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Abstract: Throughout this paper we investigate the effect of a vertical alternative current AC and heat transfer on the
peristaltic flow of a couple stress dielectric fluid (blood flow model) in a symmetric flexible sinusoidal wavy channel. In
order to solve the system of coupled non-linear partial differential equations, a program designed by Mathematica software
"parametric NDSolve package" is used, which pertains to describe the momentum, the energy, and the electric potential that is
obtained from using a regular perturbation method with small amplitude ratio. The numerical formulas of the mean velocity,
the mean temperature, and the mean electric field are computed and the phenomenon of reflux (the mean flow reversal)
is discussed. Moreover, the physical parameters effects of the problem on these formulas are described and illustrated
graphically. The results reveal that the mean time averaged velocity is accelerated in the presence of AC electric field and
decelerated for the couple stress fluid model (a special case of non-Newtonian fluid). The mean time averaged temperature is
high in the presence of an alternative current AC electric field. This results model imply that the physiological role of AC
electric field enhances blood circulation and this might help to eliminate the metabolic waste products and endogenous pains
producing.
Key words: peristaltic transport, dielectric fluid, heat transfer, electric field, couple stress fluid

I. INTRODUCTION

Electro kinetics "Electro-Fluid-Dynamics (EFD) or Elec-
tro Hydrodynamics (EHD) " is the study of the dynamics of
electrically charged fluids, i.e. the motions of ionized parti-
cles or molecules and their interactions with electric fields
with the surrounding fluid. Electro Hydrodynamics EHD cov-
ers the following types of particle and fluid transport mech-
anisms: electrophoresis, electro kinesis, dielectrophoresis,
electro-osmosis, and electrorotation. It appears in many appli-
cations such as enhancement of drying rates, drag reduction,
plasma actuators and gas pumps. Electro Hydrodynamics
EHD equations of motion can be classified to two groups:
hydrodynamic equations and electric field equations. Theo-

retically, Electro Hydrodynamics EHD flow was investigated
by Woodson and Melcher [1]. The problem of the onset of
convective instability in a horizontal layer of a dielectric fluid
under a simultaneous action of a vertical alternative current
AC electric field and a vertical temperature gradient was
examined by Takashima [2, 3]. Also, the effect of vertical
alternative current AC electric field and heat transfer on peri-
staltic flow of a viscous incompressible dielectric liquid sheet
in asymmetrical flexible channel has been investigated by
El-sayed et al. [4].

The temperature is associated with the motion of
molecules within a fluid, being directly related to the kinetic
energy of the molecules, including vibrational and rotational
motion. Heat transfer is the energy transferred between two
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points at different temperatures. It is significant in several
industrial and medical applications such as heat conduction
in tissues, heat transfer due to perfusion of the arterial-venous
blood through the pores of the tissue, metabolic heat gen-
eration, and external interactions such as electromagnetic
radiation emitted from cell phones. Also, thermodynamic
aspects of blood may become crucial in processes like oxy-
genation and hemodialysis when blood is drawn out of the
body. Considering the needs of investigations in the peristaltic
movement of physiological fluids, many authors [5]– [10]
have studied peristaltic flow with heat transfer.

When the additives combine in the fluid, the forces which
exist in the fluid object the forces of additives. This objection
produces a couple force and hence a couple stress is induced
in the fluid. This type of fluid is known as couple stress fluid.
In further investigation, many authors assumed blood to be
a suspension of spherical rigid particles (red cells), this sus-
pension of spherical rigid particles will give rise to couple
stresses in a fluid. Also, the couple stress model plays an
important role in understanding some of the non-Newtonian
flow properties of blood. The theory of couple stress fluids
developed by Stokes [11] has many biomedical, industrial,
and scientific applications.
Lately, a number of studies for a Newtonian and non-
Newtonian fluids with peristalsis have been reported [12]–
[18], also the combined effects of heat transfer and couple
stress fluid (as a special case of non-Newtonian) on the peri-
staltic transport of viscous fluid in a channel have been dis-
cussed by Mekheimer and Abd elmaboud [19] and cowork-
ers [20]– [25].

All the above investigation on peristaltic transport does
not take into account the effect of the couple stress fluid (as a
blood flow model) and heat transfer with alternative current
AC electric field also from the behavior of the couple stress
fluid as a blood model, it is interesting to discuss the effect of
alternative current AC electric field on blood flow.

