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Abstract: In this paper we have considered an SIR model with logistically grown susceptible in which the rate of incidence
is directly affected by the inhibitory factors of both susceptible and infected populations and the protection measure for the
infected class. Permanence of the solutions, global stability and bifurcation analysis in the neighborhood of equilibrium
points has been investigated here. The Center manifold theory is used to find the direction of bifurcations. Finally numerical
simulation is carried out to justify the theoretical findings.
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I. INTRODUCTION

In recent years the public health planners have been us-
ing mathematical models to study the dynamics of differ-
ent epidemic diseases. This branch is named mathematical
epidemiology. In this branch models are formulated using
the differential and difference equations[1–5]. Karmack and
McKendrick [6] first formulated the SIS and SIR models to
study the epidemiological dynamics (infection dynamics).
In studying the SIR model the populations are divided into
three classes: susceptible (S), infected (I) and recovered (R)
class. The important factors on which the infection dynam-
ics depend are: (i) birth rate of the susceptible populations
which may follow constant, exponential or logistic growth,
(ii) normal death rate of the populations, (iii) rate of inci-
dence of infection among the susceptible populations and (iv)
recovery of infections and then loss of immunity. The mathe-
matics of such dynamics are known from references [7–11].
In most of the articles researchers considered the constant
birth rates of the susceptible populations [12–17], which is

not realistic in some populations. So the authors in [18–20]
considered exponential/logistic growth rate of the susceptible
populations.

On the other hand authors considered several types of
incidence of infection among the susceptibles populations. In
case of standard incidence (pSI), the increase of susceptibles
increase the number of individuals who become infected per
unit time. This is not realistic: modification of this type of rate
of incidence was necessary. Some researchers use modified
incidence rates, e.g. the bi-linear incidence rate, saturated in-
cidence rate, etc. [15, 21–24]. Similarly some authors [25–29]

used the rate of incidence in the form
aSI

1 + bI
. In this form

of incidence the increase in the number of infected popula-
tion increases the incidence term and it ultimately becomes
proportional to the number of susceptible populations. Here
a very high portion of the susceptible population is infected
and causes a slowing of new infection. This type of effect is
termed as the “crowing effect” or “protection measure”. The
term like 1+bI in the denominator of the incidence term mea-
sures the inhibition effect from the behavioral change of the
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susceptible individuals when the number of infectious indi-
viduals increases or from the crowding effect of the infective
individuals [30] . Kar and Mondal [25] used the saturation

effect in the form
pSI

1 + αS
, where α was defined as the half

saturation constant. Here with the increase of the susceptible
population the incidence term will increase and it ultimately
becomes proportional to the number of infected individuals.
This type of infection may be termed as the “psychological
effects” because in the initial stage the number of infective is
small, people may ignore the epidemic but there may be lots
of effective contacts between the infective individuals and
susceptibles, the number of infective individuals will increase
and the protection measure will be taken into consideration
[21].

In this paper we have considered a SIR model with lo-
gistic growth rate of the susceptibles where the rate of in-
fection is directly affected by the inhibitory effect, crowd-
ing affect and protection measure. Here we are consider-
ing the Boddington and DeAngelis [31–34] type incidence

rate
(

pSI

1 + αS + βI

)
previously used by the references

[21, 31, 32]. This type of saturation is a combination of
all the previous effects. Our model in the present paper is
an extension of the models from [17–21], where the authors
considered the same rate of incidence but with different birth
rate of the susceptible populations.

The paper is organized as follows: in Section II we have
formulated the model, in Section III we describe the bound-
edness and permanence of the solutions. Local and global
stability analysis of the equilibrium points is described in
Section IV and Hopf bifurcation criterion is analyzed in Sec-
tion V. In Section VI we used the Center manifold theory to
investigate the direction bifurcations of the solutions about
the equilibrium points. Numerical simulations are given in
Section VII and finally some conclusions are given in Section
VIII.

II. MODEL FORMULATION

Let S(t),I(t) and R(t) be the number of susceptible, in-
fected and recovered individuals at time t. Here we consider
the model in which the birth rate of the susceptible is a lo-
gistic type and the rate of infection is a saturation type and
directly affected by the inhibitory factors, crowding effect
and a protection measure. Incorporating all the assumptions
the governing differential equation of the proposed model can
be written in the following form

dS

dt
= rS(1− S

k
)− pSI

1 + αS + βI
− dS + γR

dI

dt
=

pSI

1 + αS + βI
− (d+ µ)I

dR

dt
= µI − (d+ γ)R,

(1)

where: r – intrinsic growth rate of the susceptible class, k
– carrying capacity, p – the rate of infection, α and β – the
parameter that measures the inhibitory factors may be social
awareness of both the populations or crowding effect and
protection measure of the infected populations, respectively,
d – the natural death of the population, γ –rate at which the
recovered class loses immunity and becomes susceptible, µ
– rate at which the infected individuals recovered.

