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Abstract: This paper aims to prove utility of the boundary element method for modelling 2D heat transfer in complex multi-
regions, particularly in thermal bridges. It proposes BEM as an alternative method commonly applied in commercial software
for simulation of temperature field and heat flux in thermal bridges, mesh methods (FEM, FDM).The BEM algorithm with
Robin boundary condition is developed for modelling 2D heat transfer in complex multi-regions. Simulation is performed
with the authoring Fortran program. The developed mathematical algorithm and computer program are validated according
to standard EN ISO 10211:2007. Two examples of complex thermal bridges that commonly appears in house building are
presented. Analysis of two reference cases, listed in standard ISO, confirms utility of the proposed BEM algorithm and
Fortran program for simulation of linear thermal bridges. Conditions, quoted in standard ISO, are satisfied with models of a
relatively small number of boundary elements. Performed validation constitutes the base for further development of BEM as
an efficient method for modelling heat transfer in building components, and for the prospective application in commercial
software.
Key words: linear thermal bridges, multi-region, boundary element method, heat transfer

I. INTRODUCTION

Analysis of heat conduction in multi-regions is signifi-
cant for scientific and engineering problems. Simulation of
temperature field and heat flux is essential in the process
of designing and technical optimisation of many engineering
objects, such as building components.

Commonly applied methods for the heat transfer prob-
lem are mesh methods, such as the finite element method
(FEM), finite difference method (FDM) or finite volume
method (FVM) [1]. Some BEM algorithms have already been
developed for analysis of heat conduction in 2D [2, 3] and
3D multi-regions [4-6]. Based on available literature, the
BEM analysis of heat conduction problem in multi-regions
mostly concern the regions consist of small number of sub-
regions, and for those simple regions the efficiency of the
method is proved. Gao and Wang [7] verified the proposed
method called the interface integral boundary element method
(IIBEM), solving 2D heat conduction over a two-layered rect-

angular plate, over a two-layered thick-wall cylinder and
solving 3D heat conduction over a two-section joint cylinder.
Gao and Davies [8] validated the BEM algorithm which deals
with edge and corners that appear in the intersections and
boundaries with two simple examples: a three-zoned cube
and a four-zoned thick cylinder. Atalay et al. [9] proved the
efficiency of BEM for solving the heat conduction problem
in a simple 2D multi-regions square and circular domains.
Majchrzak [10] developed and verified BEM algorithms for
a generation of temperature fields in 2D multi-regions, con-
sisting of two sub-regions. Xu and Yang [11] verified the
virtual boundary meshless least squares collocation method,
derived from the virtual boundary element method (VBEM),
for 2D four-zoned objects. Branco et al. [12] applied BEM
for modelling heat conduction in double brick walls with
an insulation layer. Another example of BEM application in
multi-regions is the analysis of transient heat transfer. In [13]
the modelling of the 3D transient heat conduction problem of
cylindrical inclusions is presented. The solution of transient
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heat conduction in a three-zone object is presented in [14].
The inverse problem of 1D transient heat conduction in a
two-zoned domain is analysed in [15].

The object of this paper is the analysis of heat transfer in
building components, that is in complex multi-regions with
thermal bridges.

There are many methods for simulation of temperature
field and heat flux in building components, such as analytical
methods [16, 17], the frequency response method [18] and
methods based on IR thermographic measurements [19].

So far, some attempts to use BEM for modeling ther-
mal bridges have been made by Tadeu et al. In [20], the
mathematical algorithm has been developed for analysis of
linear thermal bridges. A computational algorithm was for-
mulated in the frequency domain for transient and steady
heat conduction, where external and internal temperatures are
time-dependent. the developed method was applied simple
multi-region, that is for the corner of a two-layer wall for
different thermal insulation configurations.

