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Abstract: This paper proposes scenarios of generating contingency tables (CTs) with the probability flow parameter (PFP).
It also defines measures of untruthfulness of H0 that involve PFP for all proposed scenarios. This paper is an attempt to
replace a nonparametric statistical inference method by the parametric one. The paper applies the maximum likelihood
method to estimate PFP and presents instructions to generate CTs by means of the bar method. The Monte Carlo method is
used to carry out computer simulations.
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I. INTRODUCTION

What we are focusing on is a particular phenomenon
which - if occurs - causes the creation of one new object that
belongs to a set called the general population. Each member
of the general population has two features, namely X and Y,
with two levels denoted by X1, X2 and Y1, Y2, respectively.
The 2×2 contingency table (CT) is a perfect mathematical ex-
pression of the effect of several consecutive phenomena. Each
object randomly falls into one of four cells of CT. It takes
place because there are some random factors that are inherent
to the phenomenon. Let pij (i, j = 1, 2) be probabilities of
falling into a CTij cell. These probabilities are determined
by the random factors. Thus, CT expressed in terms of exact
probabilities of falling into cells takes the form

CTi =
[
p11 p12
p21 p22

]
. (1)

Unfortunately, exact values of probabilities pij(i, j =
1, 2) are and will remain unknown to the investigator. The
only way for investigators to proceed is to draw a random
sample of n items from the general population and form an

empirical CT. This CT includes either counts n∗ij that are
numbers of sample objects which have fallen into particular
CT cells

CTc =
[
n∗11 n∗12
n∗21 n∗22

]
(2)

or the empirical CT composed of probabilities p∗ij

CTe =
[
p∗11 p∗12
p∗21 p∗22

]
=

[
n∗11/n n∗12/n
n∗21/n n∗22/n

]
. (3)

The information about categorical data can be found e.g.
in [1–3]. Statistical reasoning based on CTs is one of the most
common tasks performed by statisticians. CTs can be applied
in a wide variety of areas such as social sciences [4], genetics
[5, 6], demography [7] and psychology [8]. Basic methods of
testing for dependency in CTs in details is described e.g. in
[9–12]. Other examples of applications may be found e.g. in
[13–16].

One can recognize two general cases in which CTs may
be useful. This distinction between the cases is made with
respect to the tasks which CTs are used for.
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Case A. Dependency is unwanted. The general popula-
tion is sought to be in its normal state or be under control
when levels of feature X are independent of levels of feature
Y. Revealing dependency means revealing abnormality of
members of the general population. If so, a large scale and
very costly actions have to be obligatorily initiated. That is
why a decision-maker tries to avoid a false alarm. This case is
typical, for instance, in security guarding. A classic statistical
way of reasoning is tailored to case A. Please notice that the
main hypothesis, commonly denoted by H0, states that: X and
Y are independent. Moreover, H0 is guarded against rejection
by setting the significance level at 5% or less.

Case B. Dependency is wanted. The state of the general
population is assessed upon feature X. Unfortunately, levels of
feature X are difficult to be determined, e.g. determination is
risky, costly or time consuming. In contrast, levels of another
feature Y are easy to be determined. Assessors are concerned
with finding out whether there is a tie between X and Y. In
other words, whether X and Y are dependent or independent.
Assessors use Y1, Y2 levels as sensible indicators of X1, X2

levels. Case B is typical in diagnostics, both medical and
technical. In case B another way of statistical reasoning is
needed, different from the classic way.

Conservativeness of the classic statistical way of reason-
ing often obstructs progress in numerous situations where
rejecting H0 means making a step ahead. This is a strong
motivation for making a turnaround in statistical reasoning.
In this new statistical reasoning there is no null hypothesis.
In contrast to the classic way, there is a set of competing hy-
potheses. Moreover, the testing procedure warrants equality
of all the alternatives when the test begins. The former null
hypothesis is no longer the main one, but exists among the
other ones of equal importance. Particular hypotheses relate
to scenarios under which particular CTs are created. Details
are presented in Section 7. There are two reasons for which
this likelihood-based reasoning is developed and put forward:

1. Undoubtedly, CT-based classic statistical reasoning is the
nonparametric reasoning. It is commonly known that para-
metric statistical reasoning, if applicable, is much more
sensitive to untruthfulness of H0 than nonparametric rea-
soning. In this paper we propose a parametric reasoning.
Particular scenarios are parameterized with the probability
flow parameter (PFP).

