginning at 8 the same must happen,
meaning q = [8, w(8), . . . , wm(8)] for some m ∈ N. But
we can see that it is impossible. Thus p cannot be path deter-
mined by some functional square root of v. After removing
such paths the following list is obtained:[

{[2, 7, 5, 4, 3, 4], [2, 10, 5, 4, 3, 4]},
{[7, 3, 4, 3], [7, 1, 4, 3, 4],

[7, 5, 4, 3, 4], [7, 6, 4, 3, 4]},
{[8, 7, 6, 4, 3, 4], [8, 10, 6, 4, 3, 4]},
{[9, 7, 1, 4, 3, 4], [9, 10, 1, 4, 3, 4]},
{[10, 3, 4, 3], [10, 1, 4, 3, 4],

[10, 5, 4, 3, 4], [10, 6, 4, 3, 4]}
]
.

Now any pair of paths p and q from this list can be determined
by some half iterate, but it is impossible to find paths such that
each of these paths belong to exactly one set from the above
list and all these paths can be determined by some function.
Hence a half iterate of v does not exist, since every half iterate
is a function. Algorithms presented differ depending on the
way they find the collection of paths such that every path from
this collection belongs to exactly one set in delL

(
ppfsr(v)

)
and there exists the function w such that every path from
this collection is a sequence of the values of the consecutive
iterates of w at some point belonging to the set R created in
the second step of the algorithm ppfsr. It will be proved that
if v, w ∈ V ar(n) for some n ∈ N, then w ◦ w = v iff for
every set S ∈ delL

(
ppfsr(v)

)
there exists exactly one path

p ∈ S such that w(p[i]) = p[i + 1] for all i ∈ {1, . . . , len},
where len is the length of path p.

II. SPECIAL CASES. THE GRAPH THEORY
POINT OF VIEW

In this section the result (Proposition 1) which provides
a way of determining whether a function α ∈ V ar(n) is its
half iterate is presented. Moreover, Corollaries 11 and 13
enable determining the existence of the half iterate in some
cases and Theorem 9 simplifies the problem of finding half
iterates of α if the graph corresponding to α contains many
cycles. Additionally, Propositions 14 and 17, describing the
number of half iterates of constant and identity sequences,
are presented.

Proposition 1. Let α ∈ V ar(n) for some n ∈ N. Then α
is its half iterate iff for each k ∈ S(n) if α−1(k) 6= ∅ then
k ∈ α−1(k).

Proof. (=⇒) Assume that α2(k) = α(k) for any k ∈ S(n).
Fix k ∈ S(n) and assume that l ∈ α−1(k). Then α(l) = k
and k = α(l) = α2(l) = α(k). So k ∈ α−1(k).

(⇐=) Assume that for each k ∈ S(n) if α−1(k) 6= ∅
then k ∈ α−1(k). Fix any k ∈ S(n). Then α(k) = m
for some m ∈ S(n) and α−1(m) 6= ∅. By assumption,
α(m) = m. Hence α(k) = α(m) and α2(m) = α(m) = m.
Thus α2(k) = α2(m) = m = α(k).

If the graphG(α) corresponding to a function α has many
components, then the problem of finding the half iterates of α
can be simplified by the following theorem. Before we formu-
late this statement we introduce several definitions. Assume
that G = (V,E) is a directed graph. Let Zk denote the set
{0, . . . , k − 1} for k ∈ N.

Definition 2. A sequence (a0, . . . , ak−1) ∈ V k is called
a cycle of length k ∈ N in graph G (in other words,
graph G contains a cycle (a0, . . . , ak−1) ∈ V k) iff
card{a0, . . . , ak−1} = k and (ai, a(i+1) mod k) ∈ E for
all i ∈ Zk.
A function α ∈ V ar(n) contains a cycle (a1, . . . , ak) ∈
S(n)k iff G(α) contains this cycle.

Definition 3. Two cycles (a0, . . . , ak−1), (b0, . . . , bk−1) ∈
V k of graph G are equivalent iff for all i ∈ Zk bi =
a(i+m) mod k for some m ∈ N0. We shall identify equiv-
alent cycles.

Remark 4. If ā = (a0, . . . , ak−1), b̄ = (b0, . . . , bk−1) are
two cycles in G(α) for some α ∈ V ar(n) and ai = bj for
some i, j ∈ Zk then ā and b̄ are equivalent.

Definition 5. A graph (component of graph) G = (V,E)
forms a cycle iff there exists a sequence of all elements of V
which is a cycle of length card(V) in graph G.
A function α ∈ V ar(n) forms a cycle (a0, . . . , ak) iff G(α)
forms this cycle.

Note any cycles belonging to any component of G(α) are
equivalent for any α ∈ V ar(n) and n ∈ N.

190 P.M. Kozyra

Definition 6. Two components of the graph G are the same
type if they contain the cycles of the same length.

For example, consider the graph seen in Fig. 3.

Fig. 3. Graph including two components of the same type

It is seen that two cycles (1, 2, 3) and (6, 7, 8) of this
graph have the same length equal to 3. Hence two compo-
nents containing these cycles are the same type.

Definition 7. The graph G′ = (V,E′) is a square root of
a directed graph G = (V,E) iff

1. out-deg(u)=1 in G and in G′ for every vertex u ∈ V
and

2. if u, v ∈ V are any vertices then (u, v) ∈ E iff
there exists vertex w ∈ V such that (u,w) ∈ E′ and
(w, v) ∈ E′.

Remark 8. Note that if v ∈ V ar(n) and w ∈ V ar(n) is
a half iterate of v then G(w) =

(
S(n), E′

)
is a square root

of G(v) =
(
S(n), E

)
. Certainly, G(w) satisfies the first con-

dition of definition of a square root, since w is a function.
Assume that k, l ∈ S(n) and (k, l) ∈ E. Then by defini-
tion of G(v), v(k) = l. Since w is a half iterate of v, so
w
(
w(k)

)
= l. Take m := w(k). Then (k,m) ∈ E′ and

(m, l) ∈ E′. Conversely, if (k,m) ∈ E′ and (m, l) ∈ E′

for some m ∈ S(n), then by definition of G(w) it follows
that: w(k) = m and w(m) = l, hence v(k) = w

(
w(k)

)
=

w(m) = l, since w is a half iterate of v. Thus (k, l) ∈ E.
Similarly, if v ∈ V ar(n) and G′ =

(
S(n), E′

)
is a square

root of G(v) =
(
S(n), E

)
, then G′ = G(w) for some half it-

erate of v. It suffices to define w as follows: for any k ∈ S(n)
put w(k) := l, where l ∈ S(n) is the only one vertex such
that (k, l) ∈ E′. Such vertex exists by definition of the square
root.

Now the theorem can be formulated:

Theorem 9. Let α ∈ V ar(n) for some n ∈ N. Then there
exists a half iterate of α iff

1. for each component inG(α) there exists its square root
or

2. for each component G1 = (V1, E1) of G(α) which
has no square root there exists another component
G2 = (V2, E2) of G(α) of the same type as G1 such
that there exists a square root of the graph being the
union of these components – G3 = (V1∪V2, E1∪E2).

Proof. (=⇒)
Assume that β is a half iterate of α and suppose that
some component G1 = (V1, E1) of G(α) has no square
root. Let ā := (a0, . . . , ak−1) be the cycle in G1. Define
bi := β(ai), for i ∈ Zk. Note that α(bi) = β2

(
β(ai)

)
=

β
(
α(ai)

)
= β(ai+1) = bi+1 for i ∈ Zk−1 if k ≥ 2 and

α(bk−1) = α
(
β(ak−1)

)
= β

(
α(ak−1)

)
= β(a0) = b0.

Therefore, b̄ := (b0, . . . , bk−1) is a cycle of length k in
G(α) different from the cycle ā, since bi 6= aj for all
i, j ∈ Zk. Suppose that bi = aj for some i, j ∈ Zk. Then
ā and b̄ are equivalent. So bi = a(i+m) mod k for some
m ∈ N0. Fix any vertex c0 ∈ V1. Then αn(c0) = ai for
some n ∈ N and i ∈ Zk. Let l be the smallest such n.
Define ci := αi(c0) and di := β(ci) for i ∈ Zl. Note
that α(dl−1) = α

(
β(cl−1)

)
= β

(
α(cl−1)

)
= β(ai) =

bi = a(i+m) mod k ∈ V1 for some i ∈ Zk. So dl−1 ∈ V1,
since (dl−1, a(i+m) mod k) ∈ E1 and G1 is a component.
Similarly, α(dj) = dj+1 and dj ∈ V1 for j ∈ Zl−1. In
particular, d0 = β(c0) ∈ V1. Thus β(V1) ⊆ V1. Define
G′ = (V1, E

′), where E′ := {(k, l) : k, l ∈ V1 ∧ β(k) = l}.
Then G′ is a square root of G1 – contradiction. Therefore,
bi 6= aj for all i, j ∈ Zk and b̄ must belong to component
G2 = (V2, E2) different from G1 but the same type as G1

since ā and b̄ have the same length. Let E′′ := {(k, l) : k, l ∈
V1 ∪ V2 ∧ β(k) = l}. Then G′′ := (V1 ∪ V2, E

′′) is a square
root of G3 := (V1 ∪ V2, E1 ∪ E2).

(⇐=)
Assume that G(α) = (V,E) is the union of G1, . . . , Gm,
where Gi = (Vi, Ei) is either a component of G(α) or
union of two components of G(α) of the same type, and
for each Gi there exists its square root – G′i = (Vi, E

′
i), for

i ∈ S(m). Then V =
⋃m
i=1 Vi and Vi ∩ Vj = ∅ for all i 6= j,

i, j ∈ S(m). Define β ∈ V ar(n) in the following way:

β(k) := l, if k ∈ Vi and (k, l) ∈ E′i for some i ∈ S(m), for
any k ∈ V .

Then β is a correctly defined function. It will be shown that
β2 = α: Take any k ∈ V . Then there exists exactly one
i ∈ S(m) such that k ∈ Vi. Since G′i is a square root of Gi,
so there exists exactly one vertex l ∈ Vi such that (k, l) ∈ E′i.
Similarly, there exists exactly one vertex p ∈ Vi such that
(l, p) ∈ E′i. Thus by definition of β, β(k) = l and β(l) = p,
hence β2(k) = p. On the other hand, by definition of a square
root, (k, p) ∈ Ei, thus α(k) = p = β2(k).

On Half Iterates of Functions Defined on Finite Sets 191

Return to the previous example. Note that graph
G from Fig. 3 corresponds to the function α =
(2, 3, 1, 2, 1, 7, 8, 6, 7, 9). The above theorem can be used to
show that there exists a half iterate of α. It can be seen that the
second component of the graph has no square root. It is easy
to find square roots of G. It suffices to intersperse vertices
10 and 9 with 4 or 5. Hence two square roots of G can be
obtained, as seen in Fig. 4.

Fig. 4. The square roots of graph G from Fig. 3

By the form of square roots of G, it is easy to determine
the half iterates of α: β1 = (7, 8, 6, 7, 9, 1, 2, 3, 1, 5) and
β2 = (6, 7, 8, 9, 8, 2, 3, 1, 2, 4).

How the existence of a half iterate depends on the lengths
of cycles formed by any functions will be shown.

Proposition 10. Assume that α ∈ V ar(n), G(α) consists
of one component including cycle ā := (a0, . . . , ak−1) of
length k and A := {a0, . . . , ak−1}.

1. If there exists half iterate β ∈ V ar(n) of α, then k is
odd number and β|A = α(k+1)/2|A.

2. If β ∈ V ar(n) and α forms the cycle ā, then β2 = α
iff β = α(n+1)/2.

Proof. Assume that β ∈ V ar(n) and β2 = α. Define
bi := β(ai) for all i ∈ Zk. Note that b̄ := (b0, . . . , bk−1)
is a cycle in G(α), since α(bi) = α(β(ai)) = β(α(ai)) =
β(ai+1 mod k) = bi+1 mod k for all i ∈ Zk. Thus b̄ is equiv-
alent with ā, since G(α) contains one cycle. Hence there
exists m ∈ Zk such that bi = ai+m mod k for all i ∈ Zk. In
particular,

a1 =α(a0) = β2(a0) = β(b0) =

=β(am) = bm = a2m mod k.

So 2m = k + 1 and m = k+1
2 . Therefore, k is odd number

and β(ai) = bi = ai+(k+1)/2 mod k = α(k+1)/2(ai) for all
i ∈ Zk.