Nevertheless, the most popular methods for determina-
tion of temperature and heat flux in thermal bridges are
mesh methods. To the authors’ best knowledge, all available
commercial programs for modelling bulling components ap-
plied either the finite difference (HEAT 2, HEAT 3, KOBRA,
BISCO, TRISCO) or the finite element method (THERM,
SAT). Hence, the need of developing and validation of the
BEM program for solving heat conduction problems in com-
plex thermal bridges is confirmed.

The aim of this work is to prove the utility of BEM for
modelling heat transfer in building components with thermal
bridges and to propose the alternative tool to mesh methods
for a numerical simulation of this problems. For this kind
of problems this is an innovative idea, because BEM is not
widely applied for analysis of thermal bridges. The subject
of this paper is the presentation of the implemented BEM
algorithm and validation of authoring BEM program in accor-
dance with standard ISO 10211 [21], relating to numerical
simulations of heat transfer in thermal bridges. In the paper
two examples of modeling heat conduction in real building
components, that is wall-roof junction and wall-balcony board
junction, are presented. The analysis of two cases, described
in ISO 10211 [21], both with two examples, proves the utility
of BEM for modeling heat transfer in building components.

II. MATHEMATICAL DESCRIPTION

Analysis of 2D steady heat transfer in multi-regions can
be essentially reduced to the heat conduction problem de-
scribed by the Laplace equation:

∇2T (p) = 0 (1)

with boundary conditions

T (p) = TL(p); p ∈ LT , (1a)

−λ∂T (p)

∂np
= qL(p); p ∈ Lq, (1b)

−λ∂T (p)

∂np
= qL(p) = α (T (p) − Ta) ; p ∈ Lα, (1c)

in flat domain Λ bounded withL = LT ∪Lq∪Lα. The Dirich-
let condition (1a) assumes the value of temperature TL at any
point p on boundary line LT . The Neumann (1b) condition
assumes the value of heat flux qL at any point p on boundary
line Lq. The Robin condition (1c) assumes the known value
of heat flux at any point p on boundary line Lα, that depends
on value of temperature T , value of ambient temperature Ta
and heat exchange coefficient α. Heat flux qL(p) is defined
as product of thermal conductivity λ and normal derivative
of temperature T at point p.

Fig. 1. Domain with boundary conditions

The sketch for a two dimensional boundary problem analysis
of Laplace equation (1) is depicted in Fig. 1. It presents the Λ
domain located in the Cartesians coordinates XY and limited
with the boundary L. The p is named the source or refer-
ence point, whilst point q is the observer or integration point,
r(p, q) denotes the distance between these points; np and
nq denote the normal vectors to boundary line L at points p
and q respectively, whilst the sp and sq the tangent vectors
to boundary line L at points p and q. The point v is the point
located inside Λ domain.

Temperature in domain Λ, which constitutes the solution
of differential equation (1) with boundary conditions (1a),
(1b) and (1c) is described with the integral equation (2) [3]:

T (p) +

∫
LT

q(q)G(p, q) dLT +

∫
Lq

qL(q)G(p, q) dLq

+

∫
Lα

[α (T (q)− Ta)]G(p, q) dLα‘ =

=

∫
LT

TL(q)H(p, q)dLT +

∫
Lq

T (q)H(p, q)dLq

+

∫
Lα

T (q)H(p,q)dLα; p, q ∈ L L = LT ∪ Lq ∪ Lα
(2)
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Fundamental solutions G(p, q) and H(p, q) for p 6= q
are respectively equal [3], [10]:

G(p, q) = − 1

2πλ
ln r (p, q) ; r (p, q) = |p− q| (2a)

H(p, q) =
∂G(p, q)

∂np
=

1

2π

(xq − xp)nx + (yq − yp)ny
r2 (p, q)

(2b)
and for p = q have the following form:

G(qj , qj) =
Lj

2πλ

(
1 + ln

2

Lj

)
, (2c)

H(qj , qj) = 0, (2d)

where Lj – is the length of j boundary element, xq and xp
are the x coordinates of q and p points, respectively, yq and
yv are the y coordinates of this points, nx and ny denote the
x and y components of normal vector n at point p.

