
CMST 22(2) 103-108 (2016) DOI:10.12921/cmst.2016.22.02.005

Some Remarks on Glaisher-Ramanujan Type Integrals
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Abstract: Some integrals of the Glaisher-Ramanujan type are established in a more general form than in previous studies.
As an application we prove some Ramanujan-type series identities, as well as a new formula for the Dirichlet beta function
at the value s = 3. We also present a Mathematica program calculating values of beta function at odd positive arguments.
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I. INTRODUCTION

In the paper by Glasser [1], the work of Glaisher [2] and
Ramanujan [3] was extended to present further evaluations
of the integral ∫ ∞

0

ηn(ix)f(x)dx, (I.1)

for integers n ≥ 1, and particular elementary functions f(x).
Here, as usual, the Dedekind-eta function is given by

η(ix) = q1/24
∞∏
n≥1

(1− qn), (I.2)

where q = e−2πx, for real x > 0. For some commentary on
integrals of this type we refer the reader to [1, 3] and refer-
ences therein.

In this note we restrict our attention to the case f(x) =

e−b
2x cos(cx), and f(x) = e−b

2x sin(cx), in (I.1). This pro-
vides a refinement to integrals like (8) of [1] and (19)–(28)
in [2]. That is, we shall prove:
Theorem I. 1 For b > 0 and c > 0 we have∫ ∞

0

η3(i4x/π)e−b
2x sin(cx)dx =

=
π

4

sinh(π2A(b, c)) sin(π2B(b, c))

sinh2(π2A(b, c)) + cos2(π2B(b, c))
,

(I.3)

∫ ∞
0

η3(i4x/π)e−b
2x cos(cx)dx =

=
π

4

cosh(π2A(b, c)) cos(π2B(b, c))

cosh2(π2A(b, c))− sin2(π2B(b, c))
,

(I.4)

where 2A(b, c)2 =
√
b4 + c2 + b2, and 2B(b, c)2 =√

b4 + c2 − b2.
Note that c→ 0 of (I.4) gives (14) of [1]:∫ ∞

0

η3(i4x/π)e−yxdx =
1

cosh(
√
πy)

Formally integrals (I.3) and (I.4) can be obtained from the
results of Glasser inserting b2 + ic instead of b2.

From here we can easily extend the work of Glasser
to obtain evaluations of integrals involving ηn(iax)ηk(ibx),
for integrals n, k ≥ 1, and a, b ∈ R. Throughout this paper
we define

χ(n) =


0, if n = 0 (mod 2),

1, if n = 1 (mod 4),

−1, if n = 3 (mod 4).

(I.5)
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Theorem I. 2 For c > 0 we have∫ ∞
0

η6(i4x/π) sin(cx)dx =

=
π

4

∑
n≥1

χ(n)n
sinh(π2A(n, c)) sin(π2B(n, c))

sinh2(π2A(n, c)) + cos2(π2B(n, c))
,

(I.6)

∫ ∞
0

η6(i4x/π) cos(cx)dx =

=
π

4

∑
n≥1

χ(n)n
cosh(π2A(n, c)) cos(π2B(n, c))

cosh2(π2A(n, c))− sin2(π2B(n, c))
.

(I.7)

Unfortunately, as we observe, the right sides of (I.4) and
(I.5) are not expressible in terms of elementary functions like
those of Glasser’s [1] and Glaisher’s [2]. However the terms
in the series on rhs of eqs. (I.6), (I.7) are quickly decreas-
ing with n. We can obtain two types of approximations: in
one form we keep only a finite number of terms in the series,
in the second approximation we skip in the denominators
the terms sin2(π2B(n, c)) and cos2(π2B(n, c)) in compari-
son with hyperbolic sinus and hyperbolic cosinus leaving the
sum of terms χ(n)n sin(π2B(n, c))/ sinh((π2A(n, c)) and
χ(n)n cos(π2B(n, c))/ cosh((π2A(n, c)) respectively. Be-
cause sinh(x) ≈ exp(x)/2 for large x thus in the infinite
sum only several first terms can be maintained giving practi-
cally closed expressions for integrals on lhs of eqs. (I.6) and
(I.7):∫ ∞

0

η6(i4x/π) sin(cx)dx ≈

≈π
4

(
sin(π2B(1, c))

sinh(π2A(1, c))
− 3

sin(π2B(3, c))

sinh(π2A(3, c))
+ . . .

) (I.8)

∫ ∞
0

η6(i4x/π) cos(cx)dx ≈

≈π
4

(
cos(π2B(1, c))

cosh(π2A(1, c))
− 3

cos(π2B(3, c))

cosh(π2A(3, c))
+ . . .

) (I.9)

We have checked numerically that these approximations are
already very accurate for a few first terms. We have used
the free package PARI/GP [4]. It has a built-in procedure for
calculating the η function as well as the procedure for nu-
merical integration. Because η is not defined for 0 we have
used as the lower limit of integration on lhs in (I.6) and (I.7)
the value x = 0.00000001 and we have checked that tak-
ing for example x = 0.00001 produces practically the same
numbers. In Figures 1-4 we present the accuracy of such ap-
proximations for c ∈ (0, 20), for c → ∞ the integrals and
series on both sides of (I.6) and (I.7) tend to zero. Surpris-
ingly, such simplifications very accurately reproduce values
of integrals, thus in fact we can say we have closed forms for
them.