2. Let us again retrace a way of the classic thinking. When
a value of the test statistics does not exceed the appro-
priate critical value, it is said that “there is no reason to
reject H0”. In case A, the decision maker is comfortable
about independence. When test statistics exceeds the ap-
propriately determined critical value, it means nothing but
“there is a reason to reject H0”. In case B, the decision
maker is comfortable about dependence because there is
no word said what the reason of rejecting H0 is. The most
likely scenario is selected whereas reasons to reject H0

or not are embedded in scenarios. One can say that the

method put forward in this paper offers a transition from
“unfathomable” to “fathomable” reasons.
This paper is organized as follows. CT 2×2 coming into

being are presented in Section 2. Section 3 is devoted to
measures of untruthfulness of H0 including the measure that
is defined by means of an absolute value. These measures
are introduced under the scenarios in question. Statistic tests
including the power divergence tests and the |χ| test under
scenarios are defined in Section 4. In Section 5 the maximum
likelihood method is applied to estimate the PFP. Section 6 is
devoted to instructions on how to generate 2×2 CTs. Section
7 presents numerical examples and Section 8 presents closing
remarks.

Monte Carlo simulation is performed in Visual Basic for
Applications embedded in Microsoft Excel 2016.

II. A MODEL HOW 2X2 CTS COME INTO BEING

One can treat CTs as a mathematical expression of a cer-
tain phenomenon we deal with. This formulation suggests
that there is an internal mechanism in this phenomenon that
determines probabilities of particular XY combinations and
ascribes these probabilities to the cells of the table. Below is
a “progenitor” of all the 2×2 CTs [35]:

Tp =

[
0.25 0.25
0.25 0.25

]
.

A variety of tables may be generated when portions of proba-
bility a flow from “maternal” cells of Tp to other cells. Obvi-
ously, the total probability always equals 1. In this paper four
scenarios that seem fundamental are developed (Tab. 1).

In all the above scenarios the PFP satisfies the inequalities
0 ≤ a ≤ 0.25. The scenarios are selected in such a way that
they correspond to four levels of dependence: none (sce-
nario 0), weak (scenario A), medium (scenario B), strong
(scenario C) expressed by means of an appropriate measure
(see Section 3).

Obviously, scenarios do not cover all the cases. They may
be locally mutated by reversing rows or columns to better fit
the analyzed data. These are simple equal-portion scenarios.
Surely, real scenarios can be more or less similar to these
above. This is typical in relations between theory and real
life. With the current availability of computers, the statistician
can afford situations that interest him/her and instantly repeat
such simulations. All examples presented herein have a very
precise algorithmic description in a form of a step list.

The research can be generalized by introducing several
PFPs. This, however, causes a significant deterioration of?
the properties of the parameter estimators. The Weibull distri-
bution has a simple analytical form. For its generalization, the
Generalized Gamma Distribution (URG) can be considered.
Due to big problems with estimating URG parameters the
present author does not know any practical applications of
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Tab. 1. The contents of 2×2 CTs resulting from scenarios in question. (Source: author’s own material)

Scenario 0

Y1 Y2

X1 0.25− a 0.25− a

X2 0.25 + a 0.25 + a

Scenario B

Y1 Y2

X1 0.25− a 0.25

X2 0.25 + a 0.25

Scenario A

Y1 Y2

X1 0.25− a 0.25

X2 0.25 0.25 + a

Scenario C

Y1 Y2

X1 0.25− a 0.25 + a

X2 0.25 + a 0.25− a

URG to describe the reliability results of technical objects.
You can always add more parameters to the model; however,
this might worsen their estimation.