Discrete solution of integral equation (2) can be obtained
approximating the boundary line by the finite set of partial
lines (constant elements are applied):
• LT is divided into m boundary elements of known

value of temperature TL,
• Lq is divided into n elements, where the heat flux qL

is known,
• Lα is divided into l elements, where the Robin condi-

tion is assumed qL = α (T − Ta).
Hence, the equation (2) takes the form:

[Hm Hn H l]

 TL,m

T n

T l

 =

= [Gm Gn Gl]

 qm
qL,n
α (T l − T a)

 ,
(3)

where:
• Hm, Hn, H l – the matrices of fundamental solutions
H(p, q) consisting ofm×m, n×n and l× l elements,
respectively,
• Gm, Gn, Gl – the matrices of fundamental solutions
G(p, q) consisting ofm×m, n×n and l× l elements,
respectively,
• TL,m – the vector of known values of temperature TL

of size m,
• T n, T l – the vectors of unknown values of temperature
T of size n and l, respectively,
• qm – the vector of unknown values of heat flux q of

size m,
• qL,n – the vector of known values of heat flux q of size
n,
• α (T l − T a) – the vector of known T a and α values

and unknown T l values of size l.

After rearrangement of matrices and vectors, the formula (3)
may be written as:

AX = B, (4)

where X is the vector of unknown values:

X =

 qm
T n

T l

 , (4a)

B is the vector of known values:

B = HmTL,m −GnqL,n + αGlT a, (4b)

and A is known square coefficient matrix:

A = [Gm −Hn αGl −H l] . (4c)

Exemplary multi-region, for which a further algorithm is
developed, consists of three sub-domains (Fig. 2).

Fig. 2. Exemplary 2D multi-region Λ = Λ1 ∪ Λ2 ∪ Λ3

Contact between sub-domains is perfect, thus the addi-
tional conditions of continuity of heat flux q and temperature
T, on internal lines L12, L13, L23 are defined as:

 T 1
12 = T 2

12

T 1
13 = T 3

13

T 2
23 = T 3

23

 , (5a)

 q2
12 = −q1

12

q3
13 = −q1

13

q3
23 = −q2

23

 , (5b)

where superscript (e.g. 1) relates to the number of subdomain,
and subscript (e.g. 12) relates to the number of internal lines
between two domains (e.g. 12 relates to the line between
domain 1 and 2).
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Incorporating conditions (5a) and (5b), equation (3) can
be written in the form [2]:
boundary L1 = L11 ∪ L12 ∪ L13 of domain Λ1:

[
A1

1 H1
12 H1

13

]  X1
1

T 1
12

T 1
13

 = B1
1 +

[
G1

12 G1
13

] [ q1
12

q1
13

]
,

(6a)
boundary L2 ≡ L22 ∪ L12 ∪ L23 of domain Λ2:

[
A2

2 H2
12 H2

23

]  X2
2

T 1
12

T 2
23

 = B2
2 +

[
−G2

12 G2
23

] [ q1
12

q2
23

]
(6b)

boundary L3 ≡ L33 ∪ L13 ∪ L23 of domain Λ3:

[
A3

3 H3
13 H3

23

]  X3
3

T 1
13

T 2
23

 = B3
3+
[
− G3

13 −G3
23

] [ q1
13

q2
23

]
,

(6c)
where, for each subdomain, matrix Ai

i is derived according
to formula (4c), and vectors Xi

i and Bii according to (4a) and
(4b).

Equations (6a), (6b) and (6c) are combined in a single
matrix describing the values of temperatures and heat flux on
boundary lines of multi-region consists of three sub-domains.

After determination of values of temperatures T (q) and
heat fluxes q(q) on boundary lines (external and internal) of
each subdomain, the temperature T (v) and heat flux q(v) at
each point v inside the sub-domains can be calculated from
the following formula (7):

T (v) =

∫
L

T (q)H(v, q)dL−
∫
L

q(q)G(v, q) dL, (7)

where:

G(v, q) = − 1

2πλ
ln r(v, q) ; r(v, q) = |v − q| ,

(7a)

H(v, q) =
∂G(v, q)

∂nv
=

1

2π

(xq − xv)nx + (yq − yv)ny
r2(v, q)

.