If α forms the cycle ā, then α contains this cycle and by
previous reasoning, β = α(n+1)/2, since here A = S(n) and
k = n. On the other hand, if β = α(n+1)/2, then β2(ai) =
αn+1(ai) = α(ai) for all i ∈ Zn, thus β2 = α.

Corollary 11. If α ∈ V ar(n) contains an odd number of
nonequivalent cycles of even lengths, then its half iterate does
not exist.

Proof. ConsiderG(α). By assumption, there must exist some
component G′ of G(α) which contains a cycle c of even
length for which there does not exist another component of
G(α) of the same type as G′. By Proposition 10 and Remark
8, there does not exist a square root of G′. By Theorem 9,
there does not exist a half iterate of α.

For example, considerα = (2, 3, 4, 1, 2, 3, 8, 9, 10, 11, 9).
Then G(α) has the form seen in Fig. 5.

192 P.M. Kozyra

Fig. 5. G(α), where α = (2, 3, 4, 1, 2, 3, 8, 9, 10, 11, 9)

It can be seen thatG(α) contains two components. One of
these components contains one cycle of length 4, the second
– one cycle of length 3. Thus α contains one cycle of even
length. By Corollary 11, there does not exist a half iterate of
α.

Corollary 12. If there exists a half iterate of some α ∈
V ar(n) and α contains a cycle c̄ of even length k, then α
contains another (nonequivalent with c̄) cycle of the same
length k.

Proof. A straightforward conclusion from Theorem 9 and
Proposition 10.

Corollary 13. If α ∈ V ar(n) contains the cycles of odd
lengths which sum to n, then there exists a half iterate of α.

Proof. Assume that α contains the cycles of odd length
l1, . . . , lm which are formed by functions c1, . . . , cm ∈
V ar(n), respectively, and l1 + · · · + lm = n. Then α =
c1 ◦ · · · ◦ cm and cli+1

i = ci for all i ∈ S(m). Let
L := LCM(l1, . . . , lm) be the least common multiple
of l1, . . . , lm. Then cL+1

i = ci for all i ∈ S(m), hence
αL+1 = α. Let β := α(L+1)/2. Then β is correctly defined,
since 2|L+ 1 and β2 = α.

Let α = (2, 3, 1, 5, 6, 7, 8, 4, 10, 11, 12, 13, 14, 15, 16,
17, 9). Then G(α) is such as it is seen in Fig. 6.

Fig. 6. G(α), where
α = (2, 3, 1, 5, 6, 7, 8, 4, 10, 11, 12, 13, 14, 15, 16, 17, 9)

Note that α ∈ V ar(17) contains three cycles of length
3, 5 and 9. By Corollary 13, there exists a half iterate of
α. Namely, take L := LCM(3, 5, 9) = 45 and β :=
α(L+1)/2 = = α23 = (3, 1, 2, 7, 8, 4, 5, 6, 14, 15, 16, 17,
9, 10, 11, 12, 13). Then β2 = α.

The following result enables us to determine ϕ(n) –
the number of all half iterates of identity sequences α =
(1, . . . , n) for n ∈ N.

Proposition 14.

ϕ(n) = 1 +

[n
2]∑
i=1

1

i!

i∏
j=1

(
n− 2(j − 1)

2

)
for all n ∈ N, where [x] denotes the greatest integer number
smaller or equal to x.

Proof. Let α ∈ V ar(n). Note that the number of all square
roots of G(α) which have one pair of connected distinct ver-
tices is equal to

(
n
2

)
. If we have an edge between two fixed

vertices, then other two vertices can be chosen from n − 2
vertices by

(
n−2

2

)
ways. But if we have fixed distinct vertices

v1 and v2 and later we will choose distinct vertices v3 and
v4 then the final result will be the same as if we firstly chose
vertices v3 and v4 and next vertices v1 and v2. Therefore, the
number of all square roots of G(α) which have two pairs

of connected distinct vertices is equal to (n
2)(

n−2
2)

2 . Similarly,
the number of all square roots of G(α) which have k pairs

of connected distinct vertices is equal to 1
k!

k∏
j=1

(
n−2(j−1)

2

)
.

Moreover, we can have at most [n2] pairs of connected distinct

On Half Iterates of Functions Defined on Finite Sets 193

vertices. Thus ϕ(n) = 1 +
[n

2]∑
i=1

1
i!

i∏
j=1

(
n−2(j−1)

2

)
, since by

Proposition 1, G(α) is also its square root.

Lemma 15.

[n
2]∑
i=0

(
n

2i

)
=

[n−1
2]∑
i=0

(
n

2i+ 1

)
= 2n−1 for all n ∈ N.

Proof. Note that if n is an odd number, then
[n

2]∑
i=0

(
n
2i

)
=

n−1
2∑
i=0

(
n
2i

)
=

n−1
2∑
i=0

(
n

n−2i

)
=

[n−1
2]∑
i=0

(
n

2i+1

)
. Thus the statement

is true for odd numbers.
Assume now that n is an even number. Then

2n−1 =

n
2−1∑
i=0

(
n− 1

2i

)
+

n
2−1∑
i=0

(
n− 1

2i+ 1

)
=

=

n
2−1∑
i=0

(
n

2i+ 1

)
=

[n−1
2]∑
i=0

(
n

2i+ 1

)
,

since (
n− 1

2i

)
+

(
n− 1

2i+ 1

)
=

(
n

2i+ 1

)
.

Moreover,

2n =

[n−1
2]∑
i=0

(
n

2i+ 1

)
+

[n
2]∑
i=0

(
n

2i

)
.

Therefore,

[n
2]∑
i=0

(
n

2i

)
= 2n − 2n−1 = 2n−1 =

[n−1
2]∑
i=0

(
n

2i+ 1

)
.

Corollary 16. ϕ(n) ≥ 2n−1.

Proof. Assume that n ∈ N. Note that 1
i!

i∏
j=1

(
n−(j−1)2

2

)
=

1
i!

n!
(n−2i)!2i ≥ n!

(n−2i)!(2i)! =
(
n
2i

)
, since (2i)! ≥ i!2i for all

i ∈
{

1, . . . ,
[
n
2

]}
. Therefore, by Proposition 14 and Lemma

15, ϕ(n) ≥
[n

2]∑
i=0

(
n
2i

)
= 2n−1.

It follows from the above corollary that the problem of
finding all half iterates of some sequences belongs to the
complexity class EXPTIME.

It turns out that there exist sequences from V ar(n) for
which the number of its half iterates may be even greater
than ϕ(n). Let ψ(n) denote the number of all half iterates
of a constant sequence α = (i, . . . , i) of length n for some
i ∈ S(n). For a given sequence k̄ = (k1, . . . , km) and n ∈ N

Fig. 7. Some square roots of graph G(α) which have one pair of connected distinct vertices

194 P.M. Kozyra

Fig. 8. Some square roots of graph G(α) which have two pairs of connected distinct vertices

let

Pn,k̄ :=

m∏
i=1

n− i− i−1∑
j=1

kj

 ·
 n− i−

i−1∑
j=1

kj − 1

ki

 .

For a given n ∈ N and m ∈ S(n− 1) let

Kn,m :=

{
(k1, . . . , km) ∈ N0

m : k1 ≤ · · · ≤ km∧

∧
m∑
i=1

ki = n−m− 1

}
.

For a given sequence k̄ = (k1, . . . , kn) let R(k̄) :=
m∏
i=1

ri!,

where m := max(k̄) + 1, ri := #{j ∈ S(n) : kj = i − 1}
and S(n) := {1, . . . , n}.

Proposition 17. Under the above notations and assumptions
it holds:

ψ(n) =

1 if n ≤ 2
n−1∑
m=1

∑
k̄∈Kn,m

Pn,k̄

R(k̄)
otherwise

Proof. Without loss of generality we can assume that α =
(1, . . . , 1)︸ ︷︷ ︸

n

. Note that β is a half iterate of α or equivalently

G(β) = (V,E) is a square root of G(α) iff all of the follow-
ing conditions are satisfied:

1. there exist m ∈ S(n−1) and m vertices v1, . . . , vm ∈
V such that (vi, 1) ∈ E for all i ∈ S(m);

2. for all i ∈ S(m) there exist ki vertices vi,1, . . . , vi,ki
such that (vi,j , vi) ∈ E for all j ∈ S(ki) or such ver-
tices do not exist (then we admit ki = 0);

3. 1 +m+
m∑
i=1

ki = n.

If n = 1 or n = 2, then α is it only half iterate, hence
ψ(1) = ψ(2) = 1.

Assume now that n ≥ 3. Note that the first of vertices
– v1 – can be chosen by n − 1 ways. There can exist other
k1 vertices satisfying the second condition which can be

chosen by
(
n− 2
k1

)
ways, where 0 ≤ k1 ≤ n − 2. The

second vertex v2 can be chosen by n − 2 − k1 ways and
there can exist k2 others vertices satisfying the second condi-

tion, which can be chosen by
(
n− 3− k1

k2

)
ways, where

0 ≤ k2 ≤ n − 3 − k1, and so forth. Note also that if we
firstly choose vertex v1 with k1 vertices satisfying the sec-
ond condition and next we choose vertex v2 with k2 vertices
satisfying the second condition, then we obtain the same con-
figuration as if we firstly chose vertex v2 with k2 vertices
satisfying the second condition and next vertex v1 with k1

vertices satisfying the second condition. Therefore, in order to
calculate the number of unique configurations we can assume
that k1 ≤ · · · ≤ km. Thus the numbers k1, . . . , km ∈ Kn,m.
It may happen that ki = · · · = kj for some 1 ≤ i < j ≤ m.
Therefore, in order to obtain the number of all unique con-
figurations we must divide Pn,k̄ by R(k̄). So for a given
sequence k̄ = (k1, . . . , km) ∈ Kn,m, we can assume that

On Half Iterates of Functions Defined on Finite Sets 195

k1 ≤ · · · ≤ km and there exist Pn,k̄

R(k̄)
possible half iterates

of α which have m vertices satisfying condition 1, and ki
vertices satisfying conditions 2 and 3 for all i ∈ S(m). Hence
for m ∈ S(n − 1) there exist

∑
k̄∈Kn,m

Pn,k̄

R(k̄)
possible square

roots of G(α) which have m vertices satisfying condition 1.
Since m ∈ S(n− 1), we obtain thesis.

Remark 18. Values of the function ψ increase very rapidly
and more quickly than ϕ. Numerical examples show that for
a given n there does not exist α ∈ V ar(n) such that the num-
ber of all half iterates of α is greater than ψ(n). The table
below presents the first 20 values of functions ϕ and ψ. It is
seen from the numerical data from Tab. 1, that 2n is lower
bound for ψ and 2n

1.4

is upper bound for ψ for n ≥ 5.

III. ALGORITHMS FINDING ALL HALF ITERATES

In this section we deal with algorithms determining all
half iterates of any function α ∈ V ar(n) for n ∈ N. In a de-
scription of the algorithms below the following notation will
be used:

1. |x| denotes the number of elements of set, list, sequence
or vector x;

2. [] denotes an empty list or vector;
3. the operator = denotes the equality operator;
4. the operator := denotes the assignment operator;
5. for a given list, sequence or vector v = (v1, . . . , vn)

let set(v) := {v1, . . . , vn};
6. ind(a,v) denotes the index of the first appearance of

a in vector or list v; in the following algorithms indices
are numbered from 1

7. S(n) := {1, . . . , n} for n ∈ N.
We will also use the following notions.

Definition 19. Let α ∈ V ar(n), n ∈ N and G(α) =
(S(n), E). A sequence p̄ = (a1, . . . , ak) is called a path
in graph G(α) iff (ai, ai+1) ∈ E for each i ∈ S(k − 1) and
|set(p̄)| = k or |set(p̄)| = k− 1 and there exists exactly one
j < k such that aj = ak.

If p̄ = (a1, . . . , ak) is a path and aj = ak for some j < k
and cycles c = (b0, . . . , bk−1−j) and (aj , aj+1, . . . , ak−1)
are equivalent, then we say that path p̄ terminates in the cycle
c.

