
CMST 23(2) 85–91 (2017) DOI:10.12921/cmst.2017.0000014

Analytical Representations of Divisors of Integers
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Abstract: Certain analytical expressions which ”feel“ the divisors of natural numbers are investigated. It is shown that these
expressions encode to some extent the well-known algorithm of the sieve of Eratosthenes.
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I. NOTATION AND CONVENTIONS

Throughout this paper we shall adopt the following nota-
tion and conventions: n is a given natural number and k is a
possible divisor of n. If k actually divides n then j = n/k.
Let f(x) denote any real analytic function defined in the
neighborhood of the origin by a power series

f(x) =

∞∑
j=0

cjx
j (1)

with all cj 6= 0 (i = 1, 2, 3...). It will be shown that, with
appropriate assumptions, the exponent of x in the expansion
(1) around zero j labels half-lines or rays of divisors (see
below).

II. MOTIVATION

The theory of divisors of integers is the cornerstone of
the elementary number theory. It is convenient to introduce
the characteristic function for divisors:

Definition. For any n, k ∈ N

_
αnk :=

{
1 if k | n
0 if k - n

(2)

Another quite obvious (and rather useless in numerical
calculations) representation of (2) is:

_
αnk =

1

Γ (1−mod (n, k))
(3)

where Γ(s) denotes the Euler gamma function and mod (n, k)
gives the remainder on division of n by k. In fact, (3) is more
general than (2) since it may be calculated also for non-integer
or even complex values of n and k, but this leads to some
interpretation difficulties which we shall not discuss here.

Consider the following expression for some natural num-
bers n and k:

αnk =
dn

dxn
ex

k

∣∣∣∣
x=0

(4)

We will prove the following

Theorem. Apart from a trivial normalization factor, αnk
defined in formula (4) is equal to

_
αnk defined in (4).

Proof. Expanding the exponential function in (4) in power
series and performing term-by-term differentiation we get:

αnk =
dn

dxn

∞∑
j=0

(
xk
)j

j!

∣∣∣∣∣∣
x=0

=

∞∑
j=0

1

j!

dn

dxn
xjk

∣∣∣∣∣∣
x=0

(5)
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Recall the general formulas for the n-th derivative of xp with
respect to x

dn

dxn
xp =

Γ (p+ 1)

Γ (p+ 1− n)
xp−n = n!

(
p

n

)
xp−n (6)

dn

dxn
xp = (−1)

n Γ (n− p)
Γ (−p)

xp−n (7)

where the second formula stems from properties of the gamma
function and is suitable for integer negative p (see e.g. [4]).
Note that the order of derivative n does not have to be integer
but for integer n both (6) and (7) reduce to the well-known
elementary differentiation rule. Using (6) we get:

αnk =

∞∑
j=0

1

j!

Γ (jk + 1)

Γ (jk + 1− n)
xjk−n

∣∣∣∣∣∣
x=0

=

=n!

∞∑
j=0

1

j!

(
jk

n

)
xjk−n

∣∣∣∣∣
x=0

(8)

By simple inspection of (8) we see why this expression ”feels“
the divisors of the integer n. Indeed, when taking the limit
x → 0 the only non-zero term in the series appears when
jk = n for some integer j, and this occurs if and only if
k divides n. All terms with jk > n disappear in the limit
x → 0 whereas those with jk < n, although singular in
x = 0, vanish since the binomial coefficient term is zero.
Therefore, in the summation (8) at most only one term can
survive in the limit process.�

The above reasoning might appear far too excessive. How-
ever, it guarantees that among divisors none has been omitted.
It should also be stressed that it may be used as a starting
point for various generalizations since n does not need to be
integer.

It is easy to guess the normalizing factor:

αnk =
1

n!

(n
k

)
!

dn

dxn
ex

k

∣∣∣∣
x=0

(9)

Using the same reasoning we can derive similar expression
for αnk:

αnk =
(k!)

n/k

n!

(n
k

)
!

dn

dxn
e

xk

k!