(7b)
In equations (7a) and (7b) r(v, q) denotes the distance

between points v and q; xq and xv are the x coordinates
of these points, and yq and yv are the y coordinates of this
points, nx and ny denote the x and y components of normal
vector n at point v.

Basing on the proposed mathematical algorithm, the au-
thoring program in Fortran has been written for solving the
heat transfer problem in complex 2D multi-regions.

III. PROGRAM VALIDATION

In order to validate the developed Fortran program for the
heat conduction problem in multi-regions, two examples are
performed according to standard EN ISO 10211:2007 [21].

Annex A of ISO 10211 presents two test reference cases
for steady-state 2D problems. In order to classify the method
as a high precision method for calculation of thermal bridges,
the obtained results should correspond with values presented
in ISO 10211.

III. 1. Case 1
Case 1 concerns the heat transfer through a square col-

umn with assumed values of temperatures on boundaries,
for which the analytical solution at 28 points is determined
(Fig. 3).

Fig. 3. Test reference case 1 – analytical solution [21]

Analysis of case 1 was performed for a various number
of boundary elements. Solution error ε was determined for
each test from the formula:

ε =
|TISO − TBEM|

TISO
· 100% (8)

where: TISO – values of temperature in accordance to ISO
10211, TBEM – values of temperature in accordance to BEM
solution.

Comparison between BEM solution errors and the error of
the program based on the finite difference method for points
1-28 is presented in Tab. 1.

As it can be seen in Tab. 1, the FDM solution error for
22 000 nodes is comparable to BEM solution for 300 or 400
elements. That confirms the similar BEM computational ac-
curacy to FDM, obtained for a smaller number of algebraic
equations.

According to ISO 10211, the difference between temper-
ature listed in Fig. 3 and temperature calculated by the vali-
dated program shall not exceed 0,1◦C. Temperature (Fig. 4)
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Tab. 1. BEM solution error – case 1

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Method ε [%]
ISO 10211 33.33 14.29 7.69 5 3.13 1.89 1.03 16.67 7.14 4.35 2.78 1.79 1.16 0.75
BEM 250 el. -13.33 -5.71 2.31 -1.00 0.31 0.94 0.62 -5.00 2.14 -0.8% -1.39 -0.18 -0.47 0.15
BEM 300 el. -13.33 -5.71 2.31 -1.00 0.31 0.94 0.52 -5.00 2.86 -0.43 -1.39 -0.18 -0.47 0.15
BEM 400 el. -13.33 -5.71 3.08 -1.00 0.31 0.94 0.41 -5.00 2.86 -0.43 -1.11 -0.18 -0.47 0.15
FDM 20 000
nodes

13.33 5.71 3.08 0.50 0.31 0.94 0.41 5.00 2.86 0.43 1.11 0.18 0.47 0.15

Point 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Method ε [%]
BEM 250 el. -3.75 1.11 0.00 0.64 -0.43 -0.29 -0.27 2.22 -0.53 -0.31 0.40 0.93 0.37 0.60
BEM 300 el. -2.50 1.67 0.00 0.64 -0.29 -0.19 -0.27 2.22 0.00 0.00 0.60 1.07 0.46 0.66
BEM 400 el. -2.50 1.67 0.33 0.85 -0.29 -0.19 -0.20 3.33 0.53 0.00 0.60 1.07 0.56 0.66
FDM 20 000
nodes

2.50 1.67 0.33 0.85 0.14 0.19 0.20 1.11 0.53 0.63 0.00 0.40 0.09 0.07

that satisfies this condition was obtained for 250 boundary
elements.

Fig. 4. BEM solution case 1 – 250 boundary elements

Determined temperature field for 250 boundary elements
is presented in Fig. 5.