III. 1. Auxiliary algorithms
To begin some auxiliary algorithms needed in consecu-

tive algorithms are given. Procedure det_cyc(v) determines
all cycles in G(v) and returns the list of them – L.

d e t _ c y c (v)
n := |v| ;
S := {1, . . . , n} ;
L : = [] ;
w h i l e S 6= ∅ do

a := min (S) ; b := v [a] ; U: = [a] ; c : = 1 ;

w h i l e (b /∈ U and b ∈ S) do
a := b ; add a~ a t t h e end of U; c := c

↪→ +1; b := v [a]
end do ;
i f b i n S t h e n

i := i n d (b ,U) ;
p u t w:=U[i . . c] and add b a t t h e

↪→ end of i t ;
push w i n t o L ;

end i f ;
S := S \ set(U)

end do ;
r e t u r n L ;

Let ki denote the number of executions of the internal loop in
the ith execution of the external loop. Then if the external loop
is executed r times, then

∑r
i=1 ki + r = n. So time complex-

ity of this algorithm is equal to t1+rt2+nt3+(n−r)t4+st5,
for some time t1, t2, t3, t4, t5, 1 ≤ s ≤ r ≤ n, where s is
number of cases when b ∈ S. Therefore, time complexity of
this algorithm is O(n).

Procedure pen(v) determines the set of pendants of G(v)
(vertices of G(v) whose degree is 1).
pen (v)
n := |v| ;
S := {1 . . . , n} ;
R := S \ set(v) ;
r e t u r n R ;

It is a linear time algorithm.

Definition 20. A sequence (a0, . . . , an) of vertices of G(v)
is called a possible path for square roots of G(v) begin-
ning at a k if a0 = k, (ai, ai+2) is an edge of G(v), for
all i ∈ {0, . . . , n− 2}, aj = an and (an−1, aj+1) is an edge
of G(v) for some j < n and as 6= at for all s, t < n.

Algorithm ppfsrbp(v,k) determines possible paths for
square roots of G(v) beginning at a k.
p p f s r b p (v , k)
S := ∅ ; n := |v| ;
f o r b0 from 1 t o n do

i n i t i a l i z e v e c t o r w of l e n g t h n ;
a := k ; b := b0 ; L := [] ;
w h i l e a /∈ L do

w[a] := b ; add a a t t h e end of L ;
c := a ; a := b ; b := v[c] ;

end do ;
i f b = w[a] t h e n add a~ a t t h e end of L ;

↪→ S := S ∪ {L} end i f ;
end do ;
r e t u r n S ;

Let ki denote the number of executions of the internal loop
’while’ in the ith execution of the external loop, r be the
number of cases when the condition b = w[a] is satisfied and
K :=

∑n
i=1 ki. Then 1 ≤ ki ≤ n for all i ∈ {1, . . . , n},

n ≤ K ≤ n2, 0 ≤ r ≤ n and time complexity of this al-
gorithm is equal to t1 + nt2 + (K + n)t3 + Kt4 + rt5 for
some times t1,t2,t3,t4,t5. Hence in the most optimistic case
this algorithm is with time complexity O(n) and in the most
pessimistic case is O(n2).

Definition 21. A cycle c̄ = (a0, . . . , ak−1) is isolated in
α ∈ V ar(n) iff α(k) /∈ c̄ for all k ∈ S(n) \ {a0, . . . , ak−1}.

196 P.M. Kozyra

Procedure ppfsr(v) determines the list L of possible paths
for square roots of G(v).

p p f s r (v)
n := |v| ; S := {1, . . . , n} ; L : = [] ; R:= pen (v) ; Cc :=

↪→ d e t _ c y c (v) ;
f o r w i n Cc do

i f w i s i s o l a t e d t h e n R := R ∪ {w[1]} ; end i f
↪→ ;

end do ;
f o r k i n R do add p p f s r b p (v , k) a t t h e end of L ;

↪→ end do ;
r e t u r n L ;

Let m = |Cc| and k = |R|. Then 1 ≤ m, k ≤ n. Note that
if m = n, then each cycle is isolated and if m = 1, then the
sole cycle is not isolated. Moreover, checking whether the
ith cycle wi is isolated lasts (ri + 1)t1 + t2, where t1,t2 are
some times, 2 ≤ |wi| ≤ n + 1 and 0 ≤ ri ≤ n − |wi| + 1
is the number of cases when v[j] /∈ wi. Commands from
the first line of the algorithm are with time complexity O(n).
Time complexity of further part of the algorithm is equal
to
∑m
i=1[(ri + 1)t1 + t2] + k(f(n) + t3) =

∑m
i=1 rit1 +

m(t1 + t2) + k(f(n) + t3), where f(n) denotes time com-
plexity of ppfsrbp(v, k). Therefore, in the most optimistic
case this algorithm is with time complexity O(n) and in the
most pessimistic case time complexity is O(n3).

Procedure bttssr(p,q) checks whether paths p and q cre-
ated according to the procedure ppfsr(v) can belong to the
same square root of G(v).

b t t s s r (p , q)
m := |p| ; n := |q| ; j : = 0 ;
f o r i t o m do

i f p[i] ∈ q t h e n j := i n d (p [i] , q) ; b r e a k ; end
↪→ i f

end do ;
b e l :=

(
j = 0 or (j > 0 and p[i+ 1] = q[j + 1])

)
;

r e t u r n b e l ;

Let r denote the number of cases when p[i] /∈ q and
v ∈ V ar(N). Then 0 ≤ r ≤ m, 1 ≤ j ≤ n, 2 ≤ m,n ≤
N + 1 and time complexity of this algorithm is equal to
t1 + r · n · t2 + sgn(m − r)(jt2 + t3) + t4. Therefore, in
the most optimistic case time complexity of this algorithm is
O(1) and in the most pessimistic case its time complexity is
O(N2).

Remark 22. Algorithm bttssr is based on the fact: If a path
p of length m, a path q of length n are some paths created
according to the procedure ppfsr; moreover, p and q have
common element k = p[i] = q[j] and k is their first common
element, then p[i+ 1] = q[j + 1] iff p[i . . .m] = q[j . . . n].

Proof. By procedure apfsrbp, i < m and j < n. Note
that p[i + 2] = v

[
p[i]
]

= v
[
q[i]
]

= q[i + 2]. Similarly,
p[i + 3] = v

[
p[i + 1]

]
= v

[
q[i + 1]

]
= q[i + 3], etc. By

induction, the assertion is true.

Procedure del(S,T) deletes every path p in a set S (T)
such that bttssr(p, q) is false for every path q in a set T
(S). S = ppfsrbp(v, k) and T = ppfsrbp(v, l) for some
k, l ∈ S(N), where N = |v|.
d e l (S , T)
m := |S| ; n := |T | ; So := ∅ ; To := ∅ ;
f o r u i n S do

f o r v i n T do
i f b t t s s r (u , v) t h e n So := So ∪ {u} ; b r e a k ;

↪→ end i f ;
end do ;

Tab. 1. The first 20 values of functions ϕ, ψ, ψ(n)− 2n and 2n1.4

− ψ(n)

n ϕ(n) ψ(n) ψ(n)− 2n 2n1.4

− ψ(n)

1 1 1 -1 1
2 2 1 -3 5.229065842
3 4 3 -5 22.20322980
4 10 10 -6 114.8805084
5 26 41 9 692.3050650
6 76 196 132 4798.190266
7 232 1057 929 37785.40661
8 764 6322 6066 3.346216241105

9 2620 41393 40881 3.304644469106

10 9496 293608 292584 3.614246952107

11 35696 2237921 2235873 4.351945239108

12 140152 18210094 18205998 5.740269969109

13 568504 157329097 157320905 8.2576406321010

14 2390480 1436630092 1436613708 1.2905305681012

15 10349536 13810863809 13810831041 2.1835516351013

16 46206736 139305550066 139305484530 3.9873572151014

17 211799312 1469959371233 1469959240161 7.8361635131015

18 997313824 16184586405328 16184586143184 1.6530937751017

19 4809701440 185504221191745 185504220667457 3.7345729051018

20 23758664096 2208841954063318 2208841953014742 9.0155230911019

On Half Iterates of Functions Defined on Finite Sets 197

end do ;
f o r v i n T do

f o r u i n S do
i f b t t s s r (v , u) t h e n To := To ∪ {v} ; b r e a k ;

↪→ end i f ;
end do ;

end do ;
r e t u r n [So, To]

Let S := {u1, . . . , um}, T := {v1, . . . , vn}, f(i, j) denote
time complexity of bttssr(ui, vj),

r(i) =

 min{j ∈ S(n) : bttssr(ui, vj)} if∃j∈S(n) :
bttssr(ui, vj)

n otherwise

and

s(i) =

 min{j ∈ S(m) : bttssr(uj , vi)} if ∃j∈S(m) :
bttssr(uj , vi)

m otherwise

Then 1 ≤ r(i) ≤ n for all i ∈ S(m), 1 ≤ s(i) ≤ m for
all i ∈ S(n), 1 ≤ m,n ≤ N and time complexity of this
algorithm is approximately equal to

∑m
i=1

∑r(i)
j=1 f(i, j) +∑n

i=1

∑s(i)
j=1 f(j, i), since times of adding an element to a set

is irrelevant in comparison with f(i, j). Hence in the most
optimistic case its time complexity is O(1) and in the most
pessimistic case it is with time complexity O(N4).

Algorithm del_L(L) executes del(S,T) for all distinct S,
T from the list L created in the procedure ppfsr(v) for some
v ∈ V ar(N).

del_L (L)
n := |L| ; Lo := L ;
f o r i from 1 t o n−1 do f o r j from i +1 t o n do

L1 := d e l (L_o [i] , L_o [j]) ;
L_o [i] : = L1 [1] ;
L_o [j] : = L1 [2]

end do ; end do ;
r e t u r n Lo ;

Note that 1 ≤ n = |ppfsr(v)| ≤ N , where N =
|v|. If f(i, j) denotes time complexity of del(Lo[i], Lo[j]),
then time complexity of this algorithm is equal to t1 +∑n−1
i=1

∑n
j=i+1

(
f(i, j) + t2

)
. So in the most optimistic case

its time complexity is O(1) and in the most pessimistic case –
O(N6).

Proposition 23. If α, β ∈ V ar(n) for some n ∈ N, then
β ◦ β = α iff for each set S ∈ del_L

(
ppfsr(α)

)
there exists

exactly one path p ∈ S such that β(p[i]) = p[i + 1] for all
i ∈ {1, . . . , len}, where len is the length of path p.

Proof. (=⇒) Assume that β is a half iterate of α. Fix any
set S ∈ delL

(
ppfsr(α)

)
. Then all paths in S begin with

a common element k ∈ R, where R is the set created in the
procedure ppfsr(α). Thus S = ppfsrbp(α, k). Let m ∈ N
be the smallest n ∈ N such that βn(k) = βi(k) for some
0 ≤ i < n. Put p := [k, β(k), . . . , βm(k)]. Then p ∈ S and
β(p[i]) = p[i+ 1] for all i ∈ {1, . . . , len}, where len is the

length of path p. Moreover, p is only path in S satisfying this
condition, since β is a function.

(⇐=) Assume that for each set S ∈ delL
(
ppfsr(v)

)
there exists exactly one path p ∈ S such that β(p[i]) = p[i+
1] for all i ∈ {1, . . . , len}, where len is the length of path p.
Fix any l ∈ S(n). Then there exists k ∈ R and the smallest
m ∈ N such that l = αm(k), whereR is the set created in the
procedure ppfsr(α). Let p be the only path in ppfsrbp(α, k)
such that β(p[i]) = p[i + 1] for all i ∈ {1, . . . , len}. Then
there exists a function w such that p = [k,w(k), . . . , wM (k)]
where M ∈ N is the smallest number L ∈ N such that
wi(k) = wL(k) for some i < L, α

(
wj(k)

)
= wj+2(k)

for all j ≤ M − 2 and α
(
wM−1(k)

)
= wi+1(k). There-

fore, l = αm(k) = w2m(k) = wj(k), for some j < M ,
since wM (k) = wi(k) for some i < M . Now assume that
j ≤ M − 2. Then β2(l) = β2(p[j + 1]) = p[j + 3] =
wj+2(k) = α

(
wj(k)

)
= α(l). If j = M − 1, then β2(l) =

β2(p[M]) = β(p[M + 1]) = β
(
wM (k)

)
= β

(
wi(k)

)
=

β(p[i + 1]) = p[i + 2] = wi+1(k) = α
(
wM−1(k)

)
= α(l).

So β is a half iterate of α, since l was arbitrary.