Owing to the above-mentioned studies, we have inves-
tigated the interaction between the Electro Hydrodynamics
EHD and the couple stress fluid (as a blood flow model) with
heat transfer in a sinusoidal wavy channel (Peristaltic flow)
by considering a small wave number. The velocity character-
istic, temperature distribution, pressure gradient, the critical
pressure and electric potential function are obtained numer-
ically by a program designed by Mathematica 10 software,
including of parametric NDSolve package. A motivation of
the present analysis is the hope that such a problem will be
applicable in many clinical applications.

II. MATHEMATICAL MODEL OF THE PROBLEM

We consider a symmetric two dimensional channel of
uniform width 2d filled with an incompressible dielectric cou-
ple stress fluid. We assume an infinite sinusoidal wave train
traveling along the walls. The lower and the upper walls are
maintained at constant temperatures θ00 and θ10, respectively.
In addition to the temperature gradient, a vertical A.C. elec-
tric field is also imposed across the channel. The lower wall
is grounded and the upper wall is kept at the electric potential
ϕ10 as shown in Figure 1, the wall equation can be defined
as,

h′(x′, t′) = d+ a cos
2π

λ
(x′ − κ

d
t′), (1)

where d , a , λ , κd and t′ are width, amplitude, wavelength,
velocity of the wave and time. In absence of external forces
the equations of continuity and momentum for the flow of an
incompressible dielectric couple stress fluid are given in the
following form [4],

∇.~q = 0, (2)

ρ(
∂~q

∂t
+ (~q.∇)~q) = −∇p′∗ + µ∇2~q − γc∇4~q + ~fe, (3)

Fig. 1. Sketch of the physical model
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∂θ′

∂t′
+ ~q.∇θ′ = κ∇2θ′ + γc(∇~q.∇~q) + φ, (4)

~fe = ρe ~E −
1

2
E2∇ε+

1

2
∇(ρ

∂ε

∂ρ
E2), (5)

where µ, ~q, ρ, p′∗, φ, θ, κ = K
ρc , K, c, ~fe, ρe, ~E, ε and γc are

apparent viscosity of the fluid, velocity vector of the fluid,
density, pressure, dissipation function, temperature, thermo-
metric conductivity, thermal conductivity, specific heat, body
forces of electrical origin per unit volume, free charge density,
electric field, dielectric constant and associated constant with
the couple stress.

Since there is no free charge, the Maxwell’s equation follow-
ing [27] are,

∇ · (ε ~E) = 0,

∇× ~E = 0 or ~E = −∇ϕ′,
(6)

where ϕ′ is the electric potential and ε is the dielectric con-
stant which is assumed to be a function of temperature as
follows [3],

ε = ε0(1− ε(θ′ − θ00)), (7)

where ε0 is the permittivity at vacuum, ε is the thermal ex-
pansion coefficient of dielectric constant.

III. BASIC GOVERNING EQUATIONS

The governing equations for two dimensional motion of this model are:

∂u′

∂t′
+ u′

∂u′

∂x′
+ v′

∂u′

∂y′
= −1

ρ

∂p′

∂x′
+ ν∇2u′ − γc

ρ
∇4u′ +

ε0ε

2ρ
(
∂ϕ′

∂y′
)2
∂θ′

∂x′
,

∂v′

∂t′
+ u′

∂v′

∂x′
+ v′

∂v′

∂y′
= −1

ρ

∂p′

∂y′
+
ν

e
∇2v′ − γc

ρ
∇4v′ +

ε0ε

2ρ
(
∂ϕ′

∂y′
)2
∂θ′

∂y′
,

∂θ′

∂t′
+ u′

∂θ′

∂x′
+ v′

∂θ′

∂y′
= κ∇2θ′ +

ν

ρ

(
2

(
∂u′

∂x′

)2

+ 2

(
∂v′

∂y′

)2

+

(
∂u′

∂y′
+
∂v′

∂x′

)2
)

+
γc
ρ

((
∂2v′

∂y′2
+
∂2v′

∂x′2

)2

+

(
∂2u′

∂y′2
+
∂2u′

∂x′2

)2
)
,

∂

∂y′
[(1− ε(θ′ − θ00))

∂ϕ′

∂y′
] = 0,

(8)

where u′, v′ are the velocity components of the vector q in x′, y′ directions, respectively, and p′ = p′∗ − 1
2 (ρE2 ∂ε