In the model, if α and β both increase then the term
pSI

1 + αS + βI
will decrease i.e. lesser number of susceptible

individual will be infected. Thus α and β play an important
role in the model. Here all the constants considered in the
model are non-negative.

III. BOUNDEDNESS AND PERMANENCE
OF THE SOLUTIONS

In this section we shall investigate the boundedness and
permanence of the solution of the system (1). Theorems 1–3
provide the conditions of boundedness and Theorem 4 pro-
vides the conditions of permanence.

Theorem 1. All the feasible solutions of the system (1) are
bounded and enter the region
Ω =

{
(S, I,R) ∈ R3, 0 ≤ S + I +R ≤ rk/d

}
.

Proof. Let W = S + I +R

∴
dW

dt
=
dS

dt
+
dI

dt
+
dR

dt
≤ rk − d(S + I +R)

∴
dW

dt
+Wd ≤ rk.

Integrating both sides we get, W (t) ≤ rk

d
+ W0e

−dt →
rk

d
as t→∞, where W0 is the initial condition. Hence all

the feasible solutions enter in the region Ω.

Theorem 2. If S(t), I(t) and R(t) be the solution of the
system (1) then in the region Sd ≥ Rγ the following hold

lim sup
t→∞

S(t) ≤ k

lim sup
t→∞

I(t) ≤ pk

β(d+ µ)

lim sup
t→∞

R(t) ≤ pkµ

β(d+ µ)

Proof. From the first equation of the system (1) we have
dS

dt
≤ rS(1 − S

k
) in the region Sd ≥ Rγ. Let S̄ be

the solution of the following initial valued problem
dS̄

dt
=

rS̄(1− S̄

k
), S̄(0) = x(0). By standard comparison principal,

we have S(t) ≤ S̄(t) for all t ∈ [0,+∞] which follows,

lim sup
t→∞

S(t) ≤ lim sup
t→∞

S̄(t) = k (2)
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From the second equation of the system (1), using (2) we

have
dI

dt
≤
{
pk

β
− (µ+ d)I

}
, which implies

lim sup
t→∞

I(t) ≤ pk

β(d+ µ)
(3)

Similarly the third equation of (1) along with (2) and (3)
follows

lim sup
t→∞

R(t) ≤ pkµ

β(d+ µ)
(4)

Theorem 3. If S(t), I(t) and R(t) are the solution of the
system (1) and r > d then

lim inf
t→∞

S(t) ≥ k(1− d

r
)

lim inf
t→∞

I(t) ≥
pk(1− d

r
)

c(d+ µ)(1 + k(1− d

r
))

lim inf
t→∞

R(t) ≥
pµk(1− d

r
)

c(d+ γ)(d+ µ)(1 + k(1− d

r
))

where c = max{1, α, β}.
Proof. The first equation of the system (1) can be written in

the form
dS

dt
≥ rS(1− S

k
)−dS. Then Ŝ =

k(1− d/r)
1 + ce(−(r−d)t)

satisfies the following differential equation

dŜ

dt
= rŜ(1− Ŝ

k
)− dŜ, (5)

c is arbitrary constant.
This implies, lim inf

t→∞
S(t) ≥ lim inf

t→∞
ˆS(t) = k(1 − d/r).

Proceeding in the same manner with other two equations of
(1) it can be easily shown that

lim inf
t→∞

I(t) ≥
pk(1− d

r
)

c(d+ µ)

(
1 + k

(
1− d

r

))

lim inf
t→∞

R(t) ≥
pµk(1− d

r
)

c(d+ γ)(d+ µ)

(
1 + k

(
1− d

r

))
where c = max {1, α, β}.

Thus the above three theorems show that solutions of sys-
tem (1) are bounded from both below and above. Permanence
of the solution of (1) can be determined from the following
Theorem 4.
Definition of permanence [35]: The system (1) is said to be
permanent if there exist M and m, 0 ≤ m ≤M such that for
all solutions of (1) the following conditions are satisfied

Min
{

lim inf
→∞

S(t), lim inf
t→∞

I(t), lim inf
t→∞

R(t)
}
≥ m,

Max
{

lim sup
t→∞

S(t), lim sup
t→∞

I(t), lim sup
t→∞

R(t)

}
≤M .

Theorem 4. The system (1) is permanent inside the plane
dS ≥ γR.
Proof. The theorem immediately follows if we choose

M = Max
{
k,

pk

β(d+ µ)
,

pkµ

β(d+ µ)

}
and

m = Min

{
k(1− d

r
),

pk(1− d

r
)

c(d+ µ)

(
1 + k

(
1− d

r

)) ,
pµk(1− d

r
)

c(d+ γ)(d+ µ)

(
1 + k

(
1− d

r

))}

where c is already defined. Then all conditions of the defini-
tion of permanence are satisfied.