III. MEASURES OF UNTRUTHFULNESS OF H0

As it has already been stated in Section 1, some classes of fea-
ture X are ascribed to rows and some classes of feature Y are
ascribed to columns. Features X, Y are independent, which
means that H0 is true, if pij = pi•×p•j (i, j = 1, 2) for each
pair of i, j. When this equality is not fulfilled, H0 is not true
and an appropriate measure of untruthfulness of H0 (MoUH)
is needed. There are many different measures in literature.
Tab. 2 presents a list of MoUHs with relevant calculation
formulas tailored for 2×2 CTs .These are valid provided CTs
come into being under scenarios A-C. These measures are
i.e.: the Pearson’s ϕ, the Tschuprow’s T, the Cramer’s V, the
corrected contingency c, the Goodman and Kruskal’s τ , the
Yule’s Q and the odds ratio OR. The Pearson χ2 statistics for
2×2 CTs is defined as

χ2 =
n (p∗11p

∗
22 − p∗12 × p∗21)

(p∗11 + p∗12) (p
∗
21 + p∗22) (p

∗
11 + p∗21) (p

∗
12 + p∗22)

.

(4)
Formulas in Tab. 2 allow to calculate the MoUHs val-

ues for a given value of the PFP a under scenarios A-C (see
Tab. 1). Therefore, these measures are functions of this pa-
rameter.

In this paper we use a MoUH which is given by [35]:

MoU =
1

n

2∑
i=1

2∑
j=1

∣∣∣∣n∗ij − n∗i•× × n∗•j
n

∣∣∣∣ =
=

2∑
i=1

2∑
j=1

∣∣p∗ij − p∗i• × p∗•j∣∣ .
(5)

The |Q| and OR measures under scenarios A-C have values
in interval 〈0, 1〉. The MoU also has values in interval 〈0, 1〉
and is used in the Monte Carlo simulation. This measure,
doubtlessly, springs from the essence of H0 and has a very
simple form. The MoU formulas, the maximal MoU values
(the minimal MoU values are equal to zero) and levels of
dependency under scenarios A-C are presented in Tab. 3. Ap-
propriate graphs of these formulas are shown in Fig. 1. The
MoU, just like the measures presented in Tab. 2, is a function
of the PFP a. Thanks to this the MoU values are very easy to
calculate.

Fig. 1. The MoU under scenarios. (Source: author’s own material)

IV. SELECTED TESTS OF INDEPENDENCE
UNDER SCENARIOS

Statistical science has been enriched with many other statis-
tics intended for research on/into test independency. Cressie
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Tab. 2. MoUHs for 2×2 CTs under scenarios A-C, where χ2 is given by (4). (Source: author’s own material)

MoUH General formula Formula under scenario

A B C

ϕ, T , V

√
χ2

n

4a2

4a2 − 1

√
4a2

1− 4a2
4a

c

√
2χ2

χ2 + n

√
32a4

32a4 − 8a2 + 1
2a
√
2

√
32a2

16a2 + 1

τ
χ2

n

(
4a2

4a2 − 1

)2
4a2

1− 4a2
16a2

Q
p∗11p

∗
22 − p∗12p∗21

p∗11p
∗
22 − p∗12p∗21

8a2

8a2 − 1
−4a −8a

16a2 + 1

OR
p∗11p

∗
22

p∗12p
∗
21

1− 16a2
1− 4a

1 + 4a

(
4a− 1

4a+ 1

)2

and Read [18] propose the power divergence statistics (PDS).
The PDS for 2×2 CTs is given by

P 2 =
2

λ (λ+ 1)

2∑
i=1

2∑
j=1

n∗ij

(n∗ij
e∗ij

)λ
− 1

 =

=
2n

λ (λ+ 1)

2∑
i=1

2∑
j=1

p∗ij

( p∗ij
p∗i• × p∗•j

)λ
− 1

 ,
−∞ < λ <∞,

(6)

where eij = n∗i •n
∗
• j/n = n× p∗i •p∗•j are expected counts.