∂ρ ). We

introduce the stream function u′ = ∂ψ′

∂y′ , v = −∂ψ
′

∂x′ , then we find

∂2ψ′

∂t′∂y′
+
∂ψ′

∂y′
∂2ψ′

∂x′∂y′
− ∂ψ′

∂x′
∂2ψ′

∂y′2
= −1

ρ

∂p′

∂x′
+ ν∇2 ∂ψ

′

∂y′
− γc

ρ
∇4 ∂ψ

′

∂y
+
ε0ε

2ρ
(
∂ϕ′

∂y′
)2
∂θ′

∂x′
,

− ∂2ψ′

∂t′∂x′
− ∂ψ′

∂y′
∂2ψ′

∂x′2
+
∂ψ′

∂x′
∂2ψ′

∂y′∂x′
= −1

ρ

∂p′

∂y′
− ν

e
∇2 ∂ψ

′

∂x′
+
γc
ρ
∇4 ∂ψ

′

∂x′
+
ε0ε

2ρ
(
∂ϕ′

∂y′
)2
∂θ′

∂y′
,

∂θ′

∂t′
+
∂ψ′

∂y′
∂θ′

∂x′
− ∂ψ′

∂x′
∂θ′

∂y′
= κ∇2θ′ +

ν

ρ

(
2

(
∂2ψ′

∂x′∂y′

)2

+ 2

(
∂2ψ′

∂y′∂x′

)2

+

(
∂2ψ′

∂y′2
− ∂2ψ′

∂x′2

)2
)

+
γc
ρ

((
∂3ψ′

∂y′2∂x′
+
∂3ψ′

∂x′3

)2

+

(
∂3ψ′

∂y′3
+

∂2ψ′

∂x′2∂y′

)2
)
,

∂

∂y′
[(1− ε(θ′ − θ00))

∂ϕ′

∂y
] = 0.

(9)

For further analysis, we use the following non-dimensional variables and parameters:

x =
x′

d
, y =

y′

d
, u =

u′d

κ
, v =

v′d

κ
, η =

η′

d
, p =

d2p′

ρκ2
,

t =
κt′

d2
, ψ =

ψ′

κ
, θ =

θ′

βd
, ϕ =

ϕ′

E0d
, γ =

L

L2Re
.

(10)
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Using the non-dimensional variables and parameters given above in Eq. (9), we find that the equations which govern the flow
for a dielectric couple stress fluid in terms of the stream function,

∂2ψ

∂t∂y
+
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2 = −∂p
∂x

+
1

Re
∇2 ∂ψ

∂y
− S

Re
∇4 ∂ψ

∂y
+
γ

2
(
∂ϕ

∂y
)2
∂θ

∂x
,

− ∂2ψ

∂t∂x
− ∂ψ

∂y

∂2ψ

∂x2
+
∂ψ

∂x

∂2ψ

∂y∂x
= −∂p

∂y
− 1

eRe
∇2 ∂ψ

∂x
+

S

Re
∇4 ∂ψ

∂x
+
γ

2
(
∂ϕ

∂y
)2
∂θ

∂y
,

∂θ

∂t
+
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
= ∇2θ +

Ec
Re

(
4

(
∂2ψ

∂x∂y

)2

+

(
∂2ψ

∂y2
− ∂2ψ

∂x2

)2
)

+

EcS

Re

((
∂3ψ

∂y2∂x
+
∂3ψ

∂x3

)2

+

(
∂3ψ

∂y3
+

∂2ψ

∂x2∂y

)2
)
,

∂

∂y
[(1− ε(θ − θ00))

∂ϕ

∂y
] = 0,

(11)

where Re = κ
ν = cd

ν is the Reynolds number , L =
ε0E

2
0d

2(εβd)2

µκ is electrical Rayleigh number, L2 = εβd is
adverse temperature gradient, β = θ00−θ10

2d , S2 = γc
ρd2ν is the

couple stress parameter (as a special case of Non Newtonian
fluid), Ec = κ/d2

cβd is the Eckert number, a0 = a
d is the ampli-

tude ratio and α0 = 2πd
λ is the wave number.

The corresponding dimensionless boundary conditions in the
wave frame are

∂ψ

∂y
= 0,

∂ψ

∂x
= −a0α0 sinα0(x− t), ∂

3ψ

∂y3
= 0,

θ =
θ10
βd

, ϕ =
ϕ10

E0d
at y = 1 + η,

∂ψ

∂y
= 0,

∂ψ

∂x
= a0α0 sinα0(x− t), θ =

θ00
βd

,

∂3ψ

∂y3
= 0, ϕ =

ϕ00

E0d
at y = −(1 + η),

(12)

where η = a0 sinα0(x− t).