Tab. 2. Test reference case 2 – temperatures and heat flux [21]

Temperatures [◦C]
A: 7.1 B: 0.8
C: 7.9 D: 6.3 E: 0.8
F: 16.4 G: 16.3
H: 16.8 I: 18.3
Total heat flow rate: 9.5 W/m

Fig. 5. Temperature field case 1 – BEM solution

III. 2. Case 2
Case 2 concerns the more complex problem of heat

transfer in a multi-region domain (Fig. 6), consisting of 4
sub-regions. Region 1 is made of concrete (thermal con-
ductivity λ = 1.15 W/(m·K)), 2 of wood (λ = 0.12 W/(m·K)),
and regions 3 and 4 represent the layer of insulation (λ =
0.029 W/(m·K)) and aluminium (λ = 230 W/(m·K)), respec-
tively. Rsi and Rse denote inside and outside surface resis-
tance, respectively (m2K/W).
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Tab. 3. BEM and FDM solution error – case 2

Point A B C D E F G H I
Method ε [%]
ISO 10211 1.41 12.50 1.27 1.59 12.50 0.61 0.61 0.60 0.55
BEM 400 el. 10.94 5.26 6.04 0.78 3.61 0.24 0.51 0.18 0.16
BEM 800 el. 2.31 5.26 0.64 1.24 3.61 0.18 0.19 0.53 0.16
BEM 1600 el. 1.41 5.26 0.00 0.00 3.61 0.30 0.43 0.30 0.16
BEM 3200 el. 0.63 5.26 0.00 0.17 3.61 0.12 0.25 0.06 0.16
FDM 20 000 nodes 0.56 5.00 0.00 0.48 3.75 0.00 0.18 0.18 0.16

Fig. 6. Test reference case 2 – model [21]

Reference values, with which the results of simulations
should be compared, are presented in Tab. 2.

Analysis of case 2 was performed for a various number of
boundary elements. Solution error was determined for each
test and compared to the error of the program based on the
finite difference method (Tab. 3).

Values that correspond with standard values, that is the
differences between temperatures and heat flow rate do not
exceed 0.1◦C and 0.1 W/m, respectively, were obtained for
3200 boundary elements (Tab. 4). The BEM error for 3200
elements is comparable to the FDM error for 44 000 elements.

Tab. 4. BEM solution case 2 – 3200 boundary elements

Temperatures [◦C]

A: 7.06 B: 0.76

C: 7.90 D: 6.29 E: 0.83

F: 16.42 G: 16.34

H: 16.79 I: 18.33

Average total heat flow rate: 9.48 W/m
AE: 9.5 W/m
HI: −9.45 W/m

Temperature distribution in the analysed multi-region is
shown in Fig. 7.

IV. CASE STUDIES

Authoring BEM Fortran program was applied for deter-
mination of temperature field and heat flux in two thermal
bridges. The analysis was performed for climatic conditions
in eastern Poland, which is located in IV climatic zone, ac-
cording to Polish standard PN-EN 12831:2006 [22]. The ex-
ternal design temperature for this geographical zone accounts
for −22◦C.

PN-EN 12831:2006 [22] specifies also the values of inter-
nal design temperature. For the purpose of the analysis, the

Fig. 7. Temperature field case 2 – BEM solution
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Fig. 8. Scheme of wall-roof junction with boundary conditions

temperature of 20◦C is assumed, appropriate for residential
space in house buildings.

For edges that have contact with external and internal
ambient, the Robin boundary condition is assumed. Values of
internal Rsi and external Rse surface heat resistance are as-
sumed in accordance with PN-EN ISO 6946 [23]. On the line
of building components intersections, the Neumann condition
is assumed of the heat flux of value q = 0 W/m2.