Equation (6) always takes positive values and is defined as
a limit of P 2 at−1 and 0. P 2 contains a very rich class of test
statistics, for example: the χ2 statistics (λ = 1), the G2 statis-
tics (the limit as λ goes to 0), the Freeman-Tukey statistics
(λ = −0.5), the modified G2 statistics (the limit as λ goes

to −1), the Neyman modified χ2 statistics (λ = −2) and
the Cressie-Read statistics (λ = 2/3). If H0 is true, statistics
(6), for large n (i.e. asymptotically), follows the chi-square
distribution with 1 degree of freedom.

The following PDS are selected to Monte Carlo study:
the χ2 statistics (7) [19], the Freeman-Tukey FT statistics (8)
[20], the Cressie-Read CR statistics (9) [18]:

χ2 =

2∑
i=1

2∑
j=1

(
n∗ij − eij

)2
eij

= n×
2∑
i=1

2∑
j=1

(
p∗ij − p∗i• × p∗•j

)2
p∗i• × p∗•j

,

(7)

FT =4

2∑
i=1

2∑
j=1

(√
n∗ij −

√
e∗ij

)2
=

=4n

2∑
i=1

2∑
j=1

(√
p∗ij −

√
p∗i•p

∗
•j

)2
,

(8)

Tab. 3. The MoU under scenarios. (Source: author’s own material)

Scenario MoU MoUmax Dependency

A 4a2 0.25 Weak

B 2a 0.5 Medium

C 4a 1 Strong
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CR =
9

5

2∑
i=1

2∑
j=1

n∗ij

(n∗ij
e∗ij

)2/3

− 1

 =

=
9n

5

2∑
i=1

2∑
j=1

p∗ij

( p∗ij
p∗i•p

∗
•j

)2/3

− 1

 .
(9)

The G2 statistics [21], the modified G2statistics [22] and
the Neyman modified χ2 statistics [23] have not been subjects
in the Monte Carlo study because they are applicable only
in a case where all n∗ij (i, j = 1, 2) counts are not equal to
zero.

The square used in the numerator of χ2 statistics (7)
makes that large differences between expected and theoretical
counts even bigger and the small differences even smaller.
Another aim of the use of the square is to avoid that the dif-
ferences are mutually exclusive. For this purpose one can
use their absolute value instead of squared deviations. The
|χ| statistics is selected to Monte Carlo study, too. It is an
authorial modification of χ2 statistics and it has the form [24]

|χ| =
2∑
i=1

2∑
j=1

∣∣n∗ij − e∗ij∣∣
e∗ij

=

2∑
i=1

2∑
j=1

∣∣p∗ij − p∗i•p∗•j∣∣
p∗i•p

∗
•j

. (10)

V. APPLYING THE MAXIMUM LIKELIHOOD
METHOD TO ESTIMATE THE PROBABILITY

FLOW PARAMETER

This section is a simple attempt to replace a nonpara-
metric statistical inference method by the parametric one.
A maximum likelihood method is applied to estimate the
PFP.

Let us remember that in the cells of CT there are values
nij (i, j = 1, 2), which are components of the multinomial
distribution. Thus the multinomial distribution is taken as
groundwork for the likelihood functions. A family of these
likelihood functions is given below. Every function from this
family has an index. Indices assign functions to particular
scenarios presented in Section 2. Let n∗ij be the value of
(i, j) cell and a is the PFP. Then likelihood functions are
expressed as

L0 (a) =D × (0.25− a)n
∗
11+n

∗
12

× (0.25 + a)
n∗
21+n

∗
22 ,

(11)

LA (a) =D × (0.25− a)n
∗
11

× (0.25)
n∗
12+n

∗
21 × (0.25 + a)

n∗
22 ,

(12)

LB (a) =D × (0.25− a)n
∗
11

× (0.25)
n∗
12+n

∗
22 × (0.25 + a)

n∗
21 ,

(13)

LC (a) =D × (0.25− a)n
∗
11+n

∗
22

× (0.25 + a)
n∗
12+n

∗
21 .

