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Abstract: Some integrals of the Glaisher-Ramanujan type are established in a more general form than in previous studies.
As an application we prove some Ramanujan-type series identities, as well as a new formula for the Dirichlet beta function
at the value s = 3. We also present a Mathematica program calculating values of beta function at odd positive arguments.
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I. INTRODUCTION

In the paper by Glasser [1], the work of Glaisher [2] and
Ramanujan [3] was extended to present further evaluations
of the integral

/000 " (ix) f (z)dz, (N))

for integers n > 1, and particular elementary functions f(x).
Here, as usual, the Dedekind-eta function is given by
oo

n(iz) =¢'** T 1

n>1
where ¢ = e~ 2™® for real > 0. For some commentary on
integrals of this type we refer the reader to [1, 3] and refer-
ences therein.

In this note we restrict our attention to the case f(x) =
e~V cos(cx), and f(z) = =¥’ sin(cz), in (1.1). This pro-
vides a refinement to integrals like (8) of [1] and (19)—(28)
in [2]. That is, we shall prove:

Theorem I. 1 foor b > 0and c > 0 we have
0 (idx /)

1.2)

e b’ sin(cz)dx =

:E sinh(%A(b, C)) S]n( (b C))
4 SinhZ(gA(b,c)) —|—COS2( B(b c))

0 (13)

/ 3(idx/m)e”

s cosh(ZA(b, c)) cos(§
4 cosh*(Z A(b, c)) —

cos(c:v)dx =

B(b;¢))
B(b,c))’

= Vbt +c2 + b, and 2B(b,c)? =

1.4

sin®(%

where 2A(b, c)?
Vbt + 2 —
Note that ¢ — 0 of (1.4) gives (14) of [1]:

1
cosh(/7y)

Formally integrals (I.3) and (I.4) can be obtained from the
results of Glasser inserting b? + ic instead of b.

From here we can easily extend the work of Glasser
to obtain evaluations of integrals involving 7" (iaz)n* (ibz),
for integrals n, k > 1, and a,b € R. Throughout this paper
we define

/ 03 (ida /m)e Y dr =
0

0, ifn=0 (mod?2),
x(n) =141, ifn=1 (mod4), (L.5)
-1, ifn=3 (mod4).
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Theorem 1. 2 For ¢ > 0 we have

/°° n°(idx /) sin(cz)dx =
0

_T D sinh(Z A(n, c)) sin(§ B(n,c)) (1.6)
4 ,;X( ) sinh®(Z A(n, c)) + cos?(3B(n, c))’
/°° 7]6 (idx /) cos(cx)dx =
(L7)

cosh(F A(n, c)) cos(5B(n,c))

0
4 Z X(n)ncoshz(gA(n, ¢)) —sin*(ZB(n, )

n>1 2

Unfortunately, as we observe, the right sides of (I1.4) and
(1.5) are not expressible in terms of elementary functions like
those of Glasser’s [1] and Glaisher’s [2]. However the terms
in the series on rhs of eqs. (1.6), (1.7) are quickly decreas-
ing with n. We can obtain two types of approximations: in
one form we keep only a finite number of terms in the series,
in the second approximation we skip in the denominators
the terms sin®(Z B(n,c)) and cos?(3B(n,c)) in compari-
son with hyperbolic sinus and hyperbolic cosinus leaving the
sum of terms x(n)nsin(5B(n,c))/sinh((5A(n,c)) and
x(n)ncos(5B(n,c))/cosh((5A(n,c)) respectively. Be-
cause sinh(z) ~ exp(x)/2 for large x thus in the infinite
sum only several first terms can be maintained giving practi-
cally closed expressions for integrals on lhs of egs. (I.6) and
@L.7):

/°° n°(idx /) sin(cx)dx ~
0

. 1.8)
T sin(§B(1,c)) B sin(§ B(3,c))
~1 (smh(gA( ) smh(ZA(3.0) | )
/Oo n°(idx /) cos(ca)dx ~
’ 19)

We have checked numerically that these approximations are
already very accurate for a few first terms. We have used
the free package PARI/GP [4]. It has a built-in procedure for
calculating the 7 function as well as the procedure for nu-
merical integration. Because 7 is not defined for 0 we have
used as the lower limit of integration on lhs in (I.6) and (1.7)
the value z = 0.00000001 and we have checked that tak-
ing for example z = 0.00001 produces practically the same
numbers. In Figures 1-4 we present the accuracy of such ap-
proximations for ¢ € (0,20), for ¢ — oo the integrals and
series on both sides of (1.6) and (I.7) tend to zero. Surpris-
ingly, such simplifications very accurately reproduce values
of integrals, thus in fact we can say we have closed forms for
them.