Procedure mp(L,m) matches up paths belonging to the
first m sets from the list L created in the procedure
del_L(ppfsr(v)) in such a way that every two different
paths belong to the same square root of G(v) for some
v ∈ V ar(N).

mp(L ,m)
n := |L| ; So := ∅ ;
i f m ≤ n and ∅ /∈ L t h e n

i f m = 1 t h e n
k := |L[1]| ;
f o r i from 1 t o k do So := So ∪ {[i]} end do

e l s e
S_i := mp(L,m− 1) ; nL :=L [m] ; t := |nL| ;
f o r i t o t do

f o r i n d i n S_i do
ok := t r u e
f o r j t o m−1 do

i f n o t b t t s s r (L [j] [i n d [j]] , nL [i])
↪→ t h e n
ok := f a l s e ; b r e a k ;

end i f
end do ;
i f ok t h e n

add i a t t h e end of i n d and
↪→ So := So ∪ {ind}

end i f
end do

end do
end i f

end i f ;
r e t u r n So

Under notation from the algorithm above we have 1 ≤
k, n, t ≤ N and 0 ≤ m ≤ n. Let f(L,m) denote time
complexity of mp(L,m), g(L,m) = |mp(L,m)|, h(ind, i, j)
denote time complexity of bttssr(L[j][ind[j]], nL[i]),
R(ind, i) = {j ≤ m−1: ¬bttssr(L[j][ind[j]], nL[i])} and

r(ind, i) =

{
min(R(ind, i)) if R(ind, i) 6= ∅
m otherwise

198 P.M. Kozyra

If ∅ ∈ L, then this algorithm is with time complexity O(n),
so in the most optimistic case its time complexity is O(1) and
in the most pessimistic case – O(N).

Otherwise f(L, 1) = nt1 + kt2, g(L, 1) = k,

f(L,m) = nt1 + f(L,m− 1) + t3

+

t∑
i=1

∑
ind∈S_i

min
(
m−1,r(ind,i)

)∑
j=1

h(ind, i, j) + g(L,m)t4

and

g(L,m) =

t∑
i=1

∑
ind∈S_i

1r(ind,i)=m(ind, i), where

1r(ind,i)=m(ind, i) =

{
1 if r(ind, i) = m
0 otherwise

Hence mp(L, 1) is with time complexity O(max(n, k)), that
is, in the most optimistic case its time complexity isO(1) and
in the most pessimistic case – O(N).

Note that if g(L,m − 1) = 0, then g(L,m) = 0
and f(L,m) = nt1 + f(L,m − 1) + t3. Therefore, in
the most optimistic case, that is, if g(L, 2) = 0, n =
k = t = 1 then f(L,m) = mt1 + t2 + (m −
1)t3 +

∑
ind∈mp(L,1) h(ind, 1, 1), hence time complexity of

mp(L,m) is O(m).
In the most pessimistic case if n = k = t = N and

g(L,m) = tm−1k we have f(L,m) = Nt1 + f(L,m −
1)+ t3 +Nm+2(m−1)+Nmt4 and mp(L,m) is with time
complexity O(Nm+2).

Procedure as(p,q) returns two boolean variable. The first
is true iff paths p and q have common elements and the second
is true iff they contain the same cycle.

as (p , q)
m := |p| ; n := |q| ; c := f a l s e ; s c := f a l s e ;
i f p[m] ∈ q t h e n

i := i n d (p [m] , q) ; c := t r u e ; j := i n d (p [m] , p) ;
i f p [j +1] = q [i +1] t h e n sc := t r u e end i f

e l s e i f p[m− 1] ∈ q t h e n
i := i n d (p [m−1] , q) ; c := t r u e ;
i f p [m] = q [i +1] t h e n sc := t r u e end i f end

↪→ i f
end i f
r e t u r n [c , s c] ;

The algorithm above is very efficient, its time complex-
ity is at most O(N) for α ∈ V ar(N), but its correctness
demands a justification.

Proposition 24. Let p = (p1, . . . , pm) ∈ S, q =
(q1, . . . , qn) ∈ T and S, T ∈ del_L(ppfsr(α)) for some
sequence α ∈ V ar(N). Then p and q have a common el-
ement iff pm ∈ q or pm−1 ∈ q (alternatively qn ∈ p or
qn−1 ∈ p).

Moreover, if pm ∈ q, then p and q contain equiva-
lent cycles iff pj+1 = qi+1, where i := ind(pm, q) and

j := ind(pm, p). If pm−1 ∈ q, then p and q contain equiva-
lent cycles iff pm = qi+1, where i := ind(pm−1, q).

Proof. Let i := min{k ∈ S(m) : pk ∈ q}. Then i < m,
pi = qj for some j < n and αk(pi) = αk(qj) ∈
set(p) ∩ set(q) for each k ∈ N0. In particular, α[m−i

2](pi) ∈
set(p) ∩ set(q). Hence pm−1 ∈ q or pm ∈ q, since

α[m−i
2](pi) =

{
pm if 2|m− i
pm−1 otherwise

The reverse implication is obvious.
Assume now that, pm ∈ q, i := ind(pm, q), j :=

ind(pm, p), k := ind(qn, q) and pj+1 = qi+1. Then c1 =
(pj , pj+1, . . . , pm−1) and c2 = (qk, qk+1, . . . , qn−1) are cy-
cles in G(β) for some β ∈ V ar(N) such that β ◦ β = α, if
such β exists. Note that qi+2 = α(qi) = α(pj) = pj+2,
qi+3 = α(qi+1) = α(pj+1) = pj+3 and so on. Hence
qi+l = pj+l for all l < n − i. In particular, qn−2 =
pj+n−2−i and qn−1 = pj+n−1−i. Therefore, qk = qn =
α(qn−2) = α(pj+n−2−i) = pj+n−i and qk+1 = α(qn−1) =
α(pj+n−1−i) = pj+n−i+1 and hence qk+l = pj+n−i+l for
all l ≤ i − k. In particular, pm = pj = qi = pj+n−k, thus
m − j = n − k and the cycles c1 and c2 are equivalent. If
pm−1 ∈ q, then proof is analogous to that above.

Procedure as_v(v,L) adds v to the list L iff v has the same
destination cycle as paths in L or L is an empty list. If v[1] is
equal to the first elements of paths belonging to a set S from
the list L, then S is replaced by S ∪ {v}, otherwise {v} is
pushed back into L. Procedure returns the (modified) list L
and boolean variable ch = true iff the list L was modified.
as_v (v , L)
N := |L| ; L_o :=L ; ch := f a l s e ;
i f N > 0 t h e n i f a s (v , L_o [1] [1]) [2] t h e n

ch := t r u e ; i s := f a l s e ;
f o r i from 1 t o N do S := L_o [i] ;

i f S [1] [1] = v [1] t h e n
i s := t r u e ; Lo[i] := S ∪ {v} ;

↪→ b r e a k ;
end i f

end do ;
i f n o t i s t h e n add {v} a t t h e end of L_o

↪→ end i f ; end i f
e l s e L_o : = [{ v }] ; ch := t r u e end i f ;
r e t u r n (L_o , ch) ;

Procedure as_L(L0) groups paths according to their des-
tination cycle and its beginning. Its argument is the result
of del_L(ppfsr(α)) for some α ∈ V ar(n). The procedure
returns a list of lists L1, . . . , Lk. Each list Li contains sets
Si1 , . . . , Simi

. Each of these sets contains paths beginning at
the same vertex. Paths belonging to all sets from a given list
Li contain paths containing the same cycle.
as_L (L0)
LL : = [[]] ;
f o r S i n L0 do f o r v i n S do

N := |LL| ; I s := f a l s e ;
f o r i from 1 t o N do

r := as_v (v , LL [i]) ;

On Half Iterates of Functions Defined on Finite Sets 199

i f r [2] t h e n LL [i] : = r [1] ; I s := t r u e
↪→ ; b r e a k ; end i f

end do ;
i f n o t I s t h e n add [{ v }] a t t h e end of LL

↪→ end i f
end do end do ;
r e t u r n LL ;

|L0| is equal to the number of pendants of α ∈ V ar(n),
possibly increased by the number of isolated cycles of α.
Hence 1 ≤ |L0| ≤ n. Moreover, 0 ≤ |S| ≤ n for each
S ∈ L0. N = |LL| cannot exceed the number of cycles of
odd length, possibly increased by the number of pairs of cy-
cles of the same length. Therefore, 1 ≤ N ≤ n+

(
n
2

)
, since

if α is a cycle of odd length – k, then del_L(ppfsr(α)) =
[{α(k+1)/2}] and if α contains n cycles of length 1, then
number of pairs of these cycles is equal to

(
n
2

)
. For each

i ∈ {1, . . . , N} it holds 1 ≤ |LL[i]| ≤ n− 1. Moreover, as
is algorithm with time complexity at mostO(n). Hence in the
most optimistic case this algorithm is with time complexity
O(1) and in the most pessimistic case its time complexity is
O(n5).

For a list of sets Ind procedure prop_seqs1(Ind,m) re-
turns the set of sequences
(a1, . . . , am) of length m such that

1. ai ∈ Ind[i]
2. if ai 6= aj for some i, j ∈ S(m) then there does not

exist U ∈ Ind such that {ai, aj} ⊆ U

p r o p _ s e q s 1 (Ind ,m)
S := ∅ ; n := |Ind| ;
i f m ≤ n t h e n

i f m = 1 t h e n f o r k i n Ind [1] do S := S ∪ {[k]} end
↪→ do

e l s e PS := p r o p _ s e q s 1 (Ind , m−1) ;
f o r u i n PS do f o r k i n Ind [m] do

ok := t r u e ;
f o r U i n Ind do

i f |U ∩ {k, set(u)}| > 1 t h e n ok := f a l s e ; b r e a k ; end
↪→ i f ;

end do
i f ok t h e n psuh back k i n t o u and S := S ∪ {u}

↪→ end i f
end do end do

end i f
end i f ;
r e t u r n S

The first argument of the procedure above is a list Ind of
n sets, where n is equal to the number of cycles of an
α ∈ V ar(N). For any i ∈ {1, . . . , n} the ith set contains
such indices j of list LL := as_L(del_L(ppfsr(α))) that
any path from LL[j] has a common element with the ith cy-
cle. So if α contains k cycles of the same length l as the
ith cycle, then k · l ≤ N and the ith set from Ind can
contain at most (k − 1) · l ≤ N − l elements. For exam-
ple, if the ith cycle is of the form (1, 2, 3) and there ex-
ists another cycle of the same length (4, 5, 6), then each of
three cycles (1, 4, 2, 5, 3, 6),(1, 5, 2, 6, 3, 4),(1, 6, 2, 4, 3, 5)
can belong to G(β) for a half iterate β of α. Summing
up, 1 ≤ n ≤ N and 0 ≤ |Ind[i]| ≤ N − 1. Assume

that g(m) := |prop_seqs1(Ind,m)| and f(m) denotes time
complexity of this algorithm form. Then f(m) ∈ [1+f(m−
1); f(m− 1) + g(m− 1) · (N − 1) ·N], f(1) ∈ [1;N − 1],
g(1) ∈ [0;N − 1] and g(m) ∈ [0; g(m − 1) · (N − 1) ·N].
Hence g(m) ∈ [0; (N − 1) · ((N − 1) · N)m−1] and
f(m) ∈

[
m;
∑m−1
i=0 (N − 1) · ((N − 1) ·N)i

]
. Hence in

the most optimistic case time complexity of this algorithm is
O(m) and in the most pessimistic case – O(N2m−1).

For a list L from as_L(del_L(ppfsr(α))), for any se-
quence w from the set W , for any ind ∈ Ind = mp(L,m),
where m is the number of elements in L, and for any path
p equal to L[i][ind[i]] for some i ∈ S(m), the procedure
part_sq_roots(L,W, n) creates sequences u of length n
such that u(p[j]) = p[j+1] for any j ∈ S(len), where len is
the length of path p, and u(j) = w(j) for j ∈ S(n) \ set(p).
If W = ∅ then vectors w of length n are created such that
w(p[j]) = p[j + 1] for any j ∈ S(len), where len is the
length of path p, w(j) = 0 for j ∈ S(n) \ set(p).

p a r t _ s q _ r o o t s (L ,W, n)
m := |L| ; Ind :=mp(L , m) ; Wo := ∅ ;
i f Ind 6= ∅ t h e n

i f W = ∅ t h e n
f o r i n d i n Ind do

i n i t i a l i z e v e c t o r w c o n s i s t i n g o f n z e r o s ;
f o r i t o m do

p :=L [i] [i n d [i]] ; k := |p| ;
f o r j t o k−1 do w[p [j]] : = p [j +1] end do

end do ;
Wo := Wo ∪ {w}

end do
e l s e

f o r w i n W do
f o r i n d i n Ind do

u :=w;
f o r i t o m do

p :=L [i] [i n d [i]] ; k := |p| ;
f o r j t o k−1 do u [p [j]] : = p [j +1] end do

end do ;
Wo := Wo ∪ {u}

end do
end do

end i f ; end i f ;
r e t u r n Wo ;

Assume that α ∈ V ar(N). Then 1 ≤ m ≤ N − 1,
0 ≤ Ind ≤ Nm and in the most optimistic case time com-
plexity of this algorithm is O(m). If W = ∅, then in the most
pessimistic case – O(Nm+2) and |Wo| = |Ind| ≤ Nm, oth-
erwise |Wo| = |W | · |Ind|, where W can be a set returned by
this procedure for another list L, and in the most pessimistic
case time complexity is O(|W |Nm+2).