IV. METHODOLOGY OF THE PROBLEM

We assume that the dimensionless quantities ψ, p, θ and
ϕ can be expanded, respectively, in powers of the amplitude
ratio a0 as follows [26]:

ψ = ψ0 + a0ψ1 + a20ψ2,

θ = θ0 + a0θ1 + a20θ2,

p = p0 + a0p1 + a20p2,

ϕ = ϕ0 + a0ϕ1 + a20ϕ2,

∂∂p

∂x
=
∂p0
∂x

+ a0
∂p1
∂x

+ a20
∂p2
∂x

,

(13)

where ∂p
∂x be the pressure gradient. Substituting (13) into (11)

and (12) and collecting terms of equal powers of a0, we ob-
tain three sets of coupled non linear differential equations
with their corresponding boundary conditions in ψ0, ψ1 and

ψ2. The zero order set of differential equations in ψ0 repre-
sents the steady state and the solution of this problem in the
case of free pumping takes the form,

u0 = 0 , v0 = 0,

θ0(y) = −y +
θ00 + θ10

2βd

ϕ0(y) = − a1
L2

ln(h+ L2y)

p∗0(y) =
γa21

2L2[h+ L2y]
+ b0,

(14)

where a1 = ϕ10L2

E0d ln(1+2L2)
is the externally imposed electrical

field, b0 is an arbitrary constant and h = 1 + L2.
The first order set of differential equations in ψ1 with corre-
sponding boundary conditions are

ψ1 =
1

2
F1(y) exp[iα0(x− t)] + C.C.,

ϕ1 =
1

2
E1(y) exp[iα0(x− t)] + C.C.,

θ1 =
1

2
T1(y) exp[iα0(x− t)] + C.C.,

(15)

where the C.C. denotes the complex conjugate.
Thus, we get the equations,

− S d
6F1(y)

dy6
+ (1 + 3Sα2

0)
d4F1(y)

dy4

+
(
−2α2

0 + iα0Re − 3α4
0S
) d2F1(y)

dy2

+
(
−iα3

0Re + α4
0 + Sα6

0

)
F1(y)

− iReα0L2a1
2γ

(h+ L2y) 3
T1(y)

− iReα0a1γ

(h+ L2y)

dE1(y)

dy
= 0,

d2T1(y)

dy2
+
(
iα0 − α2

0

)
T1(y)− iαF1(y) = 0,

d

dy

(
(h+ L2y)

dE1(y)

dy
+
a1L2T1(y)

(h+ L2y)

)
= 0.

(16)
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With the boundary conditions
dF1

dy
(±1) = 0,

F1(±1) = ±1,

d3F1

dy3
(±1) = 0,

T1(±1) = ±1,

E1(−1) = −a1,

E1(1) =
a1

1 + 2L2
.

(17)

The second order set of differential equations in ψ2 with their
corresponding boundary conditions are

ψ2 =
1

2
[F20(y) + F2(y) exp [iα0(x− t)] + C.C.] ,

ϕ2 =
1

2
[E20(y) + E2(y) exp [iα0(x− t)] + C.C.] ,

ϕ2 =
1

2
[T20(y) + T2(y) exp [iα0(x− t)] + C.C.] .

(18)

Hence, the steady part differntial equations for F20, T20 and
E20 takes the form

− S d
5F20

dy5
+
d3F20

dy3
=
iReα0

2

[
−F1

d2F1
∗

dy2
+ F1

∗ d
2F1

dy2
+

a1γ

h+ L2y

(
T1
dE1

∗

dy
− T1∗

dE1

dy

)]
+ 2c20,

d2T20
dy2

=
iα0

2

(
dF1

∗

dy
T1 −

dF1

dy
T1
∗ − dT1

∗

dy
F1 +

dT1
dy

F1
∗
)
− Ec
Re

[4α2
0

dF1

dy

dF ∗1
dy

+
d2F1

dy2
d2F ∗1
dy2

+

α4
0F1F

∗
1 + α2

0

(
F ∗1

d2F1

dy2
+ F1

d2F ∗1
dy2

)
]− EcS

Re
[α4

0

dF1

dy

dF ∗1
dy

+ α2
0

d2F1

dy2
d2F ∗1
dy2

+
d3F1

dy3
d3F ∗1
dy3

+

α6
0F1F

∗
1 − α2

0

(
d3F1

dy3
dF ∗1
dy

+
d3F ∗1
dy3

dF1

dy

)
]− α4

0

(
F ∗1

d2F1

dy2
+ F1

d2F ∗1
dy2

)
,

d

dy

[
(h+ L2y)