0.2 —
i integral on Ihs of (1.6)
rhs of (1.6) with terms n=1 and n=3
0-15 rhs of (1.6) with terms n=1, n=3 and n=5
n 10° =
0.1 1o
1 10° —;
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Fig. 1. The plot of lhs of (I.6) compared with the sum of terms

n = 3 and n = 5 on rhs of (1.6). In the inset the plot of the absolute

value of the difference of the integral and approximation forn = 5
is presented on the logarithmic y-axis

0.3 — integral on lhs of (1.7)
rhs of (1.7) with terms n=1 and n=3
1\ ———— rhsof (1.7) with terms n=1, n=3 and n=5
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Fig. 2. The plot of lhs of (I.7) compared with the sum of terms

n = 3 and n = 5 on rhs of (I.7). In the inset the plot of the absolute

value of the difference of the integral and approximation for n = 5

is presented on the logarithmic y-axis. The cusp around ¢ = 14 is
due to the change of sign of the difference

We can also obtain other examples using the same pro-
cedure as Glasser, by appealing to different theta series and
using Theorem I.1. In particular, by Euler’s identity [5] we
have the following:
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Theorem I. 3 For ¢ > 0 we have

/000 n (idx /m)n(i12x /) sin(cx)dz = 1 Z(—l)”

neZ
" cosh(§A(6n +1,c)) cos(5B(6n + 1,c))
cosh®(ZA(6n + 1,¢)) —sin®(ZB(6n + 1,¢))
(1.10)

Again we can approximate the above series by following
terms:

/000 0 (ida /m)n(i122 /7)) sin(cx)dx ~

T cos(3B(5,¢))  cos(5B(1,c))

Z( a cosh(FA(5,c))  cosh(FA(1,c)) (I.11)
B cos(5B(7,¢)) )

cosh(FA(7,c))

The single middle term above already gives the values of
the integral on lhs of (I.10) with a few percent accuracy, see
Fig. 5. Both sides of (I.10) tend to zero when ¢ — co.

II. THE PROOF

To prove Theorem 1.1 we require some simple series
evaluations that we were unable to find in the literature. Our
methods are similar to those of [2] and we only require some
known integral evaluations and the Poisson summation for-
mula for Fourier sine transforms [6, p.257]. If f(z) is a con-
tinuous, real-valued function with bounded total variation on
[a, b] then

Z Z x(n / f(x)sin(ran/2)dx

a<n<b n>1
(I1.12)
By L. S. Gradshteyn and 1. M. Ryzhik [7, p.428], we have

°  zxsin(az)dx T aA(bc) s
/o (22 + 022+ 2 92:° ) sin(aB(b, ),
(IL13)

® x(x® + ) sin(az)dr T _,ame
[ et contann )
(IL14)

where A(b, ¢) and B(b, ¢) are as in Theorem I.1, and a > 0,
b>0,and ¢ > 0.

LemmalIl. 4 Forb > 0 and c > 0 we have

,;X M2+ )2+
r sinh(TAQ, ))sm( B(b,c)) (L15)

e sinh®(ZA(b, c)) + cos?(Z B

(b,¢))’

n(n? + b2
> x(n) (n2(+b2—§2+)c2 =

nzl (11.16)
T cosh(§ A(b,c)) cos(5B(b, c))
4 cosh®(ZA(b, c)) — sin®(ZB(b,c))

Proof. For (IL.4) apply (IL.1) with f(z) = m and

invoke (I1.2). For (IL.5) apply (IL.1) with f(z) = %
and invoke (I1.3).

For (I1.3), we use identity (12) of [1] (with x replaced by
x4 /) to find, by absolute convergence,

/000 n(izd/m)e

= Z x(n / e~ (0F4n?)z sin(cz)dx

n>1

—b*x sin(cx)dx

—CZX

3 M e

O

By (I.4) of Lemma II.1 the proof is straightforward. It
is not difficult to prove (II.4). The only difference is that we
appeal to the Fourier cosine transform and employ (IL.5).
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rhs of (1.8) with term n=1
rhs of (1.8) with terms n=1 and n=3
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Fig. 3. The plot of lhs of (I.6) compared with the sum of terms

n = 1 and n = 3 on rhs of (I.8). In the inset the plot of the absolute

value of the difference of the integral and approximation for n = 3
is presented on the logarithmic y-axis
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04 integral on lhs of (1.7)
. rhs of (1.9) with term n=1
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Fig. 4. The plot of lhs of (I.7) compared with the sum of terms

n = 1 and n = 3 on rhs of (I.9). In the inset the plot of the absolute

value of the difference of the integral and approximation for n = 3

is presented on the logarithmic y-axis. The cusp around ¢ = 10 is
due to the change of sign of the difference