III. 2. Procedures finding all half iterates
Now it is possible to go to the procedures finding all half

iterates. This begins with the simplest procedure sq_roots(v).
This procedure is treated as a point of reference and checks
whether other procedures return the same results. Procedure
sq_roots(v) is very primitive and takes a long time.

s q _ r o o t s (v)

200 P.M. Kozyra

n := |v| ;
v a r := Var (n) ; S := ∅ ;
f o r w i n v a r do

i f v = w ◦ w t h e n S := S ∪ {w} end i f
end do ;
r e t u r n S

Time complexity of this algorithm is exponential: n·nn =
2ln2(n)(n+1).

Procedure sq_roots1(v,opt) has two options, it is based
on Proposition 23 and returns the set of all half iterates of
v. At first the algorithm creates a list of possible paths for
square roots of G(v), according to the procedure ppfsr(v)
described in the previous subsection. Next, some of these
paths are deleted from this list and a list DP is created ac-
cording to the algorithm del_L. In the next stage from each
set from the list DP indices of paths which belong to the
same square roots of G(v) are selected according to the pro-
cedure mp(DP,m), where m = |DP |. If result Ind of this
procedure is empty, then a square root of v does not exist.
Otherwise, from paths selected from DP by indices from
Ind all half iterates of v are created. If opt = 2 then for each
half iterate w this procedure determines values of w for argu-
ments which do not occur in the previous steps. If opt = 1
the procedure can write the same value down to the memory
of w[i] many times.

s q _ r o o t s 1 (v , o p t)
n := |v| ; DP:= de l_L (p p f s r (v)) ;
m := |DP | ; Ind :=mp(DP , m) ; W := ∅ ;
i f Ind 6= ∅ t h e n

f o r i n d i n Ind do
i n i t i a l i z e v e c t o r w of l e n g t h n ;
i f o p t = 2 t h e n U := ∅ end i f ;
f o r i t o m do

p :=DP[i] [i n d [i]] ; k := |p| ;
i f o p t = 2 t h e n

Sp := {p[1], . . . , p[k − 1]}
end i f ;
i f o p t = 1 t h e n

f o r j t o k−1 do w[p [j]] : = p [j +1] end do
e l s e f o r j t o k−1 do

i f p[j] /∈ U t h e n w[p [j]] : = p [j +1]
e l s e b r e a k

end i f
end do ;
U := U ∪ Sp

end i f
end do ;
W := W ∪ {w}

end do
end i f ;
r e t u r n W

Assume that v ∈ V ar(n). Then 0 ≤ |Ind| ≤ nm, 1 ≤ m ≤
n, 2 ≤ k ≤ n and by reasoning from the previous subsection,
time complexity of this algorithm is at least O(n) and at most
O(nm+2).

Procedure sq_roots2(v) is designed for determining all
half iterate of v ∈ V ar(n) if v has many cycles. Other-
wise, its use is less profitable than the use of the previous
algorithm sq_roots1(v). Firstly, the algorithm initializes set
WW := ∅ and determines list LL of possible paths and
list Cyc of n_C cycles of v according to the procedures
as_L(del_L(ppfsr(v))) and det_cyc(v), respectively, de-
scribed in the previous subsection. In the next step, if LL

does not contain an empty sublist, then a list L_C of n_C
sets is created such that for any i ∈ {1, . . . , n_C} the ith
set contains such indices j of list LL that any path from
LL[j] has a common element with the ith cycle. In order
to check whether two paths have a common element it is
used function ’as’, described in the previous subsection.
Next, if list L_C does not contain the empty set, then the
set of sequences P_S is created according to the procedure
prop_seqs1(L_C, n_C) described in the previous subsec-
tion. We shall show that P_S 6= ∅ is a necessary condition
for existence of half iterates of v ∈ V ar(n).

Proposition 25. Let α ∈ V ar(n), c1, . . . , ck be all cycles
of α and LL := as_L(del_L(ppfsr(α))) = [L1, . . . , Lm].
Define

Indi := {j ∈ S(m) : set(Lj [1][1]) ∩ set(ci) 6= ∅}

for each i ∈ S(k) and let

PS := {(a1, . . . , ak) ∈ Nk : ∀i∈S(k) : ai ∈ Indi
∧ |Indi ∩ {a1, . . . , ak}| = 1}.

Then if there exists a half iterate of α, then PS 6= ∅.

Proof. Assume that a half iterate β of α ∈ V ar(n) ex-
ists. Fix any cycle ci = (a0, . . . , ali−1) of length li and
x ∈ ci. There are two possibilities: either β(x) ∈ ci or
β(x) ∈ cj for some j 6= i such that the cycle cj =
(b0, . . . , bli−1) has the same length as ci. If β(x) ∈ ci,
then there exists y ∈ S(n) and l ≥ li such that q :=
(y, β(y), . . . , βl(y)) is a path in G(β) terminating in the cy-
cle c′i and belonging to Lj for some j ∈ S(m), where c′i =
(a0, ar, a2r mod li , . . . , a(li−1)r mod li), and r := li+1

2 . If
β(x) /∈ ci, then there exists y ∈ S(n) and l ≥ 2li such
that q := (y, β(y), . . . , βl(y)) is a path in G(β) terminating
in the cycle ci,j and q ∈ Lj for some j ∈ S(m), where
ci,j = (a0, bs, a1, bs+1 mod li , . . . , ali−1, bs+li−1 mod li)
and s < li. Either way, for each i ∈ S(k) there exists
j ∈ S(m) such that set(Lj [1][1]) ∩ set(ci) 6= ∅, since
Lj [1][1]) and q terminate in equivalent cycles. So for each
i ∈ S(k) we can choose ai ∈ Indi.

Now suppose that for some i ∈ S(k) there exists i′ ∈
S(k) \ {i} such that ai′ ∈ Indi and ai′ 6= ai. Then for some
y, l ∈ S(n) there exists a path r := (y, β(y), . . . , βl(y)) such
that r ∈ Lai′ and set(r)∩set(ci) 6= ∅, since r and Lai′ [1][1]
terminate in equivalent cycles and set(Lai′ [1][1])∩set(ci) 6=
∅. From the first part of the proof we know that for some
z, l′ ∈ S(n) there exists a path q := (z, β(z), . . . , βl

′
(z))

such that q ∈ Lai and set(q) ∩ set(ci) 6= ∅. By reasoning
analogous with the proof of Proposition 24 it follows that
q and r must terminate in equivalent cycles and it leads to
a contradiction, since ai′ 6= ai and each cycle from Lai is not
equivalent with any cycle in Lai′ .

Remark 26. Under assumptions and notations from the
previous proposition there exist sequences α ∈ V ar(n)

On Half Iterates of Functions Defined on Finite Sets 201

for which PS 6= ∅ and there does not exist a half iter-
ate of α. Consider α = (3, 5, 3, 4, 3, 3, 4, 6, 1, 4). Then
G(α) has two cycles c1 = (3), c2 = (4), LL =
[[{[2, 7, 5, 4, 3, 4], [2, 10, 5, 4, 3, 4]},
{[7, 3, 4, 3], [7, 1, 4, 3, 4], [7, 5, 4, 3, 4], [7, 6, 4, 3, 4]},
{[8, 7, 6, 4, 3, 4], [8, 10, 6, 4, 3, 4]},
{[9, 7, 1, 4, 3, 4], [9, 10, 1, 4, 3, 4]},
{[10, 3, 4, 3], [10, 1, 4, 3, 4], [10, 5, 4, 3, 4], [10, 6, 4, 3, 4]}]],
Ind1 = Ind2 = {1}, PS = {(1, 1)} and α has no half iter-
ate. Thus P_S 6= ∅ is a necessary but insufficient condition
for existence of half iterates of α ∈ V ar(n).

If P_S is not the empty set, then for each sequence p_s ∈
P_S setW := ∅ is initialized and for each i ∈ {1, . . . , n_C}
if p_s[i] did not appear earlier, then the result of the procedure
part_sq_roots(LL[p_s[i]],W, n), described in the previous
subsection, is written down to the set W . If W 6= ∅ and the
first sequence from W does not contain 0 (i.e. for a given
p_s there exists a half iterate of v), then WW := WW ∪W .
Eventually the set WW is returned.
s q _ r o o t s 2 (v)
n := |v| ; WW := ∅ ; e s r := t r u e ;
Cyc := d e t _ c y c (v) ; LL:= as_L (de l_L (p p f s r (v))) ;
i f LL does n o t c o n t a i n an empty s u b l i s t t h e n

n_C := |Cyc| ; L_C : = [] ; n_LL := |LL| ;
f o r i t o n_C do

S := ∅ ; p := Cyc [i] ;
f o r j t o n_LL do

L:=LL [j] ; q :=L [1] [1] ;
i f a s (p , q) [1] t h e n S := S ∪ {j} end i f

end do ;
add S a t t h e end of L_C ;

end do ;
i f ∅ /∈ L_C t h e n

P_S := p r o p _ s e q s 1 (L_C , n_C) ;
i f P_S 6= ∅ t h e n

f o r p_s i n P_S do
W := ∅ ; v _ j : = [] ;
f o r i t o n_C do

j := p_s [i] ;
i f j /∈ v_j t h e n

add j a t t h e end of v _ j ;
W:= p a r t _ s q _ r o o t s (LL [j] , W, n)

end i f
end do ;
i f W 6= ∅ and 0 /∈W [1] t h e n

WW := WW ∪W
end i f

end do
end i f

end i f
end i f ;
r e t u r n WW

Note that 1 ≤ n_C ≤ n, 0 ≤ |P_S| ≤ (n − 1)n_Cnn_C−1

and 1 ≤ n_LL ≤ n +
(
n
2

)
. So by reasoning from the pre-

vious subsection, if LL contains an empty sublist, then in
the most optimistic case time complexity of this algorithm is
O(n) and in the most pessimistic case – O(n6). Time com-
plexity of determining list L_C in the most optimistic case is
O(1) and in the most pessimistic case – O(n4). If ∅ /∈ L_C
then time complexity of prop_seqs1(L_C, n_C) in the most
optimistic case is O(1) and in the most pessimistic case –
O(n2n−1). If P_S 6= ∅, then time complexity of the further

part of the algorithm is equal |P_S|n_C multiplied by time
complexity of part_sq_roots(LL[j],W, n). So in the most
optimistic case it is O(1) and in the most pessimistic case –
O(nn

2

).

III. 3. Comparison of procedures determining all half
iterates

Before dealing with comparison of procedures determin-
ing all half iterates for any function α ∈ V ar(n), some
procedures needed for testing the time of work of the pro-
cedures finding all half iterates are described. Procedure
gen_rand_var(len,n) generates n random functions belong-
ing to V ar(len). Procedure gen_rand_sq(len,n) generates n
random functions from V ar(len) for which there exists a half
iterate.

In the first column of Tabs. 2 and 3 the lengths of se-
quences of samples of 100 random sequences which have
a half iterate are seen. In the second column of these tables
numbers of procedures are presented: 1 – sq_roots(v), 2 –
sq_roots1(v, 1), 3 – sq_roots1(v, 2), 4 – sq_roots2(v). Av-
erage work times of these procedures for these samples are in
the third and sixth columns of Tab. 2 and in the third and fifth
columns of Tab. 3. Variances of the work time of these proce-
dures are in the fourth and seventh columns of Tab. 2 and in
the fourth and sixth columns of Tab. 3. Percentages of results
which are the same as results of the procedure of reference
sq_roots(v) for which this field in this column is blank we
can see in the fifth and eighth columns of Tab. 2. Data from
columns 3–5 of Tab. 2 and columns 3–4 of Tab. 3 concern vari-
ances generated by the procedure gen_rand_var(len, 100);
however, data from columns 6–8 of Tab. 2 and columns 5–
6 of Tab. 3 concern variances generated by the procedure
gen_rand_sq(len, 100).