This theorem implies that the system (1) is permanent if the
number of deaths of susceptible individuals at any time is the
same or higher than the number of recovered individuals who
have again become susceptible.

IV. STABILITY ANALYSIS OF THE MODEL

There are three equilibrium points in our considered
model, namely the trivial equilibrium (0, 0, 0), the disease
free equilibrium (S0, 0, 0), and the endemic equilibrium point

(S1, I1, R1), where S0 = k(1 − d

r
), I0 = 0, R0 = 0,

I1 =
(1 + αS1)

β
(R01 − 1) , R1 =

µI1
d+ µ

and R01 =

pS1

(1 + αS1) (d+ µ)
and S1 is positive root of the algebraic

equation

S2 + a1S − a2 = 0, (6)

were a1 =
k

βr

{
ap

d+ µ
+ βd− (βr + aα)

}
, a2 =

ak

βr
, a =

d2 + dµ+ dγ

d+ γ
and S1 =

−a1 +
√
a21 + 4a2

2
.

Expression of I1 shows that the equilibrium point will
exist only when R01 > 1. The basic reproduction number of
the considered model has been calculated in the form

R0 =

pk

(
1− d

r

)
(d+ µ)

(
1 + k

(
1− d

r

)
α

)
by compartmental method [38]. Here the variational matrix
corresponding to the model (1) is
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J(S, I,R) =



r(1− 2S

k
)− d− pI(1 + βI)

(1 + αS + βI)2
pI(1 + βI)

(1 + αS + βI)2
0

− pS(1 + αS)

(1 + αS + βI)2
pS(1 + αS)

(1 + αS + βI)2
− (d+ µ) µ

γ 0 −(d+ γ)



Theorem 5. If r < d then the trivial equilibrium point
(0, 0, 0) is asymptotically stable.

Proof. The characteristic equation for the equilibrium point
(0, 0, 0) is∣∣∣∣∣∣

r − d− λ 0 0
0 −(d+ µ)− λ µ
γ 0 −(d+ γ)− λ

∣∣∣∣∣∣ = 0 (7)

Roots of the above equations are r−d,−(d+µ) and−(d+γ).
Since if r < d then all roots are negative and consequently
this equilibrium point is asymptotically stable. On the other
hand, if r > d then one of the three roots is positive and the
other two are negative. Consequently, the equilibrium point is
a saddle point and the solution in the neighbourhood of this
equilibrium point will be unstable in nature.

Theorem 6. If r < d and
prk

(d+ rkα)(d+ µ)
< 1 then the

trivial equilibrium point (0, 0, 0) is globally asymptotically
stable.

Proof. Consider the Lyapunov function

L = I

∴
dL

dt
=
dI

dt
=

{
pS

1 + αS + βI
− (d+ µ)

}
I

≤
{

prk

d+ rkα
− (d+ µ)

}
I ≤ 0,

if
prk

(d+ rkα)(d+ µ)
< 1.

The sign of equality holds only when I = 0.
Let S1 =

{
(S, I,R) : L̇ = 0

}
= {(S, I,R) : I = 0} and

M be the largest invariant set in S1. Then putting I = 0 in
equations of (1), integrating and using the conditions stated
in the theorem we get, R→ 0 and S → 0 as t→∞.
Thus the invariant set

M = {(0, 0, 0)}

is a singleton set. Hence it follows from Lasalle-Liapunov
theory [36] that the equilibrium point (0, 0, 0) is globally
asymptotically stable. Hence the theorem follows.

In the next part we shall describe the stability of the dis-

ease free equilibrium point
(
k(1− d

r
), 0, 0

)
.

Theorem 7. If r > d and R0 < 1 then the disease free

equilibrium point
(
k(1− d

r
), 0, 0

)
is asymptotically stable.

Proof. The characteristic equation corresponding to this equilibrium point is∣∣∣∣∣∣∣∣∣∣∣∣

−(r − d− λ) 0 0

−
pk

(
1− d

r

)
1 + αk

(
1− d

r

) pk

(
1− d

r

)
1 + αk

(
1− d

r

) − (d+ µ)− λ µ

γ 0 −(d+ γ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (8)

whose roots are −(r − d),−(d+ γ) and
pk

(
1− d

r

)
1 + αk

(
1− d

r

) − (d+ µ) = (d+ µ)(R0 − 1). If R0 < 1 then all the roots are

negative and solution in the neighbourhood of this equilibrium point is asymptotically stable and if R0 > 1 then one root is
positive and the other two roots are negative and consequently the equilibrium point is unstable in nature.
Hence the theorem follows.
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We shall next discuss the global asymptotic stability of
the disease free equilibrium point.