(14)

In formulas (11) - (14) D = n!/ (n∗11!× n∗12!n∗21!n∗22!).
The logarithmic likelihood function under scenario 0 is

given by

l0 (a) = lnL0 (a) = ln (D) + (n∗11 + n∗12) ln (0.25− a)
+ (n∗21 + n∗22) ln (0.25 + a) .

Then

∂l0(a)

∂a
=
n∗21 + n∗22
0.25 + a

− n∗11 + n∗12
0.25− a

,

∂l0(a)

∂a
= 0⇒ â =

n∗21 + n∗22 − (n∗11 + n∗12)

4n
.

Let us check what kind of extremum we can find. As a re-
sult of a simple transformation we have

∂2l(a)

∂a2
=
∂

∂a

[
n∗21 + n∗22
0.25 + a

− n∗11 + n∗12
0.25− a

]
=

=− n∗21 + n∗22

(0.25 + a)
2 −

n∗11 + n∗12

(0.25− a)2
< 0

(15)

for all a < 0.25. It means that the logarithmic likelihood func-
tion has always a maximum at a = â. So, â is the maximum
likelihood estimator of a , which is the PFP. It may be proven
that inequality (15) holds for all the scenarios considered in
this paper.

Formulas for the maximum likelihood estimator of a un-
der scenarios have the forms

â0 =
n∗21 + n∗22 − n∗11 − n∗12

4n
, âA =

n∗22 − n∗11
4 (n∗11 + n∗22)

,

âB =
1

4
× n∗21 − n∗11
n∗11 + n∗21

, âC =
n∗12 + n∗21 − n∗11 − n∗22

4n
.

(16)
To decide which of the defined scenarios takes place, we

follow the three steps below:
1. Calculate a∗, which is an estimate of parameter a for each

scenario according to (16).
2. Calculate corresponding values of the maximum likeli-

hood functions L0 (a
∗) , LA (a∗), LB (a∗) , LC (a∗) by

means of (11) – (14).
3. Choose a scenario for which the value L (a∗) is the great-

est.
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VI. GENERATING 2×2 contingency tables

Generating CTs is very important in the simulation study. The
approach in the literature for the generating two-way CTs
is the Markov Chain Monte Carlo [25–29], the Sequential
Importance Sampling [28–31], the probabilistic divide-and-
conquer technique [32], the Generalized Gamma Distribution
[33], the bar method [34].

In this paper we introduce an algorithm for generating
2×2 CT using the bar method. The bar method is identical
to the method that generates random numbers that follow the
multinomial distribution. It is as follows:
1. Choose a scenario.
2. Set a value of the PFP a.
3. Calculate probabilities pij (i, j = 1, 2) based on Tab. 1.
4. Set label cells of 2×2 tables pi (i = 1, 2, 3) according to

the rules

p1 = p11, p2 = p1 + p12, p3 = p2 + p21. (17)

5. Set a sample size n.
6. Repeat the following steps n times:

(a) Set initial values of cell count i.e. nij = 0 (i, j = 1, 2).
(b) Generate random number rw uniformly distributed

within (0, 1).

(c) Increase cell count of 2×2 tables according to the rule:
rw ≤ p1 ⇒ n11 = n11 + 1, p1 < rw ≤ p2 ⇒
n12 = n12 + 1, p2 < rw ≤ p3 ⇒ n21 = n21 + 1,
rw > p3 ⇒ n22 = n22 + 1,where pi (i = 1, 2, 3) are
given by (17).

VII. PARAMETRIC REASONING PUT INTO
PRACTICE

Example 1
One thousand CTs are generated under each sce-

nario (see Tab. 1) for a = 0.125 and a sample size
n = 10 × i (i = 2, 3, ..., 10). We calculate the maximum
likelihood estimator of a by means of (16) for each CT.
Fig. 2 presents the standard deviation of a∗ as a function of
t = 1/

√
n under each scenario. This figure shows that under

each scenario the standard deviation of a∗ depends linearly
on 1/

√
n.