Fig. 1. The plot of lhs of (I.6) compared with the sum of terms
n = 3 and n = 5 on rhs of (I.6). In the inset the plot of the absolute
value of the difference of the integral and approximation for n = 5

is presented on the logarithmic y-axis

Fig. 2. The plot of lhs of (I.7) compared with the sum of terms
n = 3 and n = 5 on rhs of (I.7). In the inset the plot of the absolute
value of the difference of the integral and approximation for n = 5
is presented on the logarithmic y-axis. The cusp around c = 14 is

due to the change of sign of the difference

We can also obtain other examples using the same pro-
cedure as Glasser, by appealing to different theta series and
using Theorem I.1. In particular, by Euler’s identity [5] we
have the following:
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Theorem I. 3 For c > 0 we have∫ ∞
0

η3(i4x/π)η(i12x/π) sin(cx)dx =
π

4

∑
n∈Z

(−1)n

×
cosh(π2A(6n+ 1, c)) cos(π2B(6n+ 1, c))

cosh2(π2A(6n+ 1, c))− sin2(π2B(6n+ 1, c))
.

(I.10)
Again we can approximate the above series by following

terms: ∫ ∞
0

η3(i4x/π)η(i12x/π) sin(cx)dx ≈

≈π
4

(
−

cos(π2B(5, c))

cosh(π2A(5, c))
+

cos(π2B(1, c))

cosh(π2A(1, c))

−
cos(π2B(7, c))

cosh(π2A(7, c))

) (I.11)

The single middle term above already gives the values of
the integral on lhs of (I.10) with a few percent accuracy, see
Fig. 5. Both sides of (I.10) tend to zero when c→∞.

II. THE PROOF

To prove Theorem I.1 we require some simple series
evaluations that we were unable to find in the literature. Our
methods are similar to those of [2] and we only require some
known integral evaluations and the Poisson summation for-
mula for Fourier sine transforms [6, p.257]. If f(x) is a con-
tinuous, real-valued function with bounded total variation on
[a, b] then

∑
a≤n≤b

χ(n)f(n) =
∑
n≥1

χ(n)

∫ b

a

f(x) sin(πxn/2)dx.

(II.12)
By I. S. Gradshteyn and I. M. Ryzhik [7, p.428], we have∫ ∞

0

x sin(ax)dx

(x2 + b2)2 + c2
=

π

2c
e−aA(b,c) sin(aB(b, c)),

(II.13)∫ ∞
0

x(x2 + b2) sin(ax)dx

(x2 + b2)2 + c2
=
π

2
e−aA(b,c) cos(aB(b, c)),

(II.14)
where A(b, c) and B(b, c) are as in Theorem I.1, and a > 0,
b > 0, and c > 0.

Lemma II. 4 For b > 0 and c > 0 we have∑
n≥1

χ(n)
n

(n2 + b2)2 + c2
=

=
π

4c

sinh(π2A(b, c)) sin(π2B(b, c))

sinh2(π2A(b, c)) + cos2(π2B(b, c))
,

(II.15)

∑
n≥1

χ(n)
n(n2 + b2)

(n2 + b2)2 + c2
=

=
π

4

cosh(π2A(b, c)) cos(π2B(b, c))

cosh2(π2A(b, c))− sin2(π2B(b, c))
.

(II.16)

Proof. For (II.4) apply (II.1) with f(x) = x
(x2+b2)2+c2 and

invoke (II.2). For (II.5) apply (II.1) with f(x) = x(x2+b2)
(x2+b2)2+c2

and invoke (II.3).
For (II.3), we use identity (12) of [1] (with x replaced by

x4/π) to find, by absolute convergence,∫ ∞
0

η3(ix4/π)e−b
2x sin(cx)dx

=
∑
n≥1

χ(n)n

∫ ∞
0

e−(b
2+n2)x sin(cx)dx

= c
∑
n≥1

χ(n)
n

(n2 + b2)2 + c2
.

By (II.4) of Lemma II.1 the proof is straightforward. It
is not difficult to prove (II.4). The only difference is that we
appeal to the Fourier cosine transform and employ (II.5).

Fig. 3. The plot of lhs of (I.6) compared with the sum of terms
n = 1 and n = 3 on rhs of (I.8). In the inset the plot of the absolute
value of the difference of the integral and approximation for n = 3

is presented on the logarithmic y-axis
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Fig. 4. The plot of lhs of (I.7) compared with the sum of terms
n = 1 and n = 3 on rhs of (I.9). In the inset the plot of the absolute
value of the difference of the integral and approximation for n = 3
is presented on the logarithmic y-axis. The cusp around c = 10 is

due to the change of sign of the difference

III. APPLICATION TO RAMANUJAN-TYPE SERIES

In Ramanujan’s notebook [6, pg. 314, eq.(8.3)] we find
the amazing formula for ζ( 1

2 ) : If x > 0, then
∞∑
n≥1

1

en2x − 1
=
π2

6x
+

1

2

√
π

x
ζ

(
1

2

)
+

1

4
+

√
π

2x

×
∑
n≥1

1√
n

(
cos(π4 + 2π

√
πn/x)− e−2π

√
πn/x cos(π4 )

cosh(2π
√
πn/x)− cos(2π

√
πn/x)

)
.

