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Abstract: We demonstrate that the main features of DPD may be obtained using molecular dynamics employing a determin-
istic thermostat. This apparent isomorphism holds as long as the MD pair potentials are sufficiently smooth and short ranged,
which gives rise to a quadratic equation of state (pressure as a function of density). This is advantageous because it avoids
the need to use stochastic forces, enabling a wider choice of integration algorithms, involves fully time reversible motion
equations and offers a simpler algorithm to achieve the same objective. The isomorphism is explored and shown to hold in 2
and 3 physical dimensions as well as for binary and ternary systems for two different choices of pair potential. The mapping
between DPD and Hildebrand’s regular solution theory (a consequence of the quadratic equation of state) is extended to
multicomponent mixtures. The procedure for parametrization of MD (identical to that of DPD) is outlined and illustrated for
a equimolar binary mixture of SnI4 and isooctane (2,2,4-trimethylpentane).
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I. INTRODUCTION

Dissipative Particle Dynamics (DPD) is a particle-based
simulation method developed in the 1990s by Hoogerbrugge
and Koelman [1], sharing features of both molecular dynam-
ics and lattice gas automata. DPD rapidly gained popularity
within the simulation community following developments
and improvements to the basic algorithm by Espańol and
Warren [2], Groot and Warren [3], and others.

In DPD, the total force acting on a particle is given by the
sum of three types of pairwise additive forces – conservative,
dissipative and random:

Ftoti =
∑
j 6=i

FCij + FDij + FRij (1)

Pairwise additivity ensures momentum conservation, a
necessary condition for hydrodynamic behaviour. The three
types of force are respectively given by

FCij = aijw
C (rij) r̂ij (2)

FDij = −γwD (rij) (rij · vij) r̂ij (3)

FRij = σwR (rij) θij r̂ij (4)

where rij = |rij |= r; rij = ri – rj , r̂ij is a unit vector directed
along the line of centres of particles i and j, w(rij) is a weight
function, vij the relative velocity between i and j, θij is a
randomly fluctuating variable with Gaussian statistics, while
aij , γ and σ are constant parameters. The common choice for
the conservative weight function is

wC (r) = (1− r/rc) (5)

which vanishes at r = rc (the cutoff distance). It is also usual
to take the random force weight function to be the same as the
conservative one. Fluctuation-dissipation theory [2] then pro-
vides a relationship between the magnitude of the random and
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dissipative weight function magnitudes (wD(r) = [wR(r)]2)
and a relationship between σ, γ and T: σ2= 2γkBT.

The claimed success and popularity of DPD lies in the use
of a large time step – typically an order of magnitude greater
than those used in MD – a consequence of the short ranged
and soft nature of the conservative force law. Groot and other
workers have also extended DPD to take electrostatic inter-
actions into account [4, 5]. DPD has been employed in a
wide variety of cases including polymers [6 7], liquid crys-
tals [8], biomolecules [9] and even cement [10]. Some rich
phase behavior has been observed in DPD, giving qualitative
agreement with experiment.

Despite the foregoing, DPD has a number of deficiencies.
One of the more significant problems is that equations of
motion lack a sound theoretical basis. Intuitively, one might
expect that a course graining procedure would result in soft
repulsive forces and that the microscopic fluctuations could
be replaced by random and dissipative contributions. To date,
no one has succeeded in deriving the force laws from statis-
tical mechanics. In practice, either a bottom-up parametriza-
tion is obtained from Boltzmann inversion of molecular dy-
namics data, or, experimental values are used in a top-down
parametrization [16].

Another drawback is that the equation of state generated
in DPD is quadratic in the density. DPD thus cannot be used
to study liquid-vapour equilibria in a single component fluid
unless density dependent forces are instead used [11]. The
DPD particle has been interpreted as representing Nm atoms
or particles of smaller mass. This leads to scaling arguments
for increased levels of coarse graining. However, Pivkin and
Karniadakis [12] found an upper limit to the value of Nm,
beyond which the DPD fluid freezes. Further problems arise
with regard to temperature control. The basic DPD algorithm
operates at constant temperature with the dissipative and
stochastic forces functioning as a thermostat. However, simu-
lations of non-equilibrium flows found that the temperature
drifted at higher fields. Replacement of the DPD thermo-
stat with the Andersen thermostat had the interesting effect
that the fluid viscosity also increased [13]. Hafskjold and
co-workers located the source of the temperature drift in the
size of the timestep used, concluding that smaller time steps
of the order of those used in molecular dynamics were neces-
sary [14].