Theorem 8. If r > d and p <
d(d+ µ)

rk
then the disease

free equilibrium point
(
k(1− d

r
), 0, 0

)
is globally asymp-

totically stable.

Proof. To check the global asymptotically stability of disease
free equilibrium point consider the Lyapunov function L = I
then

dL

dt
=
dI

dt
=

{
pS

1 + αS + βI
− (µ+ d)

}
I

≤{pS − (d+ µ)} I

≤
{
prk

d
− (d+ µ)

}
I ≤ 0 if p <

d(d+ µ)

rk
.

Here also the sign of equality holds when I = 0. Let the
set S1 =

{
(S, I,R) : L̇ = 0

}
= {(S, I,R) : I = 0} and M

be the largest invariant in S1. Then from the set S1 putting

I = 0 in the system of equation (1) and integrating and using

the given conditions we get, R → 0, and S → k(1− d

r
) as

t→∞.

Thus M =

{
(k(1− d

r
), 0, 0)

}
is a singleton set, hence it

follows from the Lasalle-Liapunov theory [36] that the equi-

librium point
(
k(1− d

r
), 0, 0

)
is globally asymptotically

stable.

Thus the disease free equilibrium point
(
k(1− d

r
), 0, 0

)
is globally asymptotically stable up to a critical value of the
rate of infection (p), above which it fails to become globally
asymptotically stable. In this section we shall describe the
nature of the solution in the neighbourhood of the endemic
equilibrium point (S1, I1, R1).

Theorem 9. The endemic equilibrium point (S1, I1, R1)
is asymptotically stable if R01 > 1, R0 > 1 and
C1, C2, C3, C1C2 − C3 all are positive, where C1, C2, C3

defined in the proof.

Proof. The characteristic equation corresponding to the endemic equilibrium point (S1, I1, R1) is

∣∣∣∣∣∣∣∣∣∣∣∣

rS1(1− 2S1

k
)−A− d− λ A 0

−B B − d− µ− λ µ

γ 0 −(d+ γ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (9)

where:

A =
pI1(1 + βI1)

(1 + αS1 + βI1)2

and

B =
pS1(1 + αS1)

(1 + αS1 + βI1)2
.

After simplifying the equation (9) we get

λ3 + C1λ
2 + C2λ+ C3 = 0 (10)

where:

C1 = 2d+ γ + r(
2S1

k
− 1) +A+

(d+ µ)βI1
(1 + αS1 + βI1)

,

C2 =

(
d+ γ +

(d+ µ)βI1)

(1 + αS1 + βI1)

)(
A+ d+ r(

2S1

k
− 1)

)
+ (d+ γ)

(d+ µ)βI1
(1 + αS1 + βI1)

+AB,

C3 = d(d+ µ+ γ)A+
(d+ γ)(d+ µ)βI1
(1 + αS1 + βI1)

(
d+ r(

2S1

k
− 1)

)
.
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If C1, C2, C3 and C1C2−C3 are all positive then by Routh-Hurwitz criteria all roots have negative real part and consequently
the solution in the neighbourhood of endemic equilibrium point is asymptotically stable. If one of C1, C3 failed to become
positive then stability fails.

Global asymptotic stability of the endemic equilibrium
point follows from the following theorem.

Theorem 10. The system (1) is globally asymptotically sta-
ble around the endemic equilibrium point (S1, I1, R1) in

the region Ω1 =

{
(S, I,R) : 1 <

I1
I
<
R1

R
<
S1

S

}
when

R01 > 1.

Proof. To prove the global asymptotic stability we construct
the positive Lyapunov function in the following form

L(S, I,R) =

∫ S

S1

S − S1

S
dS +

∫ I

I1

I − I1
I

dI

+

∫ R

R1

R−R1

R
dR, then

dL

dt
=
S − S1

S

dS

dt
+
I − I1
I

dI

dt
+
R−R1

R

dR

dt
=

=− r(S − S1)2

k
− pα(S − S1)(IS1 − SI1)

(1 + αS + βI)(1 + αS1 + βI1)

−r(S − S1)(R1S −RS1)

SS1

− pβ(I − I1)(IS1 − SI1)

(1 + αS + βI)(1 + αS1 + βI1)

−µ(R−R1)(RI1 − IR1))

RR1
.

Since in the considered region Ω1 the function
dL

dt
< 0,

by Lasalle-Liapunov theory [36] the system (1) is globally
asymptotically stable.