Tab. 5. Material properties: wall-roof junction

Region Material
Thermal conductivity
λ [W· m−1· K−1]

Dimensions
[cm]

1 mineral
wool

0.04 12

2
wood
base

board
0.17 1.2

3 rafter 0.30 18×9

4 mineral
wool

0.04 18

5
wood
base

board
0.17 1.25

6 mineral
wool

0.04 24×5

7 rafter 0.30 22×7

8 mineral
wool

0.04 23.8

9
wood
base

board
0.17 2

10
wood
base

board
0.17 1.2

11 elevation
board

0.22 18

IV. 1. Wall-roof junction
The first example presents the wall-roof junction which

is used in modular energy-saving buildings in Europe.
The analysed element is composed of wood base boards,

mineral wool, wooden rafters and elevation of different di-
mensions and thermal properties (Tab. 5).

The considered multi-region consists of 11 sub-regions,
58 edges, where 22 edges are contact lines between particular
sub-regions. The scheme of the thermal bridge with numera-
tion of boundaries and boundary conditions is presented in
Fig. 8.

Temperature field (Fig. 9) was obtained for 4400 bound-
ary elements, that is 400 elements for each subdomain. As it
can be seen, there is a continuity of isotherms between partic-
ular sub-domains, which proves the correctness of simulation
done with the BEM program.

Fig. 9. Temperature distribution in wall-roof junction
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Fig. 10. Scheme of wall-balcony board junction with boundary conditions

IV. 2. Wall-balcony board junction
The second thermal bridge is the wall-balcony board junc-

tion, which often occurs in single and multi-family houses
and constitutes the significant source of heat losses in build-
ings. In the analysed component the load-bearing wall is
made of 25-cm thick cellular concrete and insulated with 15
cm of styrofoam. Dimensions and thermal conductivity of all
elements are listed in Tab. 6.

Tab. 6. Material properties: wall-balcony board junction

Region Material
Thermal

conductivity λ
[W·m−1·K−1]

Dimensions
[cm]

1 wodden panel 0.4 2
2 conrete 1.05 5
3 styrofoam 0.038 5
4 plaster 0.82 1.5
5 ferroconcrete 1.7 25
6 plaster 0.82 1.5
7 cellular concrete 0.25 24
8 mineral wool 0.037 16
9 plaster 0.82 1.5

10 -11 mineral wool 0.041 10
12 cement screed 0.52 5
13 polystyrene XPS 0.036 11/8
14 conrete 1.05 5
15 ceramic tiles 1.05 1.5
16 mineral wool 0.037 16
17 cellular concrete 0.25 24
18 plaster 0.82 1.5

The proposed wall-balcony board junction can be pre-
sented as a multi-region that consists of 18 sub-regions
(Fig. 10). The multi-region includes 106 edges, from among
40 edges are contact lines between particular sub-regions.

Fig. 11. Temperature distribution in wall-balcony board junction

Calculation was performed for 7200 boundary elements,
that is the 400 elements on the boundary line of each sub-
region. Determined temperature distribution is shown in
Fig. 11, and similarly to the first example, the isotherms be-
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tween particular sub-domains are continuous, which confirms
correctness of the performed simulation.

V. CONCLUSIONS

This paper presents application of the boundary element
method to a 2D steady analysis of complex multi-regions,
and proves its utility for simulation of linear thermal bridges.
The developed BEM algorithm assumes the Robin condition.

Authoring BEM Fortran program has been successfully
validated with two cases: analytical and numerical, according
to ISO 10211. In order to classify BEM as a high precision
method for modeling thermal bridges, the temperatures and
heat fluxes should correspond with reference values listed in
the mentioned standard. BEM satisfies this condition for a rel-
atively small number of boundary elements. Obtained BEM
solution errors are comparable with FDM errors calculated
for a relatively big number of nodes.

Further, a program was applied for determination of the
temperature distribution in two complex multi-regions: wall-
roof junction and wall-balcony board junction, consisting of
9 and 18 sub-regions, respectively.

Performed validation with both examples prove utility of
the boundary element method for simulation of temperature
and heat flux in complex building structures. Hence, BEM
constitutes a great alternative to the mesh methods (FDM,
FEM) commonly applied in commercial programs and con-
stitutes the efficient engineering tool for modeling thermal
bridges.
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