Groot and Warren, in their 1997 paper, state: “Indeed
DPD can be viewed as a novel thermostatting method for
MD”. An interesting viewpoint, but one that has never been
fully explored. Clearly it is desirable to have a deterministic
thermostat in MD rather than a stochastic one for reasons of
reproducibility, reversibility and less restriction on the magni-
tude of the timestep. In light of this, perhaps the word “novel”
might be better replaced by “unusual” or even “poor”?

In this paper we show that the advantages of DPD – use
of large time steps and an ability to show interesting phase
behavior, can be obtained from molecular dynamics with

a deterministic thermostat. We note here that other coarse
graining strategies can be used in MD, for example methods
employing MARTINI forcefields [15], for fast evaluation of
phase equilibria. There is no suggestion that this DPD-like
MD is superior to these methods. In section II we show how
short ranged pair potentials lead to a pressure quadratic in
density and an energy linear in density. Section III presents
the results obtained from MD simulations using two different
short ranged potentials, one based on the popular DPD weight
function, and one used in Smooth Particle Hydrodynamics
(SPH). It is shown that both choices give the same functional
form for the pressure in single component, binary and ternary
mixtures in both 2- and 3 dimensions. In section IV we gen-
eralize the result of our earlier work in which we developed
a mapping between the conservative force parameters and
Hildebrand solubility parameters [16], to multicomponent
mixtures. In section V we present the results of using this
mapping for 3D simulations using experimental data for the
binary system: SnI4 and isooctane. Finally, in section VI we
summarise and draw some conclusions.

II. EQUATIONS OF STATE

The pressure, and energy (per atom) of a #-dimensional
multi-component mixture are given respectively by [17]:

P = ρkBT −
(# + 1)π

6
ρ2
∑
i,j

xixj

∫ ∞
0

φ′ijgij(r)r
#dr

(6)

E

N
=

#kBT

2
+πρ(#−1)

∑
i,j

xixj

∫ ∞
0

φijgij (r) r#−1dr

(7)
where xi is the number fraction (loosely referred to as mole
fraction) of component i, ρ is the number density (N/V ), φ
is the pair energy function, φ′ its first derivative while gij(r)
is the partial radial distribution function for particles of type
i and j. Eqs. (6-7) are exact for pairwise additive potentials.

If the potential is short-ranged, vanishing at rc, and of
the form: φ (s; ε) = εφ (s), with s = r/rc, the density de-
pendence may be removed from the integrals in (6) and (7),
giving

P = ρkBT + r#c ρ
2
∑
i,j

xixjεijαij (8)

E/N =
#kBT

2
+ r(#−1)c ρ

∑
i,j

xixjεijβij (9)

where the dimensionless quantities, αij and βij , are given
by:

αij = − (# + 1)π

6

∫ 1

0

φ̃′(s)gij(s)s
#ds (10)
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βij = (#− 1)π

∫ 1

0

φ̃ (s)gij (s) s(#−1)ds (11)

where φ̃ = φ/ε. Evidently, the non-ideal part of the pres-
sure scales ~ρ2, while the excess internal energy is linear in
density. The Mayer’s virial series for the pressure:

P

kBT
=ρ+ ρ2B2 (T ) + ρ3B3 (T )

+ρ4B4 (T ) + ρ5B5 (T ) + · · ·
(12)

Bn =
∑
i,j

xixjB
ij
n (T ) (13)

where the coefficients Bn
ij are multi-dimensional in-

tegrals involving products of Mayer functions: fij =
[exp(−φij/kBT ) − 1], would suggest the expansion could
then be truncated after the 2nd term. However, Groot and
Warren [3] showed that in 3 dimensions, the integral in (10)
only loses its density dependence for ρ > 3 for a quadratic
potential. Convergence of the virial expansion is expected to
be poor for such high values of density, indicating that the
sum of the higher order terms yields a contribution which
effectively behaves as ρ2.

The typical weight function used in DPD is a repulsive
linear ramp, whose underlying pair potential is defined by:

φDPD =
εij
2

(
1−

(
r
rc

))2
r < rc

φDPD = 0 r ≥ rc
(14)

where εij is a constant with units of energy and rc is the cut-
off distance. We also consider the smooth repulsive potential:

φSRP = εij

(
1−

(
r
rc

)2)4

r < rc

φSRP = 0 r ≥ rc
(15)

This potential has found use in SPH simulations for pre-
venting clustering of particles during relaxation of a ‘mesh’,
but could also be used as a weight function due to its short
range, being finite valued with vanishing first derivative at
the origin, and the existence of three continuous derivatives
which vanish at the cutoff.

III. TEST OF THE ASYMPTOTIC
EQUATIONS OF STATE

In the following sections, MD simulations are conducted
for one-, two- and three-component mixtures to examine
whether the quantities α, β, converge to constant values inde-
pendent of density.