V. HOPF BIFURCATIONS

If the coefficients C1, C2, C3 of the characteristic poly-
nomial equation (10) satisfy the inequalities C1 > 0, C2 >
0, C3 > 0 and C1C2 − C3 > 0 then the equilibrium point is
asymptotically stable. On the other hand, if the forth inequal-
ity fails, i.e. C1C2 − C3 = 0, then equation (10) has a pair
of complex roots with zero real part. This may cause Hopf
bifurcation if the transversality condition is satisfied.

Theorem 11. If R01 > 1 , R0 > 1, C1 > 0, C2 > 0,
C3 > 0, C1C2 − C3 = 0 and the intrinsic growth rate
r passes through r = rc and the transversality conditions

{
d(C1C2 − C3)

dr

}
r=rc

6= 0 is satisfied then the system (1)

goes through Hopf bifurcation in the neighbourhood of the
endemic equilibrium point (S1, I1, R1), where rc is defined
in the proof.

Proof. If C1, C2,C3 are positive and C1C2 − C3 = 0, oc-
curs for r = rc then two roots of the equation will be purely
imaginary and the other will be negative. Thus, for any ε > 0
there exists an interval containing (rc−ε, rc+ε) such that for
r ∈ (rc − ε, rc + ε), the characteristic equation (10) cannot
have real positive roots. For r = rc the equation (10) can be
expressed as (λ2+C2)(λ+C1) = 0, roots of this equation are
λ1,2 = ±i

√
C2, λ3 = −C1. Thus for r ∈ (rc− ε, rc + ε) the

roots are in general of the form λ1,2 = α1 ± iβ1, λ3 = −C1

where α1(rc) = 0.
For Hopf bifurcation to occur, the transversality condition

Real

(
dλ1,2
dr

)
r=rc

6= 0 must satisfy.

Now putting λ = α1 + iβ1 in equation (10) we get
(α1 + iβ1)3 + C1(α1 + iβ1)2 + C2(α1 + iβ1) + C3 = 0,
comparing real and imaginary parts we get, α3

1 − 3α1β
2
1 +

C1(α2
1 − β2

1) + C2α1 + C3 = 0,
3α2

1β1 − β3
1 + 2C1α1β1 + C2β1 = 0

Since β1 6= 0, eliminating β1 from the above two
equations and then differentiating w.r.to r and putting

α1(rc) = 0 we obtain
dα

dr
]r=rc = Real

{
dλ1,2
dr

}
r=rc

=

−
{

1

2(C2 + C2
1 )

d(C1C2 − C3)

dr

}
r=rc

.

Since C2 + C2
1 6= 0 the transversality condition reduces

to
{
d(C1C2 − C3)

dr

}
r=rc

6= 0, where

{
d(C1C2 − C3)

dr

}
r=rc

=

=− E
(
C1 + (C2 + d+ γ)(d− r(1− 2S/k))

+C2(d+ γ)
)

+ F (C1 + C2(2d+ µ+ γ)

−(d2 + dγ + dµ)) +
2

kr

(
−G+

a1G− 2ka/β√
a21 + 4a2

)
·(C1 + C2(2d+ µ+ γ −B)− d2

− dµ− dγ + µγ −B(d+ γ))

+(1− 2S/k)(C1 − C2(2d+ µ+ γ −B)

+d2 + dµ+ dγ +B(d+ γ)),
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with G =
k

2β

(
ap

d+ µ
+ bd− aα

)
,

E =
p(1 + 2αS1)H

(1 + αS1 + βI1)2
− 2pS1(1 + αS1)

(1 + αS1 + βI1)3
(αH + βM),

F =
p(1 + 2βI1)M

(1 + αS1 + βI1)2
− 2pI1(1 + βI1)

(1 + αS1 + βI1)3
(αH + βM),

H =
1

r2

(
−G+

a1G− 2ka/β√
a21 + 4a2

)
,

M =
p− α(d+ µ)

β(d+ γ)
H.

VI. NORMAL FORM
AND CENTER MANIFOLD THEORY

In this section we shall use the normal form and Center
Manifold theorem to study the existence of different bifurca-
tions of the model (1).
Let us shift the origin to any point (S∗, I∗, R∗) using the
transformation S = S′ + S∗, I = I ′ + I∗and R = R′ +R∗

then the system (1) reduces to the following form (writing
omitting the ′ sign)



dS

dt
= a11S + a12I + a13R

+a14S
2 + a15SI + a16I

2 +O(S3, I3)
dI

dt
= a21S + a22I + a23R

+a24S
2 + a25SI + a26I

2 +O(S3, I3)
dR

dt
= a31S + a32I + a33R,

(11)

where

a11 = r − d− 2rS∗

k
− pI∗

(1 + αS∗ + βI∗)

+
αpI∗S∗

(1 + αS∗ + βI∗)2
,

a12 = − pS∗

(1 + αS∗ + βI∗)
+

pβI∗S∗

(1 + αS∗ + βI∗)2
,

a13 = γ,

a14 =
αpI∗

(1 + αS∗ + βI∗)2
− pα2I∗S∗

(1 + αS∗ + βI∗)3
− r

k
,

a15 = − p)