It can be seen in Tab. 2 that in each case all procedures
return the same result as the procedure of reference – 1. Note
that the average work times of the first procedure sq_roots(v)
are much longer than other procedures even for relatively
short sequences. It is especially seen for sequences for which
there does not exist a half iterate. Therefore, for sequences of
length greater than 6 only the remaining procedures 2 – 4 are
compared. It can also be seen that the average work time of the
fourth procedure sq_roots2(v) is the shortest in seven cases,
namely for sequences generated by gen_rand_sq(len, 100)
and len ∈ {4, 5, 7, 10, 11, 12, 13}, while average time of
the second procedure sq_roots1(v,1) is the shortest in two
cases: for sequences generated by gen_rand_sq(len, 100)
and len ∈ {8, 14} and average time of the third procedure
sq_roots1(v,2) is the shortest in two cases: for sequences gen-
erated by gen_rand_sq(len, 100) and len ∈ {6, 9}. We can
also see that for len ∈ {12, 14} the average work times and
variances of work times of these procedures working for
sequences generated by gen_rand_sq(len, 100) are much
longer than in others cases. It is consistent with the fact that
some sequences may have more than 2n−1 half iterates and

202 P.M. Kozyra

Tab. 2. Mean, variance of work time in [s] of procedures 1 – sq_roots, 2 – sq_roots1 with option 1, 3 – sq_roots1 with option 2 and
3 – sq_roots2 and their compatibility with sq_roots for testing sets being the result of the procedures gen_rand_var(len, 100) and

gen_rand_sq(len, 100) and for len ∈ {4, . . . , 6}

Variances Variances with a half iterate

len Proc Mean Var Comp Mean Var Comp

4 1 0.00627 0.00006 0.00702 0.000081

2 0.00016 0.000003 100% 0.00031 0.000005 100%

3 0.00031 0.000005 100% 0.00048 0.000008 100%

4 0.00061 0.000014 100% 0 0 100%

5 1 0.1861 0.001455 0.16797 0.001576

2 0.00016 0.000003 100% 0.00079 0.000012 100%

3 0.00016 0.000003 100% 0.00158 0.000023 100%

4 0.00047 0.000007 100% 0.00076 0.000011 100%

6 1 26.32578 5.202791 25.4475 0.729389

2 0.00048 0.000008 100% 0.00405 0.000131 100%

3 0.00046 0.000007 100% 0.00189 0.000032 100%

4 0.00031 0.000005 100% 0.00219 0.00003 100%

others – only one half iterate. Therefore, the work times
may differ very much, depending on numbers of half iter-
ates quasi-randomly sequences of generated by procedure
gen_rand_sq(len, 100).

IV. ALGORITHMS FINDING
ONE HALF ITERATE IF IT EXISTS

Additional algorithms to finding one half iterate, if it
exists, were invented for the sake of the long work time of
procedures described in the previous section. Procedures from
this section are based on similar ideas, therefore part of the
auxiliary procedures used in these procedures is the same
as in the previous section. Below only additional procedures
which do not occur earlier are listed.

IV. 1. Additional auxiliary procedures
Procedure mp_s(L) works as the procedure mp(L) but it

finds one adjustment.
mp_s (L)
m := |L| ; N : = [] ; e s r := t r u e ;
i f 0 < m t h e n

f o r i t o m do add |L[i]| a t t h e end of N end do
end i f ;
I n i t i a l i z e s e q u e n c e ind_o c o n s i s t i n g o f m z e r o s ;
i f 0 /∈ N and 0 < m t h e n

I n i t i a l i z e s e q u e n c e ind = (1 . . . , 1) of l e n g t h m;
i f 1 < m t h e n

i : = 1 ; L_p : = [] ;
w h i l e i ≤ m do

q :=L [i] [i n d [i]] ;
ok := t r u e ;
f o r p i n L_p do

i f n o t b t t s s r (p , q) t h e n ok := f a l s e ; b r e a k
↪→ end i f

end do
i f ok t h e n add q a t t h e end of L_p ; i := i +1

e l s e i f i n d [i] < N[i] t h e n i n d [i] : = i n d [i
↪→]+1

e l s e w h i l e i n d [i] = N[i] and 1 < i
do i := i−1 end do ;
i f i n d [i] < N[i]

t h e n i n d [i] : = i n d [i] + 1 ; i n d [i +1 . . m
↪→] : = 1 ;

i f 1 < i t h e n L_p := L_p [1 . . i −1]
e l s e L_p : = [] end i f

e l s e e s r := f a l s e ; b r e a k ;
end i f

end i f
end i f

end do
end i f
e l s e e s r := f a l s e

end i f ;
i f e s r t h e n ind_o := i n d end i f ;
i nd_o

For a list L being some list from as_L(del_L(ppfsr(v)))
and for a vector w, the procedure part_sq_r(L,w) looks for
a path p in L[i] for any i ∈ {1, . . . ,m}, where m is the
number of elements of L, such that p[j] does not belong to
the set U of elements of paths q determined in such a way
in the previous steps for k < i or w[p[j]] = p[j + 1] for
any j ∈ {1, . . . , len}, where len is the length of path p. If
p[j] /∈ U , then the procedure writes down w[p[j]] := p[j+1],
thus changes the vector w.
p a r t _ s q _ r (L ,w)
n := |w| ; e s r := t r u e ; m := |L| ; N : = [] ;
i f m > 0 t h e n f o r i t o m do add |L[i]| a t t h e end of

↪→ N; end do end i f ;
i f 0 /∈ N and m > 0 t h e n

i f m > 1 t h e n
i n i t i a l i z e v e c t o r ind = (1, . . . , 1) of l e n g t h m; i

↪→ : = 1 ;
i n i t i a l i z e v e c t o r U of l e n g t h (m+1) ; U [1] := ∅ ;
w h i l e i ≤ m do

On Half Iterates of Functions Defined on Finite Sets 203

Tab. 3. Mean, variance of work time in [s] of procedures 2 – sq_roots1 with option 1, 3 – sq_roots1 with option 2 and 3 – sq_roots2 for
testing sets being the result of the procedures gen_rand_var(len, 100) and gen_rand_sq(len, 100) and for len ∈ {7, . . . , 14}

Variances Variances with a half iterate

len Proc Mean Var Mean Var

7 2 0.00063 0.000024 0.00376 0.000075

3 0.00046 0.000007 0.00435 0.000118

4 0.00047 0.000007 0.00283 0.000042

8 2 0.00032 0.000005 0.05097 0.188292

3 0.00061 0.000009 0.05624 0.2092

4 0.00064 0.00001 0.05138 0.197869

9 2 0.00079 0.000017 0.00843 0.000343

3 0.00062 0.000014 0.00719 0.000195

4 0.00109 0.000021 0.00751 0.000269

10 2 0.0011 0.000016 0.01298 0.001068

3 0.00079 0.000012 0.0108 0.0009

4 0.00061 0.000009 0.00732 0.000268

11 2 0.00126 0.000033 0.16857 0.482426

3 0.00092 0.000013 0.17836 0.525644

4 0.00063 0.00001 0.12151 0.298582

12 2 0.00032 0.000005 3.84986 1333.825

3 0.0011 0.000021 4.14747 1555.371

4 0.00139 0.00002 3.12142 891.8630

13 2 0.00157 0.000037 0.16018 0.29617

3 0.00108 0.000016 0.16141 0.309504

4 0.00173 0.000024 0.03701 0.009897

14 2 0.00093 0.000014 3.63565 1166.562

3 0.00122 0.000017 3.88134 1337.609

4 0.00206 0.000044 3.77739 1360.451

a_v :=L [i] [i n d [i]] ; k := |a_v| ; ok := t r u e ;
f o r j t o k−1 do

i f a_v[j] /∈ U [i] t h e n w[a_v [j]] : = a_v [j +1]
e l s e i f w[a_v[j]] 6= a_v[j + 1] t h e n ok := f a l s e

↪→ ; b r e a k end i f
end i f

end do ;
i f ok t h e n U[i + 1] : =U [i] ∪ set(a_v) ; i := i +1

e l s e i f i n d [i] < N[i] t h e n i n d [i] : = i n d [i
↪→]+1

e l s e w h i l e i n d [i] = N[i] and i > 1 do i
↪→ := i−1 end do ;

i f i n d [i] < N[i] t h e n i n d [i] : = i n d [i
↪→] + 1 ; i n d [i +1 . . m] : = 1

e l s e e s r := f a l s e ; b r e a k ;
end i f

end i f
end i f

end do
e l s e a_v :=L [1] [1] ; k := |a_v| ;

f o r j t o k−1 do w[a_v [j]] : = a_v [j +1] end do ;
end i f
e l s e e s r := f a l s e

end i f ;
r e t u r n (w, e s r) ;

Assume that v ∈ V ar(n). 0 ≤ m ≤ n and 0 ≤ N [i] ≤ n
for each i ∈ S(m). Algorithms mp_s(L) and part_sq_r(L,w)
work similarly: If the condition 0 /∈ N and m > 1 is satisfied,
then in the loop ’while i ≤ m’ if ok:=true, then i is increased
by 1, otherwise ind is changed in the same manner. Hence
their time complexity is similar. In the most optimistic case
(if m = 0) these algorithms are with time complexity O(1).
Let indo be the last state of ind after exit from loop ’while’
in these algorithms. Then the condition ok = false is satis-

fied at most
m−1∑
i=1

(indo[i]− 1) ·
m∏

j=i+1

N [j] + indo[m] times.

The number of cases when ok = true is not greater than
N [1] · . . . ·N [m− 1] ·m. Either way in the most pessimistic
case these algorithms are exponential time.

For a path p, for a subset P of a set of pendants, and
for a list L of sets of paths, the procedure fp(p,P,L) finds the
index k ∈ {1, . . . , n}, where n is the number of elements of
L, and the path q such that if p[2] ∈ P then q = p[2..|p|] and
q ∈ L[k], otherwise p = q[2..|q|] and q ∈ L[k],

204 P.M. Kozyra

fp (p , P , L)
q : = [] ; k : = 0 ; n := |L| ;
i f p[2] ∈ P t h e n

r := p[2..|p|] ;
f o r i t o n do

S :=L [i] ;
i f r ∈ S t h e n

q := r ; k := i ; b r e a k ;
end i f

end do
e l s e f o r i t o n do

S :=L [i] ;
add S [1] [1] a t t h e b e g i n n i n g o f p ;
i f p ∈ S t h e n q := p ; k := i ; b r e a k ; end i f

end do
end i f ;
r e t u r n (k , q) ;
end p roc ;

The procedure fps(p,P,L) works similarly to the procedure
fp(p,P,L), but fps(p,P,L) finds all paths q and indices k such
that p = q[2..|q|] and q ∈ L[k] or path q = p[2..|p|] and
index k such that q ∈ L[k].

f p s (p , P , L)
L_o : = [] ; n := |L| ;
i f p[2] ∈ P t h e n

r := p[2..|p|] ;
f o r i t o n do

S :=L [i] ;
i f r ∈ S t h e n

add [i , r] a t t h e end of L_o ; b r e a k ;
end i f

end do
e l s e f o r i t o n do

S :=L [i] ;
add S [1] [1] a t t h e b e g i n n i n g o f p ;
i f p ∈ S t h e n

add [i , p] a t t h e end of L_o ;
end i f

end do
end i f ;
L_o
end proc ;

If α ∈ V ar(N), then both algorithms fp(p, P, L) and
fps(p, P, L) are in the most pessimistic case with time com-
plexity O(N2) and in the most optimistic case – O(1).