III. 1. Single component fluids

Single component, isokinetic molecular dynamics sim-
ulations of particles governed by potentials (14) and (15)
were conducted at unit temperature for a range of densities in
both 2 and 3 physical dimensions. To facilitate comparison
between the two different forcelaws it is necessary to scale
the repulsive parameters such that the fluids have identical
compressibilities. The inverse isothermal compressibility is
defined by

κ−1T = ρ

(
∂P

∂ρ

)
T

(16)

Using eq. (16) with eq. (17) and specializing to a 1-
component fluid, the scale factor is

εSR = εDPD

(
αDPD

αSR

)
(17)

The simulations in 2D used 1600 atoms whereas those in
3D were performed on systems of 2048 atoms. Runs were
started from an initial square lattice in 2D or an fcc lattice
in 3D, with 100,000 timesteps of equilibration, followed by
1,000,000 production steps (over which averages were com-
puted). A 4th order Runge-Kutta (RK4) integrator with a
timestep of 0.04 was used in all these simulations. Note
that this timestep was chosen deliberately to be typical of
timesteps used in DPD. A Gaussian isokinetic thermostat was
used to maintain unit temperature. A range of densities were
studied from 0.1 to 35 in the case of 2D simulations and 0.1 –
15 in 3D.

The first set of simulations to be described are in 3D to
enable comparison with the earlier DPD work of Groot and
Warren. Accordingly, we chose ε = 1 for the DPD potential
and unit cutoff. An exploratory set of simulations with the
smooth repulsive force law using this same ε value was then
conducted in order to obtain an improved value (using (17))
which was then used in subsequent runs. This gave ε = 0.46.

Fig. 1 shows plots of the coefficients α and β for each of
the two forcelaws. It is clear from the figure that beyond a
density of ~3, these quantities reach a plateau, giving a value
of α = 0.101. This is in excellent agreement with Groot and
Warren’s DPD work. Both potentials give essentially the same
value for α. β on the other hand, seems to require a higher
density to reach its asymptotic value of ~0.1. The reason for
this difference in behavior is presumably due to the differ-
ent integrands. The integrand for β contains the pair energy
function while that for α the differential of the pair energy
(force).

The virial coefficients, B2 −B5, calculated for both po-
tentials, are collected in Table 1.

B2 was calculated using 16-point Gauss-Legendre quadra-
ture, while higher coefficients were calculated using a hit and
miss Monte Carlo scheme. Briefly, the method for estimat-
ing B3 was as follows: a particle was placed at the origin
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Fig. 1. Plots of the quantities α (a) and β (b) against density for the two potentials, smooth repulsive (blue circles) and DPD (red circles) in
3 spatial dimensions

and a second particle was placed randomly within a circle
of radius rc, centred on the first particle. The third particle
was likewise placed randomly within a circle of radius rc,
also centred on particle 1. With the 3 particles so placed,
the Mayer f -functions were calculated and then sums of the
products: f12f13f23 and f 12f 13were compiled over 10 bil-
lion Monte Carlo trials. The third virial coefficient was then
obtained from the ratio: −4/3{〈f12f13f23〉/〈f12f13〉}. This
algorithm was extended in an obvious way to compute B4 and
B5. Full details of this algorithm, including an improvement
utilising Ree-Hoover diagrams, will appear in a future publi-
cation. Fig. 2 contains plots comparing truncated virial series
against the MD obtained pressure for both potentials. For
either pair potential, convergence is poor – successive higher
order sums overshoot the MD results, though agreement with
the MD data is acceptable up to surprisingly high densities
with only the quadratic B2 term included in the sum.

For the 2D single component simulations, we chose ε = 1
for the smooth repulsive potential and then through a similar
procedure as described earlier, obtained a value of ε = 2.4
for the DPD potential (giving the two potentials similar com-
pressibilities). A set of simulations were conducted as per the
3D case, but spanning densities from 0.1 to 35. Fig. 3 shows
plots of α and β for the two potential models. Both α and
β reach asymptotic values of 0.311 and 0.30, respectively.
Unlike the 2D case, in which the asymptotic values were
reached at a density as low as 3, Fig. 3 shows that in 2D,
the onset of the plateau requires a density ~20. Fig. 4 shows
the truncated virial series for each potential compared with
the MD simulation data. As with the 3D case, higher order
truncations do not converge except at the lower densities. At
high densities, B2 follows the MD data more closely while
the 3rd order truncation overshoots and the fourth and fifth
order truncations undershoot the data.