(1 + αS∗ + βI∗)
+

αpS∗ + βpI∗

(1 + αS∗ + βI∗)2

− 2αβpI∗S∗

(1 + αS∗ + βI∗)3
,

a16 =
βpS∗

(1 + αS∗ + βI∗)2
− pβ2I∗S∗

(1 + αS∗ + βI∗)3
,

a21 =
pI∗

(1 + αS∗ + βI∗)
− αpI∗S∗

(1 + αS∗ + βI∗)2
,

a22 =
pS∗

(1 + αS∗ + βI∗)
− βpS∗I∗

(1 + αS∗ + βI∗)2
− (d+ µ),

a23 = 0, a24 = − αpS∗

(1 + αS∗ + βI∗)2
+

α2pS∗I∗

(1 + αS∗ + βI∗)3
,

a25 =
p

(1 + αS∗ + βI∗)
− αpS∗ + βpI∗

(1 + αS∗ + βI∗)2

+
2αβS∗I∗p

(1 + αS∗ + βI∗)3
,

a26 −
βpS∗

(1 + αS∗ + βI∗)2
+

pS∗I∗β2

(1 + αS∗ + βI∗)3
,

a31 = 0, a32 = µ, a33 = −(d+ γ).

VI. 1. Bifurcation analysis of disease free
equilibrium (0, 0, 0)

Now for the equilibrium point (0, 0, 0) the equation (11)
reduces toṠİ

Ṙ

 =

r − d 0 γ
0 −(d+ µ) 0
0 0 −(d+ γ)

SI
R



+

−rS
2

k
− pSI

pSI
0


(12)

If r = d then one root of the characteristic equation of
the system (12) vanishes and other roots (eigenvalues) are
−(d+ µ),−(d+ γ). Then applicability of Theorem 5 fails.
In this case we shall investigate the dynamics of (1) near
(0, 0, 0), using center manifold theory [39, 40].

The eigenvectors corresponding to the eigenvalues r−d =

0,−(d + µ), and −(d + γ) are

1
0
0

 ,


− γ

d+ µ
γ − µ
µ
1

 and
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−
γ

d+ γ
0
1

 respectively. Using the transformation

SI
R

 = P

uv
w

 ,

with

P =


1 0 0

− γ

d+ µ

γ − µ
µ

1

− γ

d+ γ
0 1


T

and σ = r − d the equation (12) reduces to the following
formu̇v̇
ẇ

 =

0 0 0
0 −(d+ µ) 0
0 0 −(d+ γ)

uv
w

+

g1g2
g3

 ,

(13)
where g1 = σu + (σ + d)(a1u

2 + b1uv + c1v
2) + d1uv −

σγ

d+ µ
v− σγ

d+ γ
w, g2 = b2uv+ c2wv and g3 = −b2uv−

c2wv with a1 = − 1

k2
, b1 = − 2c

k2
− b(d2 + dµ+ dγ)

d+ µ
, c1 =

− c
2

k2
, b2 =

pbµ

γ − µ
, c3 =

pcµ

γ − µ
.

Suppose satisfaction of (12) depends on the bifurcation pa-
rameter σ = r − d. Then considering the bifurcation parame-
ter σ as a new independent variable this system (12) can be
written in the form

u̇
v̇
ẇ
σ̇

 =


0 0 0 0
0 −(d+ µ) 0 0
0 0 −(d+ γ) 0
0 0 0 0



u
v
w
σ

+


g1
g2
g3
0


(14)

Let’s assume that there exists a center manifold of the
form

W c(0) =
{

(u, v, w, σ) ∈ R4 : v = h1(u, σ),

w = h2(u, σ), |u| < δ, |σ| < δ1, hi(0, 0) = 0

Dhi(0, 0) = 0, i = 1, 2
}
,

where δ > 0 and δ1 > 0 sufficiently small and D denotes
derivative with respect to u.

Now we choose{
v = h1(u, σ) = a11u

2 + a12uσ + a13σ
2 + . . .

w = h2(u, σ) = a21u
2 + a22uσ + a23σ

2 + . . .
(15)

along with h1 and h2 satisfying the equation [35]

D

(
h1
h2

)
g1 −B

(
h1
h2

)
=

(
g2
g3

)
(16)

and the condition h(0) = Dh(0) = 0.
Then substituting (15) in (16) and comparing the coefficients
of similar power of u2, uσ and σ2 on both sides of the equa-
tion we get

u2 : (d+ µ)a11 = a1d, (d+ γ)a21 =

=a1d =⇒ a11 =
da1
d+ µ

,

a21 =
da1
d+ γ

uσ : a12 = 0, a23 = 0

σ2 : a13 = a23 = 0

Hence from equation (14) we get

u̇ = uσ + da1u
2 +

(
a1σ − a11

σγ

d+ µ

)
u2

+o(σ, u3) = f(u.σ)(say),

σ̇ = 0.