∣∣∣∣
x=0

(10)

III. SIMPLE EXAMPLE

In a natural way coefficients αnk may be regarded as a
square matrix of arbitrarily large dimension where the run-
ning integer n labels rows and the potential divisor k labels
columns. The entries of this matrix are either one or zero

depending on whether k divides n or not. This matrix is al-
ways triangular, since of course no divisor can exceed a given
number, and its determinant (for any dimension) is 1.

n�k 1 2 3 4 5 6 7 8 9 10 ...
1 1 0 0 0 0 0 0 0 0 0 ...
2 1 1 0 0 0 0 0 0 0 0 ...
3 1 0 1 0 0 0 0 0 0 0 ...
4 1 1 0 1 0 0 0 0 0 0 ...
5 1 0 0 0 1 0 0 0 0 0 ...
6 1 1 1 0 0 1 0 0 0 0 ...
7 1 0 0 0 0 0 1 0 0 0 ...
8 1 1 0 1 0 0 0 1 0 0 ...
9 1 0 1 0 0 0 0 0 1 0 ...
10 1 1 0 0 1 0 0 0 0 1 ...
... ... ... ... ... ... ... ... ... ... ...



(11)

(Matrix (11) is closely related to the Redheffer matrix, see
e.g. [5], [6].) Introducing

σ0(n) :=

n∑
k=1

αnk (12)

we see that σ0(n) just counts the number of all divisors of a
given n including both unity and n itself.

It is known (see e.g. [1]) that the inverse of matrix (11) is:

βnk =

{
µ
(
n
k

)
if k | n

0 if k - n
(13)

where µ denotes the Möbius function:

µ(n) =


0 if n has squared prime factor

+1 if n is a square-free positive
integer with an even number of prime factors

−1 if n is a square-free positive
integer with an odd number of prime factors

(14)

n�k 1 2 3 4 5 6 7 8 9 10 ...
1 1 0 0 0 0 0 0 0 0 0 ...
2 −1 1 0 0 0 0 0 0 0 0 ...
3 −1 0 1 0 0 0 0 0 0 0 ...
4 0 −1 0 1 0 0 0 0 0 0 ...
5 −1 0 0 0 1 0 0 0 0 0 ...
6 1 −1 −1 0 0 1 0 0 0 0 ...
7 −1 0 0 0 0 0 1 0 0 0 ...
8 0 0 0 −1 0 0 0 1 0 0 ...
9 0 0 −1 0 0 0 0 0 1 0 ...
10 1 −1 0 0 −1 0 0 0 0 1 ...
... ... ... ... ... ... ... ... ... ... ...


(15)

Note that the numbers in (15) when summed in rows give
zero except for the first row which stems from the following
identity: ∑

d|n

µ(d) = δn,1 (16)

Matrices (11) and (15) are visualized in Fig. 1.
Somewhat similar but purely qualitative results have been

published in [3].
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Fig. 1. Graphic distribution of divisors (11) for n = 1, 2, ..., 50 as
a square matrix (left panel). Each blue square denotes +1. In the
inverse matrix (15) blue square denotes +1 and red square denotes

−1 (right panel)

IV. GENERAL CASE

The particular choice of the exponential function in (4) is
not crucial to our reasoning. Indeed, instead of this function
we can take any regular function f (x) provided that it has all
non-zero coefficients in its power series expansion

f (x) = c0+c1x+c2x
2+c3x

3... ci 6= 0 for i = 1, 2, 3, ...
(17)

Thus in general we have (up to the appropriate normalizing
factor)

αnk =
dn

dxn
f
(
xk
)∣∣∣∣
x=0

(18)

Denote the composition of f with monomial xk (for each
k ∈ N)

gk (x) ≡ f
(
xk
)

Obviously gk is also analytic around zero and its power series
at the origin has the form:

gk (x) =

∞∑
j=0

cjx
jk =

∞∑
j=0

g
(0)
k

n!
xn

Using the identity principle for powers series we immedi-
ately get that g(0)

k 6= 0 if and only if n = jk for some j, or
equivalently, if and only if k is a divisor of n.