Tab. 1. Virial Coefficients at T = 1 for a single component fluid modelled using the two forcelaws defined
by (14) and (15) in both 2 and 3 dimensions

ε B2 B3 B4 B5

2D εij
2

(
1−

(
r
rc

))2

2.4 0.25233 0.019527 -0.0031404 -0.0001201

3D 1.00 0.09773 0.0009079 -0.0001006 9.673e-06

2D εij

(
1−

(
r
rc

)2
)4

1.00 0.24373 0.020857 -0.0025799 -0.0003161

3D 0.46 0.09716 0.001205 -0.0001198 9.2887e-06
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Fig. 2. Unit temperature isotherms (circles) and partial sums of the virial expansion (lines) for the smooth repulsive potential (a) and the
DPD potential (b) in 3 spatial dimensions

Fig. 3. Plots of the quantities α (a) and β (b) against density for the two potentials, smooth repulsive (blue circles) and DPD (red circles) in
2 spatial dimensions
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Fig. 4. Unit temperature isotherms (circles) and partial sums of the virial expansion (lines) for the smooth repulsive potential (a) and the
DPD potential (b) in 2 spatial dimensions

III. 2. Binary fluid mixtures

For binary and higher order mixtures, it is of interest to
know if the value of α also reaches an asymptotic value and
if so, is there any composition dependence. Furthermore, we
wish to test the assumption of both Travis et. al. [16] and
Maiti and McGrother [18] that the component αij’s have
the same value as a composition weighted α in mixtures. To
answer these questions, binary mixtures were conducted in
2 physical dimensions (for computational efficiency) for the
smooth repulsive potential at two different compositions: an
equimolar (1:1) mixture and a 1:3 composition of the two
types of particle (which we henceforth refer to as Xenon and
Krypton). For convenience we chose ε11 = 1, ε22 = 1 and ε12
= 1.5 to encourage segregation. A range of densities were
explored between 0.1 and 35 with 1600 particles in total.
The temperature was maintained at unity using a Gaussian
isokinetic thermostat.

Fig. 5 shows a plot of the αij’s as a function of density
for the two compositions. These figures show that all of the
α’s reach a plateau at the same density ~20 as for the sin-
gle component 2D example. The curve for α11 in Fig 5b
does not appear to converge as well as the others. This is
likely a consequence of the smaller number of type 1 parti-
cles in the simulation box – giving rise to larger errors. It
may also be an indication that the timestep of 0.04 is a little
too large at the higher densities. In the equimolar case, α11

= α22 6= α12. However, a mean α, defined by the weighted

sum: 〈α〉 =
∑
i

∑
j εijαijxixj , is also constant and close

in magnitude to the single component α for this potential
(0.323 cf 0.311). In the case of the 1:3 mixture, α11 6= α22

6= α12. Despite this, the weighted α is again similar in value
to the single component case (0.323), suggesting there is no
composition dependence on the average α. However, there
are implications for the mapping with regular solution theory
(see later section).

Fig. 6 shows typical snapshots from the simulations at
a density of 20. Both images show almost complete separa-
tion. The interface is close to linear for the equimolar mixture
while the 1:3 mixture forms a roughly circular droplet (when
the periodic boundary conditions are taken into account). If
we now examine snapshots from a density at which the com-
ponent αij’s have not yet reached their plateau value, say ρ =
10, then it is evident that segregation is incomplete for both
compositions (Fig. 7).

Virial coefficients for the two mixtures were calculated
using the composition weighted sum of the Bijn . One addi-
tional set of data (to that in Table 1) needed is that for ε12
= 1.5. These coefficients, B2 – B5, were determined to be:
{0.32726, 0.0481326, −0.00321385, −0.00206103}. Trun-
cated virials series are compared against the raw simulation
data in Fig. 8. As expected, the density dependence is simi-
lar to that seen in the 1 component case, namely that the B2

series follows the data closest over the entire range. Higher or-
der truncations fit the data more accurately at lower densities,
but then diverge at higher densities.
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Fig. 5. Plots of the various α’s against density for Xe/Kr mixtures at unit temperature (a) 1:1 mixture, (b) 1:3 mixture

Fig. 6. Snapshots (after 1 million steps) from simulation of 1600 soft repulsive disks with ε11 = ε22 = 1; ε12 = 1.5, ρ = 20, T = 1. Left
image is 1:1 mixture, right image is 1:3 mixture
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Fig. 7. Snapshots (after 1 million steps) from simulation of 1600 soft repulsive disks with ε11= ε22 = 1; ε12 = 1.5, ρ = 10, T = 1. Left image
is 1:1 mixture, right image is 1:3 mixture

Fig. 8. Unit temperature isotherm (circles) and partial sums of the virial expansion (lines) for the smooth repulsive potential in 2 spatial
dimensions. Left picture is 1:1 mixture, right picture is 1:3 mixture
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III. 3. Ternary fluid mixtures

To demonstrate that the findings described in the previous
sections are not restricted to binary mixtures, simulations of
an equimolar 2D ternary mixture (x1 = x2 = x3 = 1/3) were
conducted at unit temperature and at densities of ρ = 20, 30,
35, 40 and 45 for the smooth repulsive potential. These sys-
tems contained 2400 atoms (800 of each species type). The
repulsive parameters were chosen somewhat arbitrarily to
encourage segregation: ε11 = ε22 = ε33 = 1.0; ε12 = 1.25, ε13
= 1.5, ε23 = 1.35. Each of these simulations were run from
initial square lattice configurations for 100,000 timesteps
followed by production runs of 1 million steps.