dE20

dy
− L2

2

(
dE1

dy
T1
∗ +

dE1
∗

dy
T1

)
+
a1L2T20
h+ L2y

]
= 0,

(19)

with boundary conditions

dF20

dy
(±1) = ∓1

2

(
d2F1

dy2
(±1) +

d2F ∗1
dy2

(±1)

)
,

d3F20

dy3
(±1) = ∓1

2

(
d4F1

dy4
(±1) +

d4F ∗1
dy4

(±1)

)
,

T20(±1) = ∓1

2

(
dT1
dy

(±1) +
dT ∗1
dy

(±1)

)
,

E20(−1) = −a1L2

2
+

1

2

(
dE1

dy
(−1) +

dE∗1
dy

(−1)

)
,

E20(1) = − a1L2

2(h+ L2)
− 1

2

(
dE1

dy
(1) +

dE∗1
dy

(1)

)
.

(20)

The program was designed by using Mathematica 10 soft-
ware including the use of parametric ND solve package to
simulate the numerical solutions of the system of the partial
differential equations (16), (17), (19) and (20).
Thus, the mean time-averaged velocity, the mean time-
averaged heat and the mean time-averaged electric potential
are respectively calculated by using the following equations

u(y) =
1

2π

∫ 2π

0

u(y, t)dt = u0(y) +
a20
2
F́20(y), (21)

θ(y) =
1

2π

∫ 2π

0

T (y, t)dt = θ0(y) +
a20
2
T́20(y), (22)

ϕ(y) =
1

2π

∫ 2π

0

ϕ(y, t)dt = ϕ0(y) +
a20
2
É20(y). (23)

V. VALIDATION OF RESULTS

We compare our numerical solution (using Parametric-
NDSolve) with the analytical results obtained by Fung [26].
We find that when the couple stress parameter tends to zero
(Newtonian fluid) and the electrical Rayleigh number tends
to zero (No electric field), our numerical results are those as
obtained by Fung and Yih [26] see Tab. 1.

VI. GRAPHICAL RESULTS AND DISCUSSION

The purpose of these numerical computations is to illus-
trate the influence of various governing physical parameters,
such as couple stress parameter S, pressure gradient ∂p2

∂x ,
electric Rayleigh number L, electrical parameter a1 , Eckert
number Ec, and Reynolds number Re on the mean time-
averaged velocity, temperature and electric potential.

This section is divided into three subsections. In the first
subsection, the effects of the various parameters are dis-
cussed on the mean time-averaged velocity and the mean
time-averaged temperature. In the second subsection, we dis-
cuss the effects of the various parameters on the mean time-
averaged electric potential. Moreover, the critical pressure
gradient for reflux is illustrated in the third subsection.
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a) b)

Fig. 2. Effect of the parameter a1 on the distribution of the mean velocity for Re = 5, L2 = 0.5, α0 = 0.5, ∂p2
∂x

= −1.7, L = 1000 and
(a) Newtonian fluid (S = 0), (b) S 6= 0.

a) b)

Fig. 3. Effect of the Raleigh parameter on the distribution of the mean velocity for R = 5, L2 = 0.5, α0 = 0.5 and (a) Newtonian fluid
(S = 0), a1 = 0.1, ∂p2

∂x
= 1. (b) S = 2, a1 = 0.9, ∂p2

∂x
= −1.7

Fig. 4. Effect of the pressure gradient on the distribution of the mean velocity for L = 0, L2 = 0.5, S = 0.2, Re = 10, a1 = 0, and
α0 = 0.5
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a) b)

Fig. 5. Variation of the mean temperature vs y for L2 = 0.5, a1 = 0.5, a0 = 0.3, ∂p2
∂x

= 10, α0 = 0.5 and
(a) different values of Eckert number Ec and Reynolds number Re for L = 2000, S = 3. (b) different values of couple stress parameter S

and Rayleigh number L for Ec = 1, Re = 1

a) b)