(III.17)
Several authors have produced generalizations of this

formula [6, 8, 9, 10]. Author [10] obtains a formula for the
Dirichlet L-function for χ̄, the primitive Dirichlet character
modulo q, at s = 1. In this section we will obtain a formula
for the special value s = 3 of the Dirichlet beta function [5]

β(s) =
∑
n≥0

(−1)n

(2n+ 1)s
. (III.18)

The values of β(s) are known, among others, for any positive
odd integer:

β(2k + 1) =
(−1)kE2kπ

2k+1

4k+1(2k)!
,

where En are the Euler numbers. In particular we have

β(3) =
π3

32
= 0.9689461462 . . . .

In the Appendix we present a short Mathematica script cal-
culating values of β(2k+1) based on the algorithm invented
by D. Shanks and J. Wrench Jr. in [11].

We will prove:
Theorem III. 5 For z > 0 we have

π

8
+
∑
n≥1

χ(n)

n(en2z − 1)

=
β(3)

z
+

1

2

∑
n≥1

sinh(π2
√

nπ
z ) sin(π2

√
nπ
z )

n(cosh(π
√

nπ
z ) + cos(π

√
nπ
z ))

.

(III.19)

Proof. Under the same hypothesis as for sine transforms for
the Poisson summation formula, we have [6, p.252]

′∑
a≤n≤b

f(n) =

∫ b

a

f(x)dx+ 2
∑
n≥1

∫ b

a

f(x) cos(π2xn)dx,

(III.20)
with the additional condition that the prime on the sum indi-
cates only 1

2f(a) is counted if a is finite, and similarly for b.
We choose the function (x, z > 0)

f(x) =
∑
k≥1

χ(k)
e−k

2xz

k
. (III.21)

Because terms in the series above tend very quickly to zero
for x > 1 only the first term in (III.21) is significant, see
Fig. 6.

Glaisher [2, eq.(23)] offers

∑
n≥1

χ(n)
e−n

2z

n
=

=
1

2

∫ ∞
0

cos(zx)
sinh(π2

√
x
2 ) sin(π2

√
x
2 )dx

x(cosh(π
√

x
2 ) + cos(π

√
x
2 ))

,

(III.22)

or, by absolute convergence,

∫ ∞
0

cos(zx)
∑
n≥1

χ(n)
e−n

2zα

n
dz =

=
1

2

sinh(π2
√

x
2α ) sin(π2

√
x
2α )

x(cosh(π
√

x
2α ) + cos(π

√
x
2α ))

,

(III.23)

for α > 0. Choosing a = 0 and b = ∞ in (III.4) with our
choice of f(x), we get the theorem after noting∫ ∞

0

f(x)dx =
β(3)

z
,

and f(0) = π
4 .
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Fig. 5. The plot of lhs of (I.10) compared with the (largest) middle
term in (I.11) corresponding to n = 0. In the inset the plot of the
absolute value of the difference of the integral and approximation
is presented on the logarithmic y-axis. The cusp around c = 8 is

due to the change of sign of the difference in (I.10)

Fig. 6. The plot of function (III.21) for z = 1 compared with expo-
nential e−x

Appendix

In the Fig. 7 we present the short Mathematica program
based on the algorithm presented in [11] and below in Tab. 1
some values of β(2k + 1) obtained by using this script.

Fig. 7. The script producing the LATEX file with values of β(2k+1)

Tab. 1. Values of β(2k + 1)

β(1) = π
4

β(3) = π3

32

β(5) = 5π5

1536

β(7) = 61π7

184320

β(9) = 277π9

8257536

β(11) = 50521π11

14863564800

β(13) = 540553π13

1569592442880

β(15) = 199360981π15

5713316492083200

β(17) = 3878302429π17

1096956766479974400

β(19) = 2404879675441π19

6713375410857443328000

β(21) = 14814847529501π21

408173224980132554342400

β(23) = 69348874393137901π23

18857602994082124010618880000

β(25) = 238685140977801337π25

640578267860512766391484416000

β(27) = 4087072509293123892361π27

108257727268426657520160866304000000

β(29) = 13181680435827682794403π29

3446014392207602235168067996876800000

β(31) = 441543893249023104553682821π31

1139252358063833298946563279767470080000000

β(33) = 2088463430347521052196056349π33

53182980668203418002587801107262603264000000

β(35) = 80723299235887898062168247453281π35

20288243465306239899627194366398537893150720000000

β(37) = 634185543684887724959185841096293π37

1573119185617591524524939378563825092022763520000000
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