The density dependence of the α’s is displayed in
Fig. 9 (values in Table 2). The mean α, defined as 〈α〉 =∑
i

∑
j εijαijxixj , is fairly constant, having a value of 0.325

(which is close to the values obtained for single component
and binary mixtures). The component α’s also attain plateau
values, but for densities> 30 (compare for the binary mixture
case).

Fig. 9. Density dependence of αij’s and <α> for a 2D equimolar
ternary mixture of soft repulsive disks at T = 1

Snapshots taken from the end of the production run simu-
lations (1 million steps) at a density in the plateau region for
the αij’s (ρ = 45) and from just before this regime (ρ = 20)
are shown in Fig. 10. It is again evident that full segregation
is associated with constancy of the αij’s.

IV. MAPPING WITH REGULAR SOLUTION
THEORY (RST)

In their 2007 paper, Travis et al. showed that the Groot-
Warren formulation of DPD for binary mixtures was iso-

morphic to regular solution theory (RST). The isomorphism
should also apply to MD provided the potentials are soft,
short ranged and repulsive leading to constant asymptotic
α’s. The results presented in Section III strongly suggest this
will indeed be the case. In this section, we summarise the
main elements of the mapping, but generalise it to handle
multicomponent mixtures.

An equation of state which is volume-explicit can be inte-
grated to yield the Helmoltz free energy of the mixture [19]:

Amix =

∫ ∞
V

(
P − nTRT

V

)
dV

−RT
∑
i

ni ln (V/niRT ) +
∑
i

ni
(
u0i − Ts0i

)
(18)

where R is the universal gas constant, nT is the total amount
of substance, V is the extensive total volume, ni the amount
of substance of component i, while u0

i and s0i are, respec-
tively, the molar internal energy and molar entropy of an ideal
gas of pure component i. The equation of state (8) yields the
following free energy (in 3D):

Amix
nT

=
r3cnTN

2
A

V

∑
i

∑
j

xixjεijαij

−RT
∑
i

xi ln

(
V

niRT

)
+
∑
i

ni

(
u0
i−Ts0i

)
,

(19)

where NA is Avogadro’s constant.
The free energy of mixing, AM , is defined as the free

energy of the mixture relative to the mole fraction weighted
sum of the pure component free energies:

AM

nT
=
Amix
nT

−
∑
i

xi

(
Ai
ni

)
(20)

The excess free energy of mixing is

AM,E

nT
= −r

3
c N

2
A ν

2

∑
i

∑
j

Bijϕiϕj

 , (21)

where v is the molar volume of the mixture, ϕi is the volume
fraction of component i and Bij is defined by

Bij =
εiiαii
v2i

+
εjjαjj
v2j

− 2
εijαij
vivj

, (22)

in which vi is the molar volume of pure component i (there is
no volume change on mixing in RST, hence molar volumes of
the pure components and partial molar volumes are identical).
The entropy of mixing is given by

SM

R
= −

∑
i

xi lnϕi (23)
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Tab. 2. Values of {αij} and <α> for equimolar ternary mixture of soft repulsive disks at T = 1

α11 α12 α13 α22 α23 α33 <α>

ρ

20 0.6732 0.2240 0.03372 0.5916 0.10502 0.7980 0.3342

30 0.8066 0.0880 0.03913 0.7862 0.06104 0.8326 0.3253

35 0.8169 0.0738 0.0436 0.8056 0.0579 0.8308 0.3250

40 0.8185 0.0688 0.0473 0.8113 0.0581 0.8265 0.3252

45 0.8162 0.0676 0.0506 0.8115 0.0594 0.8213 0.3256

Hildebrand gives the following expression for the molar
heat of mixing [20]

∆Hmix =
v

2

∑
i

∑
j

(δi − δj)2ϕiϕj (24)

where the δ’s are solubility parameters and the geometric
mixing rule has been assumed.