The procedures part_sq_r1(P0,L,w) and part_sq_r2(P0,L,w)
work similarly to the procedure part_sq_r(L,w) but for each
path p found in a similar way as in the procedure part_sq_r
these procedure additionally find paths according to the proce-
dures fp and fps, respectively. If it is impossible to find paths
which can belong to a square root in the same way, then these
procedures activate the procedure part_sq_r(L,w). The idea
behind these algorithms is based on the fact that each path
belonging to a square rootG(β) ofG(α) for any α ∈ V ar(n)
consists of two interspersed paths from G(α). In particular,
if a path p from G(β) belongs to as_L(del_L(ppfsr(α)))
and consists of paths belonging to distinct components from
G(α) of the same type, then there exists other path q belong-
ing to as_L(del_L(ppfsr(α))) such that q = p[2..|p|] or
p = q[2..|q|].
p a r t _ s q _ r 1 (P0 , L , w)

n := |w| ; e s r := t r u e ; m := |L| ;
P := {L[1][1][1], . . . , L[m][1][1]} ∩ P0 ;
N : = [] ; w_o :=w;
i f 0 < m t h e n

f o r i t o m do add |L[i]| a t t h e end of N; end do
end i f ;
i f 0 /∈ N and 0 < m t h e n

i f 1 < m t h e n
i n i t i a l i z e s e q u e n c e ind := (1, . . . , 1) of l e n g t h m;
i : = 1 ;
i n i t i a l i z e l i s t s U and R c o n s i s t i n g o f m+ 1

↪→ empty s e t s ;
e s r 1 := t r u e ;
w h i l e i ≤ m do

i f i /∈ R[i] t h e n
n _ i := i +1 ;
w h i l e n_i ∈ R[i] and n_i ≤ m do n _ i := n _ i +1 ; end

↪→ do ;
p :=L [i] [i n d [i]] ; iip :=′ p[1] ∈ P ′ ; q : = [] ; i _ q

↪→ : = 0 ;
i f i i p t h e n r e s := fp (p , P , L) ; i _ q := r e s [1] ; q :=

↪→ r e s [2] ; end i f ;
k := |p| ;
i f |q| > k and i_q > i and i_q /∈ R[i] t h e n p := q ; k

↪→ := k +1; end i f ;
c := t r u e ;
f o r j from 1 t o (k−1) do i f p[j] /∈ U [i] t h e n

↪→ w_o [p [j]] : = p [j + 1] ;
e l s e i f w_o[p[j]] 6= p[j + 1] t h e n c := f a l s e ;

↪→ b r e a k ; end i f ;
end i f ; end do ;
i f c t h e n U [n_i] := U [i] ∪ set(p) ;

i f i i p and i_q > i t h e n R[n_i] := R[i] ∪ {i_q} ;
e l s e R[n _ i] : =R[i] ;

end i f ;
i := n _ i ;
e l s e i f i n d [i] <N[i] t h e n i n d [i] : = i n d [i] + 1 ;

e l s e p _ i := i −1;
w h i l e p_i >0 and (i n d [p _ i]=N[p _ i] o r

↪→ p_i ∈ R[i])) do
p _ i := p_i −1;

end do ;
i f p_i >0 t h e n i := p _ i ;

i n d [i] : = i n d [i] + 1 ; i n d [(i +1) . . m] : = 1 ;
e l s e e s r 1 := f a l s e ; b r e a k ;

end i f ;
end i f ;

end i f ;
e l s e n _ i := i +1 ;

w h i l e ni ∈ R[i] do n _ i := n _ i +1 ; end do ;
R[n _ i] : =R[i] ; U[n _ i] : =U[i] ; i := n _ i ;

end i f ;
end do ;

i f n o t e s r 1 t h e n (w_o , e s r) := p a r t _ s q _ r (L ,w) ; end
↪→ i f ;

e l s e p :=L [1] [1] ; k := |p| ;
f o r j from 1 t o (k−1) do w_o [p [j]] : = p [j + 1] ;

↪→ end do ;
end i f ;
e l s e e s r := f a l s e ;

end i f ;
r e t u r n (w_o , e s r) ;

p a r t _ s q _ r 2 (P0 , L ,w) ;
n := |w| ;
e s r := t r u e ; # ‘ e s r = t r u e i f f t h e r e e x i s t s s q u a r e r o o t ‘
m := |L| ;
P := {L[1][1][1], . . . , L[m][1][1]} ∩ P0 ;
N : = [] ; w_o :=w;

On Half Iterates of Functions Defined on Finite Sets 205

i f m>0 t h e n f o r i from 1 t o m do
add |L[i]| a t t h e end of N;

end do ; end i f ;
i f 0 /∈ N and m>0 t h e n

i f m>1 t h e n i : = 1 ;
i n i t i a l i z e s e q u e n c e ind := (1, . . . , 1) of l e n g t h m;
i n i t i a l i z e l i s t s U and R of m+1 empty s e t s ;
e s r 2 := t r u e ;
w h i l e i ≤ m do

i f i /∈ R[i] t h e n n _ i := i +1 ;
w h i l e n_i ∈ R[i] and n_i ≤ m do n _ i := n _ i +1 ;

↪→ end do ;
p :=L [i] [i n d [i]] ; iip :=′ p[1] ∈ P ′ ; k := |p| ; c

↪→ := t r u e ;
f o r j from 1 t o (k−1) do i f p[j] /∈ U [i] t h e n

w_o [p [j]] : = p [j + 1] ;
e l s e i f w_o[p[j]] 6= p[j + 1] t h e n c := f a l s e ;

↪→ b r e a k ; end i f ;
end i f ; end do ;

i f c t h e n U_q := ∅ ;R_q := ∅ ;
i f i i p t h e n Q:= f p s (p , P , L) ; i f |Q| > 0

↪→ t h e n
f o r u i n Q do i _ q := u [1] ; q := u [2] ;

i f i_q > i and |q| < k t h e n
↪→ R_q := R_q ∪ {i_q} ; end i f ;

i f i_q > i and |q| > k and q[1] /∈ U [i] t h e n
R_q := R_q ∪ {i_q} ;
U_q := U_q ∪ {q[1]} ; w_o [q [1]] : = q [2] ;

end i f ;
end do ;

end i f ; end i f ;
U [n_i] := U [i] ∪ set(p) ∪ U_q ;
R[n_i] := R[i] ∪R_q; i := n _ i ;
e l s e i f i n d [i] <N[i] t h e n i n d [i] : = i n d [i

↪→] + 1 ;
e l s e p _ i := i −1;

w h i l e p_i >0 and (i n d [p _ i]=N[p _ i] o r
↪→ p_i ∈ R[i])) do

p _ i := p_i −1;
end do ;
i f p_i >0 t h e n i := p _ i ;

i n d [i] : = i n d [i] + 1 ; i n d [(i +1) . . m] : = 1 ;
e l s e e s r 2 := f a l s e ; b r e a k ;

end i f ;
end i f ;

end i f ;
e l s e n _ i := i +1 ; w h i l e n_i ∈ R[i] do n _ i := n _ i

↪→ +1; end do ;
R[n _ i] : =R[i] ; U[n _ i] : =U[i] ; i := n _ i ;

end i f ;
end do ;
i f n o t e s r 2 t h e n (w_o , e s r) := p a r t _ s q _ r (L ,w) end

↪→ i f ;
e l s e p :=L [1] [1] ; k := |p| ;

f o r j from 1 t o (k−1) do w_o [p [j]] : = p [j + 1] ;
↪→ end do ;

end i f ;
e l s e e s r := f a l s e ;

end i f ;
r e t u r n (w_o , e s r) ;

Similarly to the procedure part_sq_r(L,w), also the above
two algorithms are in the most optimistic case with time
complexity O(1) and in the most pessimistic case they are
exponential time.

The procedure prop_seqs(Ind) works similarly to the
procedure prop_seqs1 from section 3.1, but the procedure

prop_seqs determines sequences of length m, where m is
the number of elements of Ind and prop_seqs uses Cartesian
product of sets from Ind.
p r o p _ s e q s (Ind)
S := ∅ ;
T := C a r t e s i a n p r o d u c t o f s e t s from Ind ;
f o r u i n T do ok := t r u e ;

f o r U i n Ind do i f |U ∩ set(u)| > 1 t h e n ok := f a l s e ;
↪→ b r e a k ; end i f end do ;

i f ok t h e n S := S ∪ {u} end i f
end do ;
r e t u r n S ;

The procedure init_prop_seq(Ind, N) determines the first
proper sequence, i.e. satisfying the properties satisfied by
sequences determined by the procedures prop_seqs and
prop_seqs1 if such sequence exists.
i n i t _ p r o p _ s e q (Ind ,N) ;
n := |N | ;
i n i t i a l i z e s e q u e n c e ind := (1, . . . , 1) of l e n g t h n ;
i : = 2 ; eps := t r u e ; # ‘ eps = t r u e i f f t h e r e e x i s t s

↪→ p r o p e r sequence ‘ ;
w h i l e i ≤ n do c o r := t r u e ;

f o r U i n Ind do i f
↪→ |{Ind[1][ind[1]], . . . , Ind[i][ind[i]]} ∩ U | > 1 t h e n

c o r := f a l s e ; b r e a k ;
end i f ; end do ;
i f c o r t h e n i := i +1 ;

e l s e i f i n d [i] <N[i] t h e n i n d [i] : = i n d [i] + 1 ;
e l s e w h i l e i >0 and i n d [i]=N[i] do i := i −1;

↪→ end do ;
i f i >0 t h e n i n d [i] : = i n d [i] + 1 ; i n d [(i +1) . . n

↪→] : = 1 ;
e l s e eps := f a l s e ; b r e a k ;

end i f ;
end i f ;

end i f ;
end do ;
r e t u r n [eps , i n d] ;

The procedure next_prop_seq(Ind, N,ind) determines the
next (after ind) sequence satisfying the properties satisfied
by sequences determined by the procedures prop_seqs and
prop_seqs1 if such a sequence exists.
n e x t _ p r o p _ s e q := p roc (Ind , N, i n d)
n := |Ind| ; enps := t r u e ; i := n ; ind_o := i n d ;
i f ind_o [i] < N[i] t h e n ind_o [i] : = ind_o [i]+1

e l s e w h i l e i > 0 and ind_o [i] = N[i] do i := i−1
↪→ end do ;

i f i > 0 t h e n ind_o [i] : = ind_o [i] + 1 ; ind_o [i +1 . .
↪→ n] : = 1

e l s e enps := f a l s e
end i f ;

end i f ;
i f enps t h e n w h i l e i ≤ n do c o r := t r u e ;

f o r U i n Ind do i f
↪→ |{Ind[1][ind[1]], . . . , Ind[i][ind[i]]} ∩ U | > 1 t h e n

c o r := f a l s e ; b r e a k ;
end i f end do ;
i f c o r t h e n i := i +1

e l s e i f ind_o [i] < N[i] t h e n ind_o [i] : = ind_o [i
↪→]+1

e l s e w h i l e i > 0 and ind_o [i] = N[i] do i := i
↪→ −1 end do ;

i f i > 0 t h e n ind_o [i] : = ind_o [i] + 1 ; ind_o [
↪→ i +1 . . n] : = 1

206 P.M. Kozyra

e l s e enps := f a l s e ; b r e a k ;
end i f ;

end i f ;
end i f

end do ; end i f ;
r e t u r n [enps , ind_o]

The above algorithms prop_seqs(Ind), init_prop_seq(Ind, N)
and next_prop_seq(Ind, N,ind) are in the most optimistic case
with time complexity O(1) and in the most pessimistic case
they are exponential time.