III. APPLICATION TO RAMANUJAN-TYPE SERIES

In Ramanujan’s notebook [6, pg. 314, eq.(8.3)] we find
the amazing formula for C :If z > 0, then
= 1 s
S oot [c( )+ita

n>1

cosh(2my/mn/x) — cos(2m+/mn/x)
(I11.17)
Several authors have produced generalizations of this
formula [6, 8, 9, 10]. Author [10] obtains a formula for the
Dirichlet L-function for Y, the primitive Dirichlet character
modulo ¢, at s = 1. In this section we will obtain a formula
for the special value s = 3 of the Dirichlet beta function [5]

B(s) = 7;0 (2(7:):) (IIL.18)

The values of 3(s) are know;l, among others, for any positive
odd integer:

n>1

0_1)kﬁbkﬂ2k+1
2 )= —F—"7—"—
PEET) = i mr

where E,, are the Euler numbers. In particular we have
3

B(3) = 73%2 — 09689461462 . ...
In the Appendix we present a short Mathematica script cal-
culating values of 3(2k+ 1) based on the algorithm invented
by D. Shanks and J. Wrench Jr. in [11].

cos(3 + 2my/nf) — eV con(3)
<> |

We will prove:
Theorem III. 5 For z > 0 we have

™
Ag +-§£: €n2

n>1

sinh(% /™) sin(5 /™F)
n(cosh(m\/E) + cos(my/"E))
(ITL.19)

Proof. Under the same hypothesis as for sine transforms for
the Poisson summation formula, we have [6, p.252]

/ f(z dw+2z

n>174a

) cos(m2zn)dzx,
a<n<b

(I11.20)
with the additional condition that the prime on the sum indi-
cates only 1 f(a) is counted if a is finite, and similarly for b.
We choose the function (x, z > 0)

=> x(k)

k>1

—kZzz

(IIL.21)

Because terms in the series above tend very quickly to zero
for z > 1 only the first term in (IIL.21) is significant, see
Fig. 6.

Glaisher [2, eq.(23)] offers

> x(n) .

n>1

(11.22)
1 [ sinh(Z sin dx
:7/ cos(zx) (2\/;> (5V3)
2 Jo z(cosh(my/3) 4 cos(m\/%))
or, by absolute convergence,
777/22(1
/ cos(zx) Z x(n dz =
nzl (I11.23)

:1 sinh(g\/%)sm(g\/%)
2 z(cosh(my/5%) + cos(my/55 )

for o« > 0. Choosing @ = 0 and b = oo in (II.4) with our
choice of f(x), we get the theorem after noting

/Oo flz)dx = @,
0 z

and f(0) = 7. O
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Fig. 5. The plot of lhs of (I.10) compared with the (largest) middle

term in (I.11) corresponding to n = 0. In the inset the plot of the

absolute value of the difference of the integral and approximation

is presented on the logarithmic y-axis. The cusp around ¢ = 8 is
due to the change of sign of the difference in (1.10)

o8 — f(x) for z=I
T —— exp(x)

0 T | T I T T T T T |
0 2 4 X 8 10

Fig. 6. The plot of function (II1.21) for z = 1 compared with expo-
nential e~ *

Appendix

In the Fig. 7 we present the short Mathematica program
based on the algorithm presented in [11] and below in Tab. 1
some values of 3(2k + 1) obtained by using this script.

SS[x , 1] =Pi/4;
constantofintegration=0;
For[k =1, k<101, k++,
tmp = SS[1/4, k] // FullSimplify;
Print[" $§ L_1(", 2%k-1, ")=", TeXForm[tmp], " $$m];
CC[x_, k] = -2 PixIntegrate[SS[x, k], x];
constantofintegration = - (CC[0, k] +CC[1/2, k]) /2;
SS[x , k+1] =2xPixIntegrate[CC [u, k] + constantofintegration, {u, 0, x}]]

Fig. 7. The script producing the ISTgX file with values of 3(2k + 1)

Tab. 1. Values of 5(2k + 1)

6(9) - 825753(‘11
6(11) _ _50521w
14863564§QO
6(13) _ __ 5405537
156959244281850
ﬁ(l ) — 1993609817
571331649208312;)0
5(17) — 38783024297
109695676647997414900
/8(19) — 2404879675441
67133754108574433228]000
/8(21) _ 14814847529501 7
40817322498013255434%%00
5(23) — 69348874393137901
18857602994082124010618%80000
5(25) — 2386851409778013377="
64057826786051276639148441?7000
5(27) — 40870725092931238923617
10825772726842665752016086630%900000
6(29) _ 13181680435827682794403 7
34460143922076022351680679968768&)10000
ﬁ(?)l) _ 441543893249023104553682821
11392523580638332989465632797674700%9000000
/8(33) _ 2088463430347521052196056349 7"
53182980668203418002587801107262603264:9_00000
5(35 _ 807232992358878980621682474532817°"
202882434653062398996271943663985378931SOZgOOOOOOO
5(37) — 634185543684887724959185841096293 7
1573119185617591524524939378563825092022763520000000
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