For example, taking

f (x) =
x

1− x
= x+ x2 + x3 + ... (19)

we get:

αnk =

∞∑
j=1

(
jk

n

)
xjk−n

∣∣∣∣∣∣
x=0

(20)

or simply

αnk =

∞∑
j=1

xjk−n

(jk − n)!

∣∣∣∣∣∣
x=0

(21)

Taking

f (x) = log (1− x) = −x− x2

2
− x3

3
− ... (22)

we get:

αnk = (−1)
n/k n

k

∞∑
j=1

(−1)
j

j

(
jk

n

)
xjk−n

∣∣∣∣∣∣
x=0

(23)

The general explicit formula for αnk using arbitrary func-
tion f satisfying (17) is:

αnk =
(n
k

)
!

1

f (n/k) (0)

∞∑
j=0

f (j) (0)

j!

(
jk

n

)
xjk−n

∣∣∣∣∣∣
x=0

(24)
where f (j) (0) denotes the j-th derivative of f with respect
to x taken at x = 0. (If n/k in (24) is non-integer then the
value of fractional derivative f (n/k) (0) is unimportant since
in this case the sum vanishes.)

The table below contains normalizing factors for αnk,
for several different choices of function f(x), obtained us-
ing (24).

f (x) = ex αnk = n
k ! 1
n!

dn

dxn f
(
xk
)∣∣
x=0

f (x) = ln (1− x) αnk = −nk
1
n!

dn

dxn f
(
xk
)∣∣
x=0

f (x) = x
1−x αnk = 1

n!
dn

dxn f
(
xk
)∣∣
x=0

f (x) =
√

1 + x αnk = − (−2)n/k

(2 n
k−3)!!

n
k ! 1
n!

dn

dxn f
(
xk
)∣∣
x=0

f (x) = 1√
1+x

αnk = (−1)
n/k Γ( 1

2 )
Γ(n

k + 1
2 )

n
k ! 1
n!

dn

dxn f
(
xk
)∣∣
x=0

f (x) = (1 + x)
−3/2

αnk = (−2)n/k

(2 n
k +1)!!

n
k ! 1
n!

dn

dxn f
(
xk
)∣∣
x=0

f(x) = W (x) αnk = (−1)
n/k−1 n

k !

(n
k )

n
k

−1
1
n!

dn

dxn f
(
xk
)∣∣
x=0

f (x) = 1
1−x−x2 αnk = 1

Fn
k

+1

1
n!

dn

dxn f
(
xk
)∣∣
x=0

(W (x) is the Lambert W -function and Fn in the last row denotes the n-th Fibonacci number.)
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Fig. 2. Distribution of divisors of integers computed from αnk. This figure illustrates how various terms in the sum (27) contribute to the
whole pattern of divisors. Each term corresponds to a ray of divisors. Rows are labelled by consecutive integers n and columns are labelled
by potential divisors k. Each colored disc means that given k actually divides n, otherwise there is a small black circle. To better visualize
the whole pattern, discs are in 3 different colors and lines connecting them are drawn. Of course, above the diagonal (k > n) there cannot

be any divisors

V. INTERPRETATION

Let us now explain in more detail how it all works. The
thing is that all formulas for αnk presented so far encode, at
least to some extent, the ancient algorithm known as the sieve
of Eratosthenes.

Indeed, consider as f(x) the function f(x) = x/(1 −
x) and let us temporarily restrict ourselves to the linear
case: f(x) ≈ x. According to the general formula (18) we
have

αnk =
1

n!

dn

dxn
f
(
xk
)∣∣∣∣
x=0

=

=
1

n!

dn

dxn
xk
∣∣∣∣
x=0

=

(
k

n

)
xk−n

∣∣
x=0

= δk,n

(25)

and this produces a single line of ones on the diagonal n = k
in the divisor matrix (11) – cf. Fig. 2 above. This is equiv-

alent to the trivial statement that all integers are divisible
both by one and by themselves. Let us further consider more
precise approximation f(x) ≈ x + x2. We get from (18)
another sequence of ones on the line n = 2k. This is equiva-
lent to selecting all even integers n and adding to the divisor
matrix (11) their divisors n/2. Taking into account higher
powers of x we select all numbers n which are multiplies of
3, 4, 5, ... and this adds to the matrix further lines of divisors:
n/3, n/4, n/5, respectively.