IV. 2. Procedures finding one half iterate
Each of the following procedures returns one half iterate

if it exists and a zero-vector otherwise.
The procedure sq_root(v) invokes the procedure

part_sq_r(L,w) for L = del_L(ppfsr(v)) and zero-vector
w = [0, . . . , 0] of length the same as the length of vector v.

s q _ r o o t (v)
n := |v| ;
i n i t i a l i z e s e q u e n c e w of l e n g t h n z e r o s ;
L := del_L (p p f s r (v)) ;
w_o := p a r t _ s q _ r (L , w) [1] ;
r e t u r n w_o ;

The procedure sq_root1(v) has the most compact form.
Apart from the procedures del_L(ppfsr(v)), it uses the proce-
dure mp_s on the result of the former. If the result of mp_s
does not contain 0, then a half iterate exists, otherwise it does
not exist.

s q _ r o o t 1 := p roc (v)
n := |v| ;
i n i t i a l i z e s e q u e n c e w of n z e r o s ;
L := del_L (p p f s r (v)) ;
i n d := mp_s (L) ; m := |ind| ;
i f 0 /∈ ind t h e n

f o r i t o m do
p :=L [i] [i n d [i]] ; k := |p| ;
f o r j t o k−1 do w[p [j]] : = p [j +1] end do

end do
end i f ;
r e t u r n w;

The procedure sq_root2(v,opt) firstly determines
as_L(del_L(ppfsr(v))) and writes down its result to the vari-
able LL, w is initiated as zero-vector of length of vector
v. If LL does not contain an empty list then the procedure
creates list L_C in the following way: for any cycle p in
v the procedure creates a set of indices j of lists from the
list LL such that cycles of p and q := LL[j][1][1] have
a common element, i.e. as(p, q)[1] is true; next, this set is
added to the list L_C. If L_C contains the empty set then
the half iterate of v does not exist. Otherwise, the procedure
creates the set P_S in the following way: if opt = 1, then the
procedure P_S := prop_seqs(L_C) is used and if opt = 2,
then P_S := prop_seqs1(L_C, n_C), where n_C is the
number of cycles in v. In the next steps for each vector p_s
in P_S the procedure computes part_sq_r(LL[j], w), for
each unique element j of vector p_s. If w ◦ w = v the loop
is interrupted.

s q _ r o o t 2 (v , o p t)
n := |v| ;
i n i t i a l i z e v e c t o r w_o of n z e r o s ;
e s r := t r u e ; Cyc := d e t _ c y c (v) ;

LL:= as_L (de l_L (p p f s r (v))) ;
i f [] /∈ LL t h e n

n_C := |Cyc| ; L_C : = [] ;
n_LL := |LL| ;
f o r i t o n_C do

S := ∅ ; p := Cyc [i] ;
f o r j t o n_LL do

L:=LL [j] ; q :=L [1] [1] ;
i f a s (p , q) [1] t h e n

S := S ∪ {j} ;
end i f

end do ;
add S a t t h e end of L_C ;

end do ;
i f ∅ ∈ L_C t h e n

e s r := f a l s e
e l s e i f o p t = 1 t h e n

P_S := p r o p _ s e q s (L_C)
e l s e P_S := p r o p _ s e q s 1 (L_C , n_C)

end i f ;
i f P_S 6= ∅ t h e n

f o r p_s i n P_S do
i n i t i a l i z e s e q u e n c e w of n z e r o s ;
v _ j : = [] ;
f o r i t o n_C do j := p_s [i] ;

i f j /∈ v_j t h e n
add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r (LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f
end i f

end do ;
i f w ◦ w = v t h e n

w_o :=w; b r e a k
end i f

end do
e l s e e s r := f a l s e

end i f
end i f

end i f ;
r e t u r n w_o ;
end p roc

The procedure sq_root3(v,opt) works similarly to the pro-
cedure sq_root2(v,opt), but sq_root3 determines sequences
by the procedures init_prop_seq(L_C,N) and
next_prop_seq(L_C,N, ind) which have the same proper-
ties as sequences in the set P_S, instead of creating the set
P_S of all such sequences. Moreover, the procedure sq_root2
uses only the function part_sq_r, and the procedure sq_root3
uses this procedure only if opt = 1, otherwise if opt = 2 it
uses the procedure part_sq_r1, otherwise it uses the proce-
dure part_sq_r2.

s q _ r o o t 3 := p roc (v , o p t)
n := |v| ;
i n i t i a l i z e s e q u e n c e w_o c o n s i s t i n g o f n z e r o s
e s r := t r u e ; Cyc := d e t _ c y c (v) ;
P0 := pen (v) ; LL : = [] ;
LL:= as_L (de l_L (p p f s r (v))) ;
i f [] /∈ LL t h e n

n_C := |Cyc| ; L_C : = [] ;
n_LL := |LL| ;
f o r i t o n_C do

S := ∅ ; p := Cyc [i] ;
f o r j t o n_LL do

L:=LL [j] ; q :=L [1] [1] ;

On Half Iterates of Functions Defined on Finite Sets 207

Tab. 4. Means and variances of work times in [s] of tested procedures for various testing sets being the result of the procedure
gen_rand_sq(len, 100) for len ∈ {10, 20, 30, 40, 50, 60}

Proc len Mean Var len Mean Var

1 10 0.00203 0.000028 20 0.01076 0.000141
2 0.00248 0.000033 0.01284 0.000169
3 0.11591 1.212388 0.02311 0.005965
4 0.00375 0.000094 0.01344 0.000253
5 0.0036 0.000044 0.01233 0.00009
6 0.0033 0.000056 0.0136 0.000189
7 0.00377 0.000075 0.01314 0.000152

1 30 0.03972 0.00786 40 0.06077 0.004162
2 0.09151 0.206574 0.06907 0.006832
3 0.036 0.006812 0.06028 0.003625
4 0.03512 0.005899 0.05518 0.003687
5 0.0358 0.005883 0.05545 0.003013
6 0.03173 0.001543 0.06066 0.003128
7 0.02981 0.000772 0.06172 0.003799

1 50 0.13374 0.057481 60 2.64657 215.3860
2 0.42329 2.435236 18.81421 11061.65
3 0.10285 0.017674 4.85367 930.0744
4 0.09783 0.016412 0.91503 27.68707
5 0.09591 0.015526 0.89928 27.37115
6 0.07823 0.002296 0.72904 25.10524
7 0.08065 0.002874 0.4708 2.532989

i f a s (p , q) [1] t h e n S := S ∪ {j} end i f
end do ;
add S a t t h e end of L_C ;

end do ;
N : = [] ;
f o r S i n L_C do add |S| a t t h e end of N; end do ;
i f ∅ ∈ L_C t h e n e s r := f a l s e

e l s e i n i t i a l i z e s e q u e n c e ind := (1, . . . , 1) of
↪→ l e n g t h n_C ;

i p s := i n i t _ p r o p _ s e q (L_C , N) ;
i n i t i a l i z e s e q u e n c e w of n z e r o s ; v _ j : = [] ;
i f i p s [1] t h e n

i n d := i p s [2] ;
i f o p t = 1 t h e n

f o r i t o n_C do
j :=L_C [i] [i n d [i]] ;
i f j /∈ v_j t h e n

add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r (LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f
end i f

end do
e l s e i f o p t = 2 t h e n

f o r i t o n_C do j :=L_C [i] [i n d [i]] ;
i f j /∈ v_j t h e n

add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r 1 (P0 , LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f
end i f

end do
e l s e f o r i t o n_C do j :=L_C [i] [i n d [i]] ;

i f j /∈ v_j t h e n
add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r 2 (P0 , LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f
end i f

end do
end i f

end i f ;
i f w ◦ w = v t h e n

w_o :=w
e l s e w h i l e e s r and w ◦ w 6= v do

i n i t i a l i z e s e q u e n c e w of n z e r o s ; v _ j
↪→ : = [] ;

nps := n e x t _ p r o p _ s e q (L_C , N, i n d) ;
i f nps [1] t h e n

i n d := nps [2] ;
i f o p t = 1 t h e n

f o r i t o n_C do
j :=L_C [i] [i n d [i]] ;
i f j /∈ v_j t h e n

add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r (LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f

208 P.M. Kozyra

end i f
end do
e l s e i f o p t = 2 t h e n

f o r i t o n_C do
j :=L_C [i] [i n d [i]] ;
i f j /∈ v_j t h e n

add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r 1 (P0 , LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f
end i f

end do
e l s e f o r i t o n_C do

j :=L_C [i] [i n d [i]] ;
i f j /∈ v_j t h e n

add j a t t h e end of v _ j ;
r e s := p a r t _ s q _ r 2 (P0 , LL [j] , w) ;
i f r e s [2] t h e n

w:= r e s [1]
e l s e b r e a k

end i f
end i f

end do
end i f

end i f ;
i f w ◦ w = v t h e n w_o :=w; b r e a k end i f
e l s e e s r := f a l s e

end i f
end do

end i f
e l s e e s r := f a l s e

end i f

end i f
end i f ;
r e t u r n w_o ;
end p roc

It follows from the previous sections that all of the above
algorithms finding a half iterate of α ∈ V ar(n): sq_root,
sq_root1, sq_root2 and sq_root3 are in the most optimistic
case with time complexity O(n) and in the most pessimisitc
case they are exponential time.

IV. 3. Comparison of procedures determining one half
iterate

In a similar way the means and variances of work times
of procedures finding one half iterate, if it exists, were com-
pared. All of these procedures returned the same proportion
of sequences for which there exist half iterates.

Tab. 4 contains:
• the number of the procedure in the first column;

1 corresponds to the procedure sq_root(v), 2 –
sq_root1(v), 3 – sq_root2(v, 1), 4 – sq_root2(v, 2),
5 – sq_root3(v, 1), 6 – sq_root3(v, 2), 7 –
sq_root3(v, 3);

• lengths of sequences in columns 2 and 5;
• averages work times of examined procedures in

columns 3 and 6;
• variances of work times of examined procedures in

columns 4 and 7.

Tab. 5. Means and variances of work time in [s] of tested procedures for various testing sets being the result of the procedure
gen_rand_var(len, 100) for len ∈ {10, 20, 30, 40, 50, 60}

Proc len Mean Var len Mean Var

1 10 0.00032 0.000005 20 0.00435 0.000098
2 0.0022 0.00006 0.00362 0.000094
3 0.00062 0.000009 0.00268 0.000086
4 0.00078 0.000012 0.00297 0.000038
5 0.00031 0.000005 0.00251 0.000033
6 0.00108 0.000016 0.00328 0.000041
7 0.00031 0.000005 0.00277 0.000035

1 30 0.00951 0.000139 40 0.01905 0.000204
2 0.00981 0.000186 0.01749 0.000074
3 0.00795 0.000166 0.01874 0.000183
4 0.00986 0.000107 0.01672 0.000101
5 0.0074 0.000077 0.01833 0.000208
6 0.00982 0.000086 0.02076 0.000328
7 0.00738 0.000107 0.01719 0.000077

1 50 0.03359 0.000306 60 0.0544 0.000421
2 0.03142 0.000349 0.05013 0.000526
3 0.03151 0.00033 0.0486 0.000443
4 0.0344 0.000413 0.05364 0.00066
5 0.03302 0.000428 0.06288 0.00111
6 0.03166 0.000299 0.0582 0.000865
7 0.03283 0.000355 0.04511 0.000193

On Half Iterates of Functions Defined on Finite Sets 209

Investigated procedures were used for sequences for
which there exist half iterates generated by the procedure
gen_rand_sq(len, 100) for len ∈ {10, 20, 30, 40, 50, 60}.
It can be seen that in each case sq_root(v) is faster
than sq_root1(v) and sq_root2(v, 1) is slower than
sq_root2(v, 2).

Tab. 5 contains the same columns as the previous
table, but it concerns data generated by the procedure
gen_rand_var(len, 100) for len ∈ {10, 20, 30, 40, 50, 60}.
It is seen that both means and variances of work times of
examined procedures are much shorter than in the previous ta-
ble, since sequences generated by gen_rand_var(len, 100)
do not have to have a half iterate and examined algorithms
are able to verify this quickly.

Acknowledgements
The author is grateful to Charlotte Stępień for checking

excerpts from the text. All algorithms were implemented and
performed with help of Maple software version 18.

References

[1] J. Gross, J. Yellen, Handbook of Graph Theory, CRC Press,
2003.

[2] M.N.S. Swamy, K. Thulasiraman, Graphs: Theory and Algo-
rithms. Wiley, 1992.

[3] Kneser, H. Reelle analytische Lösungen der Gleichung
Φ(Φ(x)) = ex und verwandter Funktionalgleichungen. Jour-
nal fur die reine und angewandte Mathematik. 187, 56–67
(1950).

[4] Gray J., Parshall, K. Episodes in the History of Modern Al-
gebra (1800–1950), American Mathematical Society, ISBN
978-0-8218-4343-7, 2007.

[5] E. Schröder, Über iterirte Functionen. Mathematische Annalen,
3 (2), 296–322 (1870).

[6] G. Szekeres, Regular iteration of real and complex functions
Acta Mathematica 100, (3–4) 361–376 (1958).

[7] T. Curtright, C. Zachos, X. Jin, Approximate solutions of func-
tional equations, Journal of Physics A 44 (40): 405205 (2011).

[8] M.C. Zdun, On iterative roots of homeomorphisms of the circle,
Bull. Pol. Acad. Sci. Math 48 (2), 203-213.

Paweł Marcin Kozyra is an Assistant at the Department of Mathematics, Faculty of Mathematics, Physics
and Chemistry, University of Silesia in Katowice. He received his master’s degree in Mathematics from this
department, University of Silesia in Katowice, in 2005, his master’s degree in Computer Science from the
Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, in 2011,
and obtained his PhD in Mathematics from the Institute of Mathematics of the Polish Academy of Sciences in
2017. His research fields include bounds on the moments of linear combinations of order statistics and kth
records, discrete mathematics and mathematical theory of music.

CMST 24(3) 187–209 (2018) DOI:10.12921/cmst.2018.0000027