Evidently, dynamics with short ranged repulsive poten-
tials is closely isomorphic to regular solution theory. Phase
separation is therefore expected depending on the form of
the free energy surface. The mapping between the solubility
parameters and the repulsive parameters, εij is given by

(δi − δj)2 = −r3c
(
ρ2i εiiαii + ρ2jεjjαjj − 2ρiρjεijαij

)
(25)

Both Groot and Warren [3] and Travis and co-
workers [16] assumed (without proof) that all the αij were
equal. If (25) is taken as a definition, knowledge of the left
hand side for a particular pair of components enables the
appropriate portion of the repulsive parameter matrix to be
determined. The procedure outlined in Ref 16 entails first cal-
culating the like-like terms from the following relationship:

εii =
δ2i

αiiρ2i r
3
c

(26)

following which the cross terms may then be obtained from
Eq. (25).

V. COMPARISON BETWEEN MD AND RST

In this section we demonstrate how to utilize the map-
ping between molecular dynamics with short range repulsive
potentials and regular solution theory. Experimental data on
solubility differences measured for a binary mixture of C8H18

and SnI4 were used to obtain the repulsive parameters {εij}
from Eqs. (25-26). This system was chosen both for its close
conformity to RST and the existence of solubility parameters
value at 2 different temperatures.

The first step of the comparison entails using RST to gen-
erate a binodal curve. Within this theory, the free energy of
mixing (for a 2 component system) as a function of composi-
tion is given by

AM =RT (x1 lnx1 + x2 lnx2)

+(v1x1 + v2x2)(δ1 − δ2)
2
ϕ1ϕ2

(27)

In what follows we take SnI4as component 1. Once the molar
volumes and solubility parameters are known as a function
of temperature, a set of free energy curves may be plotted
against composition, each at a different temperature. The bin-
odal curve is then constructed from the set of coexisting mole
fractions obtained using a double tangent construction.

Fig. 10. Snapshots (after 1 million steps) from 2D equimolar ternary mixture of soft repulsive disks at T = 1 for different densities: ρ = 20
(left), ρ = 30 (center) and ρ = 45 (right)
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For isooctane, Hildebrand and Scott [20] list values for
molar volume, and solubility parameter at the two temper-
atures: 298 K and 372 K (see Table 3). The same textbook
provides the following useful relationship:

d (ln δ)

d (lnV )
= −n+ 1

2
(28)

where n is an empirical parameter. For isooctane, the calcu-
lated value of n was determined to be 1.2528. Eq. (28) was
then used to estimate isooctane solubility parameters at all
other temperatures.

For SnI4, we fitted the molar volume-temperature data
contained in the paper by Hildebrand and Negishi [21] to
the following equation: V(T)/cm3 = 116.03 + 0.11796*(T/K).
The solubility parameters were generated from the equation:
ln[δ/(cal1/2cm−3/2)] = 2.9106 − 0.0016474 (T/K) which
was obtained from a least squares fit to the data given in the
paper by Travis et. al. [16].

Fig. 11. Binodal curve for the system: SnI4/C8H18, as calculated
using Regular Solution Theory

Free energy curves were then generated over a tempera-
ture range of 0oC – 220 oC, the upper end being well above
the known upper critical solution temperature. The double
tangent problem was solved using a Newton-Raphson method

iterative scheme and the resulting binodal curve is shown in
Fig. 11.

Molecular dynamics simulations were conducted of bi-
nary mixtures (in 3D) using the DPD potential. To obtain the
repulsive parameters for use in these simulations, the follow-
ing steps were taken. First, simulations of equimolar mixtures
of repulsive spheres were conducted at unit temperature and a
range of densities from ρ = 0.1 to ρ = 6. In these simulations
the matrix of repulsive parameters was taken (arbitrarily) to
be ε11 = 1.0, ε22 = 1.2, ε12 = 1.5. The behavior of the
component α’s and the mean α with density are shown in
Fig. 12. From Fig. 12 it is apparent that beyond a density of
around 3, the component α’s reach plateau values of α11 =
0.101, α22 = 0.101, α12 = 0.098, <α> = 0.130.

Fig. 12. Component α’s and mean α for 3D binary equimolar solu-
tions of DPD spheres as a function of density

These asymptotic α’s were then used to derive repulsive
parameters within the framework of the mapping between
MD and RST. In DPD, the usual choice of dimensionless
quantities uses rc as a convenient length scale, kBT as a con-
venient energy scale and the mass of a molecule as the basic
unit of mass.