Example 2
The algorithm describing this example is as follows:
1. Choose a scenario from a set {0, A,B,C}.
2. Set a value of PFP a ∈ {0.125, 0.15}.
3. Set a value of a sample size n = 10× i (i = 2, 3, ..., 10).

Fig. 2. The standard deviation of a∗as a function of t = 1/
√
n under scenarios. (Source: author’s own material)
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Fig. 3. Success ratio as a function of a simple size. (Source: author’s own material)

4. Repeat the following steps u = 104 times:
(a) Let Counter = 0.
(b) Generate CT under the scenario that you have chosen

in Step 1.
(c) Calculate a∗0, a

∗
A, a

∗
B , a

∗
C by means of (16).

(d) Calculate L0 (a
∗
0) , LA (a∗A) , LB (a∗B) , LC (a∗C) by

means of (11) – (14).
(e) If MaxL = Ls (âs), where s is an index of

scenario which has been chosen in Step 1, then
Success_Counter = Success_Counter + 1.

5. Calculate the success ratio
Pr = (Success_Counter/u)× 100%.

Fig. 3 presents the values of success ratio (in percent) under
scenarios for a sample size n = 10× i (i = 2, 3, ..., 10)and
a ∈ {0.125, 0.15}. This figure shows that the success ratio is
the increasing function of a sample size n. It is noteworthy
that the success ratio function related to scenario C predomi-
nates success ratio functions related to other scenarios.

Example 3
This example compares decision making by means of

classic statistic testing with likelihood-based decision mak-
ing. Tab. 4 shows a set of example CTs filled one by one
accordingly to all the scenarios considered. The table is di-
vided into two parts. The left hand side part is related to
likelihood-based decisions. The right hand side part is related
to classic statistical testing. The null hypothesis H0 states
that X and Y are independent. Critical values, indicated by
underlining, are determined by Monte Carlo method based
on 106 order statistics. Such a large number of repetitions
guarantees very precise results. When reading rows A-C of
Tab. 4 it turns out that all the decisions made in a classic way
are wrong. It is because untrue H0 hypotheses have not been
rejected. But it does not reveal anything new. This is just one
more confirmation of what is commonly known: the classic
statistical test is very conservative.

The conservativeness of classic testing is a reason why
we suggest making a turnaround in this domain. Now there

will be no null hypothesis, but there will be a set of com-
peting alternative hypotheses instead. The former H0 is no
longer the main one, but exists among the competitors of an
equal rank. All the hypotheses state: “the considered CT is
generated accordingly to particular scenarios”.

Fig. 4 shows sets of associated likelihood functions for
a = 0.04, n = 100 and explains why particular decisions are
made. It is noteworthy (see Fig. 4) that in all the four sets of
likelihood curves, the scenario related curve predominates
over the others. You can read values that maximize likelihood
functions from an appropriate figure or calculate them from
appropriate formulas (16). It happens that the curves corre-
sponding to scenarios overlap.

Example 4
The algorithm describing this example is as follows:

1. Choose a scenario from a set of scenarios {A,B,C}.
2. Set a value of PFP a ∈ {0.025, 0.05, ..., 0.25}.
3. Set a value of a sample size n.
4. Repeat the following steps u = 104 times:

(a) Let ScA = 0, ScB = 0, ScC = 0
(b) Generate CT under the scenario that you have chosen

in Step 1.
(c) Calculate LA (a) , LB (a) , LC (a) by means of (12) –

(14).
(d) If MaxL = LA (a), then ScA = ScA+ 1;

if MaxL = LB (a), then ScB = ScB + 1;
if MaxL = LC (a), then ScC = ScC + 1.