Fig. 6. Variation of the mean electric vs y for L2 = 0.5, a1 = 0.5, a0 = 0.4, ∂p2
∂x

= 10, α0 = 0.5 and
(a) different values of Eckert number Ec and Rayleigh number L for Re = 5, S = 0.2. (b) different values of couple stress parameter S

and Reynolds number Re for Ec = 1, L = 4000
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Tab. 1. Comparison between analytical and numerical method on the mean time-averaged velocity u(y) R = 1, α0 = 0.1.

u(y) u(y)

y Fung and Yih [26] (Numerical solution) error
at S = 0 and L = 0

−1.0 3.004063587 3.004063594 10−7

−0.8 3.364037470 3.364037460 10−7

−0.6 3.643999025 3.643999016 10−7

−0.4 3.843976610 3.843976592 10−6

−0.2 3.963970084 3.963970063 10−7

0.0 4.003969599 4.003969578 10−7

0.2 3.963970084 3.963970065 10−7

0.4 3.843976610 3.843976600 10−7

0.6 3.643999025 3.643999021 10−7

0.8 3.364037470 3.364037469 10−7

1.0 3.004063587 3.004063590 10−7

VI. 1. Mean velocity and temperature

Figs. 2–4 elucidate the variations of the mean velocity
distribution u(y) with y for various values of the indicated
parameters. Fig. 2 (a) reveals that in the absence of the elec-
trical field and the couple stress parameter i.e. the electrical
parameter a1 = 0 and the couple stress parameter S = 0
(Non-Newtonian fluid), the behavior of the mean velocity
u(y) is symmetric and becomes asymmetric for a1 6= 0,
where the velocity increases towards the upper wall of the
channel while decreases towards the lower one; this occurs
according to the boundary conditions of the electric potential
ϕ(y). Interpretation physicist, the existence of the electric
field decreases the density of the fluid which makes the fluid
molecules freely moving, and this leads to an increase in the
fluid velocity. In Fig. 2 (b), we observe that for the couple
stress parameter S 6= 0 (Newtonian fluid), the effect of the
electric field parameter a1 = 0 makes a slight difference on
the fluid velocity at the walls. In addition to this, the behavior
of the mean velocity u(y) increases with the increase of the
electrical parameter a1 but decreases with the increase of the
couple stress parameter S, i.e. the increases of the electrical
parameter accelerate the flow velocity. Fig. 3 (a,b) discusses
the effect of the electric Rayleigh number L on the distribu-
tion of the mean velocity u(y), where for the reversal flow
case (∂p2∂x = 1, Newtonian fluid S = 0), the reversal flow
decreases as an electric Rayleigh number L increases for the
region near to the upper wall (ϕ(y) 6= 0) but a reverse effect
occurs for the region near to the lower one (ϕ(y) = 0), i.e.
a reduction in the reversal flow occurs under the influence
of the electric potential as shown in Fig. 3 (a). When the
couple stress parameter S 6= 0, it is found that the effect of
the electric Rayleigh number L on the mean velocity u(y)
has a slight effect for a closer region near the walls. Also, we
note that the mean velocity u(y) increases with a large value

of the electric Rayleigh number L as seen in Fig. 3 (b). Fig. 4
shows the variety of u(y) vs y for different values of the
pressure gradient ∂p2∂x and we can see that as ∂p2

∂x increases,
a reflux flow ( back flow) will be seen and it is important to
note that the reflux occurs in the central region of the channel
and when the pressure gradient attains a certain value (critical
value, ∂p∂x cr.value

= 1.2279 ) the fluid velocity at the channel
center (y = 0) will be zero.

Fig. 5 (a,b) are sketched to study the temperature distri-
bution T (y) for different values of the problem parameters.
Fig. 5 (a) is plotted to show the variation of the mean time-
averaged temperature T (y) for different values of the Eckert
number Ec and the Reynolds number Re while all other pa-
rameters are kept fixed. It is noticeable that the higher value
of the Eckert number Ec leads to a rise in the values of the
temperature T (y), this is compatible with physical phenom-
ena, but a reverse effect is noted for different values for the
Reynolds number Re. Fig. 5 (b) elucidate the effect of the
electric Rayleigh number L and the couple stress parameter S
on the mean temperature T (y), it is observed that the higher
value of the Rayleigh number L leads to an increase in the
mean temperature T (y), but an opposite effects as the cou-
ple stress parameter S increases and for larges values of the
Rayleigh number L and the couple stress parameter S, a very
small variant occurs.