Tab. 3. Thermodynamic data for pure SnI4 and isooctane. The use of non-SI units is to facilitate comparison
with earlier published work on RST

T / K V/ (cm3 mol−1) δ/(cal1/2 cm−3/2)

isooctane 298 166 6.85

372 184 6.1

SnI4 298 151.1 11.7

637.5 191.23 6.43



276 Karl P. Travis

Tab. 4. Densities and repulsive parameters (all in reduced units) for 3D binary mixtures used in the SnI4/isooctane simulations. Component
1 is SnI4, while 2 is isooctane

T/ oC ρ ε11 ε22 ε12 (= ε21)
0 5.4717 65.1425 28.1379 55.2691

100 4.9159 39.4747 19.7052 35.9919

Thus ρ = ρr3c , ε = ε
kBT

, δ = δ

√(
r3c
kBT

)
, etc. Taking ρ

= 4 (safely in the regime where the α’s attain their asymptotic
value), and using the highest molar volume of the mixture
of SnI4/isooctane across the range of temperatures studied
(vmix = 211 cm3 mol−1) gave an rc = 11.191 Å. Dimension-
less component densities and solubility parameters were then
calculated using this value of rc and the appropriate value of
kBT for each temperature of interest. Non-dimensionalised
versions of Eqs. (25-26) were then used to obtain the reduced
unit values of the repulsive parameters (see Table 4).

Isokinetic MD simulations were conducted of equimolar
mixtures of DPD spheres at two different temperatures (0oC,
100oC). Each simulation was conducted in reduced units and
therefore the temperature in each case was maintained at the
value of unity by a Gaussian thermostat. The system density
in each case is given in Table 4. These simulations, employing
42592 atoms with initial configurations based on fcc lattices,
were run for 50,000 steps, followed by 50,000 production
steps. The equations of motion were integrated using a 4th

order Runge Kutta integrator using a reduced timestep of
0.04.

Snapshots – taken at the end of 50,000 production steps
for both temperatures – are displayed in Fig. 13.

From the figure it is evident that the system has split
into 2 phases with roughly planar interfaces separating them.
At 0oC, the phase rich in isooctane (middle slab) has a reg-
ular (crystalline) arrangement of particles, which is absent
at 100oC. This may seem counterintuitive given pure bulk
isooctane has a larger molar volume than SnI4. However, the
simulations are conducted at constant volume, and the SnI4
particles repel each other more strongly than do isooctane
particles (see ε values in Table 4). In a mixture of the two
components, the SnI4 pack less efficiently than isooctane par-
ticles. Since the DPD potential bears no relation to the true
pair potential for these molecules, no physical significance
can be attached to the spatial arrangement of particles. The
solid-like nature of the isooctane-rich phase is therefore an
artefact of the method (this will also be the case in DPD).

Fig. 13. Snapshots from the 3D binary equimolar mixtures of SnI4 (red colored particles) and isooctane (green colored particles) at two
different temperatures: 0oC (left), 100oC (right)
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Visual inspection of the configurations reveals an in-
creased impurity of the two phases at the higher temperature.
To quantify the phase composition, we have used the method
introduced by Gelb and Müller [22]. Briefly, this entails cal-
culating coarse grained measures of density and composition,
which are then adjusted to remove particles deemed to lie in
an interface. The density and composition of any co-existing
phases is then easily obtained once the subcells have been
sorted based on whether their density or composition lies
within a specific range characteristic of these phases. The
process (carried out post-run) entails a number of stages. In
the first stage, a cutoff radius is chosen and then based on this,
all atoms in the system are visited in turn to produce a list
of their neighbours and species type falling within a sphere
defined by this radius, and centered on that atom.

Fig. 14. Coordination numbers for equimolar mixtures of
isooctane/SnI4 at t = 0oC (blue line) and t = 100oC (red line)

Histograms of these coordination numbers then reveal the
existence of 2 or more phases. Several trial cutoff radii are
explored and a compromise is then made resulting in good
separation of the peaks in the histogram and gaining good
statistics. In the second stage, the simulation cell is divided
into cubes (subcells) within which the density and composi-
tion is calculated. Any subcell in which more than 30% of its
occupants have a number of neighbours between the values

of the peaks in the coordination number histogram is then
deemed to be part of the interface between those phases. An
interfacial subcell (and its occupants) is then removed from
the next stage of the analysis which entails calculating his-
tograms of density and composition from which the density
and composition of these phases can then be determined.

Fig. 15. Density distributions for equimolar mixtures of
isooctane/SnI4 at t = 0oC (blue line) and t = 100oC (red line).
Note that these distributions were obtained using the ‘clean-up’

procedure outlined by Gelb and Müller

In this work we found that a cutoff of 2.5 gave clear
results for the coordination number histograms, while a
7× 7× 7 division of the simulation cell resulted in useable
density/composition histograms at 0oC whereas 6 × 6 × 6
was optimum at 100oC. Rather than using the number of
neighbours of an atom, we used the number of neighbours
of a given type (SnI4 in the present case), when deciding
which subcells to eliminate from the analysis. Division into
the 2 phases was then based on the mole fraction of SnI4 in
any subcell compared with the range of values from the com-
position histogram. The process is illustrated in Figs. 14-15
which respectively show coordination number histograms,
and density histograms at 0oC and 100oC.