5. Calculate the probability for actual scenario of recog-
nizing generated scenario by means of formulas PrA =
ScA/u, PrB = ScB/u, PrC = ScC/u.
Fig. 5–8 present the probabilities of recognizing scenario

A-C for PFP ai = 0.025× i (i = 1, 2, ..., 10) and for MoU
(see Tab. 3).

Fig. 5 and 7 show that even when samples are small (e.g.
20 items), probabilities of proper recognition (actual A as
A, actual C as C) are greater than probabilities of improper
recognitions, regardless of how small the PFP is. Fig. 6 con-



150 P. Sulewski

Tab. 4. The classic statistical testing versus likelihood-based decisions. (Source: author’s own material)

Sc
en

ar
io

of

cr
ea

tio
n

C
on

te
nt

s

X
an

d
Y

de
pe

nd
en

t

D
ec

is
io

n

χ2 FT CR |χ|

H
o

tr
ue

H
o

re
je

ct
ed

3,962 4,010 3,967 0,800

0
21 21

29 29
No 0 0 0 0 0 Yes No

A
21 25

25 29

Yes

A 0,004 0,004 0,004 0,026 No No

B
21 25

29 25
B 0,644 0,645 0,644 0,322 No No

C
21 29

29 21
C 2,560 2,581 2,562 0,640 No No

siderably contrasts those two. When PFP is small, curves
interlace. Moreover, probabilities of improper recognition (B
as A and B as C) are then greater that the probability of proper
recognition! The picture normalizes when a sample becomes
large as it is exemplified in Fig. 8. In the classic statistical

testing (see Tab. 3) untrue H0 has not been rejected even if
n = 100 and PFP a = 0.04. In a likelihood-based decision
dependence between features is visible already for n = 20
and PFP a < 0.04 (see Fig. 5–7).

Fig. 4. The likelihood function under scenarios for a = 0.04 and n = 100. (Source: author’s own material)
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Fig. 5. The probability of recognizing scenario A (actual) as one of A-C scenarios. (Source: author’s own material)

Fig. 6. The probability of recognizing scenario B (actual) as one of A-C scenarios. (Source: author’s own material)

Fig. 7. The probability of recognizing C scenario (actual) as one of A-C scenarios. (Source: author’s own material)
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Fig. 8. The probability of recognizing B scenario (actual) as one of A-C scenarios. (Source: author’s own material)

VIII. CLOSING REMARKS

There are two new elements in the method of statistical
reasoning from 2×2 CTs presented in this paper. Firstly, 2×2
CTs are parameterized with the probability flow parameters.
Parametric reasoning turns out to be much more sensitive in
revealing dependency between X and Y features than clas-
sic reasoning. Secondly, we suggest a scenario (i.e. internal
mechanism) under which particular 2×2 CT comes into be-
ing.

Thanks to precisely described algorithms it becomes pos-
sible to create and use two-way CTs bigger than 2×2 using
appropriate scenarios, see e.g. [35]. Moreover, applying sce-
narios for generating the three-way CTs are presented in
36, 37].

Figuring up more and more general scenarios does not
seem very difficult. The researches can be generalized by
introducing several PFPs to the model. However, this causes
a significant deterioration in the properties of the parame-
ter estimators and in the estimation itself. Hence, inflated
generalizations should be avoided.
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447 (2016) (in Polish).

[37] P. Sulewski, Power Analysis of Independence Testing for
the Three-way Contingency Tables of Small Sizes, Jour-
nal of Applied Statistics, http://dx.doi.org/10.1080/02664763.
2018.1424122 (2018).

Piotr Sulewski (www.sulewski.apsl.edu.pl) graduated in Mathematics in 1996. Since then he has been working
at the Institute of Mathematics at Pomeranian Academy in Słupsk. He received the PhD in reliability theory in
2001 from the Systems Research Institute of Polish Academy of Sciences in Warsaw. His research interests
concern mathematical statistics, computational methods in statistics and reliability mathematics. He is the
author of 3 books and 28 publications.

CMST 24(2) 143–153 (2018) DOI:10.12921/cmst.2018.0000009