Here f(0, σ) = 0,
∂f(0, 0)

∂u
= 0,

∂2f(0, 0)

∂u∂σ

∂2f(0, 0)

∂2u
=

2da1 6= 0
Hence the system will go through transcritical bifurcation at
(0, 0, 0), [37]. From the above discussion we can summarize
the following theorem:

Theorem 12. If r = d then solution of the system (1) in the
neighbourhood of the trivial equilibrium point goes through
transcritical bifurcation.

VI. 2. Bifurcation analysis of disease free equilibrium

(k(1− d

r
), 0, 0)

For the disease free equilibrium point
(
k

(
1− d

r

)
, 0, 0

)
the system (11) reduces to (using the same symbols as in
(11)) Ṡİ

Ṙ

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

SI
R



+

a14S2 + a15SI + a16I
2

a24S
2 + a25SI + a26I

2

0


(17)

where
a11 = −(r − d),
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a12 = −
pk

(
1− d

r

)
1 + αk

(
1− d

r

) ,
a13 = γ, a21 = 0,
a22 = (d+ µ)(R10 − 1),
a23 = 0, a31 = 0,

a32 = µ, a33 = −(d+ γ), a14 = − r
k
,

a15 = − p

1 + αk

(
1− d

r

) ,
a24 = − αS0p

(1 + αS0)2
,

a25 = − p

(1 + αS0)2
,

a26 = − βS0p

(1 + αS0)2
.

The eigenvalues of the corresponding linear system are
λ1 = a11, λ2 = a22 and λ3 = a33. If the basic reproduction
number R0 = 1, the equilibrium point (S0, 0, 0) is of non-
hyperbolic type then the usual eigen analysis fails to study the
behavior of the equilibrium point. Then it is necessary to take
help of the center manifold theorem. Using the transformationSI

R

 = Q

uv
w

 ,

the system of equation (17) reduces to the formu̇v̇
ẇ

 =

a11 0 0
0 0 0
0 0 a33

uv
w

+

g11g22
g33

 (18)

where:

Q =

1 0 0
a c 1
b 0 1

T

,

a =
a12(d+ γ + µγ)

µ(r − d)
,

b =
γ

r − 2d− γ
,

c =
d+ γ

µ
,

g11 = A11u
2+B11v

2+C11w
2+D11uv+E11uw+F11vw,

g22 = A22u
2+B22v

2+C22w
2+D22uv+E22uw+F22vw,

g33 = A33u
2+B33v

2+C33w
2+D33uv+E33uw+F33vw,

with,

A11 = a14 − a24
a− b
c

,

B11 =

(
a14 − a24

a− b
c

)
a2 +

(
a15 − a25

a− b
c

)
ac +(

a16 − a26
a− b
c

)
c2, C11 =

(
a14 − a24

a− b
c

)
b2,

D11 = 2a

(
a14 − a24

a− b
c

)
+ c

(
a14 − a24

a− b
c

)
,

E11 = 2b

(
a14 − a24

a− b
c

)
,

F11 = 2ab

(
a14 − a24

a− b
c

)
+ bc

(
a15 − a25

a− b
c

)
,

A22 = −A33 =
a24
c
,

B22 = −B33 =
a2a24 + aca25 + a26c

2

c

C22 = −C33 =
a24b

2

c
,

D22 = −D33 =
2aa24 + ca25

c
,

E22 = −E33 =
2ba24
c

,

F22 = −F33 =
2aba24 + bca25

c
.

The system (18) can be written in the following form
v̇ = g22

u̇ = a11u+ g11

ẇ = a33w + g33

(19)

By the center manifold theorem [37] there exists a center
manifold of the system (19) which can be expressed by

W c(0) =
{

(u, v, w) ∈ R3 : u = h1(v),

w = h2(v), |u| < δ, hi(0) = 0, Dhi(0) = 0, i = 1, 2
}
,

δ is sufficiently small, Dh is the derivative of h with respect
to v. To compute the center manifold W c(0), we assume

u = h1(v) = h11v
2 + h12v

3 + ...

w = h2(v) = h12v
2 + h22v

3 + ... ,

which satisfies the equation

D

(
h1
h2

)
g22 −B

(
h1
h2

)
=

(
g11
g33

)
. (20)

Substituting h1 and h2 in equation (20) and comparing the

like powers of v we get h11 =
B11

r − d
,

h21 =
B33

d+ γ
,

h12 =
D11h11 + F11h21 − 2h11B22

r − d
,

h22 =
D33h11 + f33h21 − 2h21B22

d+ γ
.
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∴ Putting the expression of u and w in the first equation of
(19) we get

v̇ = B22v
2 + v3

{
D22h11 + F22h21 + o(v4)

}
Hence this equilibrium point is a saddle-node type. Therefore,
the reduced system depicted by (17) shows that this system
is unstable and consequently the original system is unstable.
Hence from the above discussion we can summarize the
following theorem:

Theorem 13. IfR0 = 1 then solution of the system (1) in the
neighbourhood of the disease free equilibrium is saddle-node
type and consequently unstable.