Tab. 5. Composition and density of each phase for binary equimolar mixture of SnI4 and isooctane. Data obtained using the Gelb and Müller
procedure

0oC 100oC

xSnI4 ρ xSnI4 ρ

Phase 1 0.000 6.93 0.003 5.89

Phase 2 1.000 4.54 0.992 4.27

Interface 0.452 5.57 0.524 4.836
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Both histograms (density and coordination number) are
bimodal, with the main peaks coming closer together as tem-
perature increases (they would be expected to coalesce near
the upper critical solution temperature). The minor peaks in
the 0oC data of Fig. 14 indicate layering in the interfacial
region adjacent to the crystalline phase. The two phases have
markedly different densities. By counting the number of each
type of particle within the subcells, values of the composition
in each of the main phases can be obtained. Table 5 gives
the data obtained for this system. During the analysis it was
apparent that a high percentage of the subcells constituted the
interface, possibly indicating the run lengths were too short.
The use of an elongated simulation box can be expected to
reduce the volume fraction of the interface. The values for
the mole fraction of SnI4 in each of the two phases confirms
what was seen in the snapshots, namely that there is a small
increase in SnI4 in phase 1 at the higher temperature. The
binodal curve in Fig. 11 has very steep boundaries with two
almost pure phases predicted: SnI4 mole fractions of 0.0033
and 0.998 at 0oC; 0.054 and 0.968 at 100oC, in line with
our MD results of the same system. Clearly more data using
larger system sizes and longer simulation times are required
for a full systematic and quantitative comparison with RST.
Such a study is currently underway and the results will be
published at a later date. However, the results contained in this
section suggest that the mapping between a DPD-like MD
and RST holds true and the methodology for applying this to
other systems, including those with more than 2 components
is straightforward, if a little tedious.

VI. SUMMARY AND CONCLUSIONS

It has been demonstrated that the main features of DPD
may be obtained using molecular dynamics employing a de-
terministic thermostat. This isomorphism holds as long as the
MD pair potentials are sufficiently smooth and short ranged,
which gives rise to a quadratic equation of state (pressure
as a function of density). Indeed, it has been argued that
DPD could be considered as MD with an unorthodox ther-
mostat. Using MD in place of DPD removes the problematic
stochastic forces which require specially formulated integra-
tion schemes. Additionally, it would allow non-equilibrium
simulations to be run under isothermal conditions without the
need for additional thermostatting as is frequently required in
DPD to counteract the notorious temperature drift.

Simulations carried out in 2 and 3 physical dimensions
as well as for single, binary and ternary mixtures confirm
that a quadratic equation of state is always obtained. Two
different pair potentials were compared and found to give
comparable results. In practice, the choice of potential will
be a compromise between smoothness and the minimum den-
sity that needs to be used in order to guarantee the quadratic
equation of state. For instance, a pair potential based on the
DPD conservative force weight function requires a density

greater than 3 in reduced units whereas the smooth repulsive
potential (Eq. 15) requires a density of 10 which will give
rise to a greater number of pair interactions to calculate. This
minimum density increases when we change from 3 dimen-
sions to 2 dimensions or the number of components increases
from two to three.

We have extended the mapping between regular solution
theory and DPD (and therefore MD-like DPD) first intro-
duced by Travis et al [16]. for binary mixtures to multicom-
ponent mixtures. The equation for obtaining the repulsive
parameters is formally the same for > 2 components with
the proviso that it is used on each binary pair of species.
The mapping and methodology have been demonstrated for a
equimolar binary mixture known to conform to RST, namely
SnI4 and isooctane. MD simulations were conducted at two
different temperatures giving results broadly in line with the
predictions of the theory, with two almost pure phases present
at both temperatures. The correspondence between DPD and
RST results from each having the same mathematical form for
the Helmoltz energy of mixing. It seems unlikely that DPD
(or DPD-like MD) can yield any deeper physical significance
about phase equilibria though more research is required to
explore this point further.

There is no reason why MD cannot be used in all the
applications which have been so far been explored using
DPD. The advantage of having a far simpler algorithm with-
out the problems connected with stochastic forces is to be
welcomed. The maximum timestep which could be used in
MD simulations of purely repulsive, structureless particles is
controlled by the type of potential function and the integra-
tion algorithm employed. Softer potentials allow for a larger
timestep while smoothness, especially at the truncation point
will provide more accurate trajectories. In this work the RK4
integration scheme was employed to improve accuracy at
larger timesteps. The timestep used in the present work (0.04)
was selected for comparison with earlier DPD publications
and is on the cusp of what is acceptable for the potentials and
densities employed. The DPD potential gave better energy
conservation than the smooth repulsive potential with this
timestep size.
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