VI. 2. The mean time-averaged electric potential

Fig. 6 (a,b) illustrates the nature of the mean time-
averaged electric potential ϕ(y) for different values of the
problem parameters. Fig. 6 (a) shows that the greater values
of the Rayleigh number L and the Eckert number Ec increase
the mean time-averaged electric potential near the region of
the lower wall but reduce it in the region near the upper wall.
From Fig. 6 (b), we have observed that the increasing of the
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a) b)

Fig. 7. Variation of the critical reflux op pressure vs α0 for L2 = 0.1 and a1 = 0.5, a0 = 0.4, ∂p2
∂x

= 10, α0 = 0.5 and
(a) different values of couple stress parameter S and Reynolds number Re for L = 10000, a1 = 0.5.

(b) different values of electrical parameter a1 and Rayleigh number L for Re = 5, S = 0.8

couple stress parameter S and Reynolds number Re produce
an increase in the mean time-averaged electric potential ϕ(y)
near the upper wall and an opposite behavior near the lower
wall. As expected from Fig. 6 (a,b), the boundary conditions
ϕ(y) (equ.20) are satisfied at the walls.

VI. 3. Critical pressure gradient for reflux

The study of the critical pressure gradient for reflux is
very important because the bacteria and some other materials
sometimes move from the bladder to the kidney or from one
kidney to the other in the direction opposite to the direction
of urine flow. This phenomenon is referred to as "ureteral
reflux" by physiologists following [26]. The riskiness of dis-
eases such as tuberculosis, interstitial cystitis and duct stone
are treated due to this reflux following [26]. Fig. 7 depicts
the critical pressure gradient ( ∂p∂x )2Cr.Pr which is plotted
against the wave number α0 in the range [0- 0.9]. From the
behavior of Fig. 7, we observe that the relation between the
critical pressure gradient ( ∂p∂x )2Cr.Pr and wave number α0 is
inverse, i.e. the increase of the wave number reduces the criti-
cal pressure values. Fig. 7 (a) shows the effect of the Reynolds
number Re and the couple stress parameter S on the critical
pressure gradient ( ∂p∂x )2Cr.Pr. It is found that the increase of
the Reynolds number Re reduces the critical pressure gradi-
ent and an opposite effect with the increase of couple stress S.
The effect of the electrical parameter and the electric Rayleigh
number on the critical pressure gradient is shown in Fig. 7 (b),
it can be conjectured that the increase of the electric Rayleigh
number and electrical parameter increase values of the critical
pressure gradient.

VII. CONCLUSION

A numerical study for the peristaltic flow of a couple
stress dielectric fluid (as special case of non-Newtonian) with

heat transfer and a vertical alternative current AC in a sym-
metric flexible sinusoidal wavy channel have been obtained.
A parametric NDSolve package is used to solve a system of
coupled non-linear partial differential equations. Graphs of
mean average velocity, temperature and electric potential are
drawn for various values of the couple stress parameter S, the
pressure gradient ∂p2∂x , electric Rayleigh number L, electric
parameter a1, Eckert number Ec and the Reynolds number
Re. The main findings can be summarized as follows:

• AC electric field accelerates the blood flow velocity
and that leads to enhanced blood circulation, which is
useful to eliminate the metabolic waste products and
endogenous pains producing.

• In the absence of the couple stress parameter (New-
tonian fluid), the electrical parameter a1 and electric
Rayleigh number L have an increasing effect on the
mean velocity in the region near the upper wall of the
channel while it decreases in the region near to the
lower one.

• when S 6= 0. The average velocity is higher in the
presence of an alternative current AC electric field.

• the reflux phenomena of the fluid are less common for
a fluid with a potential difference than that without a
potential difference.

• The second order pressure gradient ∂p2∂x has a signifi-
cant influence on the reflux mean velocity.

• The couple stress parameter has a decreasing effect on
the mean velocity.

• Mean average temperature increases as the Eckert num-
ber and the electric Rayleigh number L increase but a
reverse effect for the Reynolds number and the couple
stress parameter.

• The greater of the Eckert number and the electric
Rayleigh parameter increase the mean time-averaged
electric potential in the region near the lower wall but
reduces in the region near the upper one and a reverse
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effect for the Reynolds number and the couple stress
parameter.
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