Proceeding in the same way we finally arrive at the full
expansion of f(x):

f(x) =
x

1− x
=

∞∑
j=1

xj (26)

which produces the entire sequence of lines n = jk labelled
by parameter j = 1, 2, 3, .... In this way we have selected and
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Fig. 3. Various families of parabolas (31) for µ = 1, 2, 3 and ν = 1, 2, 3. Step δ (32) described in the main text is also indicated

Fig. 4. Family of parabolas (31) for µ = 1 and ν = 1 (red), 2 (orange), 3 (green),and 4 (cyan) for n < 100. For clarity of the plot parameter
i assumes only 50 consecutive values. Prime numbers among ns are indicated by vertical lines
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Fig. 5. Family of parabolas (31) for µ = 1 and ν = 1 (red), 2 (yellow) and 3 (green) around n = 740. For clarity of the plot parameter
i assumes only 5 consecutive values. Prime numbers among ns are indicated by vertical lines

visualized all divisors for all integers. It is clear that there
are certain well-defined numbers n (marked in bold in Fig. 2)
which have exactly two divisors: unity and themselves, i.e.
prime numbers: 2, 3, 5, 7, 11, 13, ... At the same time, we see
the importance of condition ci 6= 0 in (17) since even a single
coefficient ci = 0 would cause a skipping of certain divisors.
In view of this the characteristic function for divisors may
also be written in a very natural form as a sum over Kronecker
deltas:

αnk =

n∑
j=1

δjk,n (27)

Note that combining (12), (18) and (26) gives:

σ0(n) :=

n∑
k=1

αnk =
1

n!

dn

dxn

∞∑
k=1

xk

1− xk

∣∣∣∣∣
x=0

(28)

Hence
∞∑
k=1

xk

1− xk
=

∞∑
n=1

σ0(n)xn (29)

which is consistent with the theory of Lambert series (see
e.g. [2]) which is the generating function for the sequence
σ0(n) where σ0(n) is the total number of divisors for a given
integer n.

VI. CONCLUDING REMARKS

Let us add some elementary comments at the end of this
note. As we have seen, all divisors k of integers n lie on
rays passing through the origin of the coordinate system on
the (n, k) plane and are labelled by an integer parameter
j = 1, 2, 3...

n = jk (30)

We have also seen that this simple condition has a natural
interpretation since j may be identified with the exponent in
xj in the expansion (17). The key thing is that these rays must
pass through certain points of an integer lattice and only then
can a potential divisor be an actual divisor. For large n these
rays typically get closer and closer to one another. Therefore,
we qualitatively see why it is so difficult to factorize large
integers.

Moreover, numerical experiments suggest that all divisors
lie on countable families of parabolas passing through the
origin (see Figures 3, 4 and 5 below). These parabolas are
”quantized“ in the sense that each family is characterized by
two discrete parameters µ = 1, 2, 3... and ν = 1, 2, 3... and
inside any family parabolas are labelled by another integer
parameter i:

g
(µν)
i (k) =

µ

ν
k2 − i

ν
k (31)
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Careful simulations using Mathematica revealed that parame-
ter i assumes equidistant values with integer constant step:

δ = gcd(µ, ν) (32)

starting from i = µ+ ν where gcd denotes greatest common
divisor, i.e. i = µ+ ν, µ+ ν + δ, µ+ ν + 2δ, ...

As far as I am aware the unexpected parabolas in the
distribution of divisors have been independently noticed by
Jeffrey Ventrella (see his popular book [7], page 33) but with
no quantitative considerations.

Finally, it should be stressed that, unfortunately, expres-
sions presented in this note do not tell us much about distribu-
tion of primes. They are even not very suitable for numerical
calculations for large n, therefore they may be treated merely
as a curiosity. Nevertheless, we have shown some unexpected
relationship between the number theory and calculus.
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