VI. 3. Bifurcation analysis of endemic equilibrium
For the endemic equilibrium point (S1, I1, R1) the sys-

tem (11) reduces (using the same same the symbols as in
(11)) to Ṡİ

Ṙ

 =

a11 a12 a13
a21 a22 0
0 a32 a33

SI
R


+

a14S2 + a15SI + a16I
2

a24S
2 + a25SI + a26I

2

0


(21)

where all aij are the same as coefficients in (11), only
(S∗, I∗, R∗) will be replaced by (S1, I1, R1). Equation (10)
represents the characteristics equation of the linear part of it.
If it satisfies the conditions of Theorem 11 the roots of the
equation (10) have one negative real root and a pair of purely
imaginary roots and the system undergoes Hopf bifurcation.
To verify the stability of Hopf bifurcation in the neighbour-
hood of endemic equilibrium point let us choose the transfor-
mation SI

R

 = P

uv
w

 ,

where: P =

p11 p12 p13
p21 p22 p23
p3 0 p33

 , p11 = −a33
a32

,

p12 = −
√
C2

a32
, p13 = −a33 + C1

a32
, p21 = −a22

a21
,

p22 = −
√
C2

a21
, p23 = −a22 + C1

a21
, p31 = 1, p33 = 1.

Let P−1 =

s11 s12 s13
s21 s22 s23
s31 S32 s33

,

s11 =
p33p22
|P |

,

s12 = −p33p12
|P |

,

s13 =
p12p23 − p13p22

|P |
,

s21 = −p21p33 − p23p31
|P |

,

s22 =
p11p33 − p13p31

|P |
,

s23 = −p11p23 − p13p21
|P |

s31 = −p22p31
|P |

, s32 =
p12p31
|P |

s33 = −p22p11 − p12p21
|P |

,

where |P | denotes the determinant value of P .
Using the above transformation, the system (21) reduces

to the formu̇v̇
ẇ

 =

 0 −
√
C2 0√

C2 0 0
0 0 −C1

uv
w

+

f1f2
f3

 , (22)

where:

f1 = B11u
2 +B12v

2 +B13w
2 +B14uv+B15uw+B16vw,

f2 = B21u
2 +B22v

2 +B23w
2 +B24uv+B25uw+B26vw,

f3 = B31u
2 +B32v

2 +B33w
2 +B34uv+B35uw+B36vw,

with,

B11 = P 2
11A11 +A13P

2
21 +A12P11P21,

B12 = P 2
12A11 +A13P

2
22 +A12P12P22,

B13 = P 2
13A11 +A13P

2
23 +A12P13P23,

B14 = 2A11P11P12+2A13P21P22+A12(P11P22+P12P21),

B15 = 2A11P11P13+2A13P21P23+A12(P11P23+P21P13),

B16 = 2A11P12P13+2A13P22P23+A12(P12P23+P13P22).

Similar expression for B2i and B3i is obtained by replac-
ing A1j by A2j and A3j , respectively. Where

A11 = s11a14 + s12a24,

A12 = s11a15 + s12a25,

A13 = s11a16 + s12a26,

A21 = s21a14 + s22a24,

A22 = s21a15 + s22a25,

A23 = s21a16 + s22a26,

A31 = s31a14 + s32a24,

A32 = s31a15 + s32a25,

A33 = s31a16 + s32a26.

There exists a center manifold for (22) which can be
represented as follows

W c(0) =
{

(u, v, w) ∈ R3 : w = h(u, v),

|w| < δ, h(0, 0) = 0, Dh(0, 0) = 0
}
,
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where δ is sufficiently small, Dh is the partial derivative of h
with respect to u, v.

To compute the center manifold W c(0), we assume that
w = h(u, v) = b1u

2 + b2v
2 + b3uv + o(|u|4).

In case of disease free and trivial equilibrium, using the con-
ditions satisfied by h(u, v), we obtain

b1 =
B31 −

√
C2

C1
,

b3 =
B34 + 2b1

√
c2√

c2 + C1

and

b2 =
B32 + b3

√
c2

C1
.

Thus (22) restricted to the center manifold is given by(
u̇
v̇

)
=

(
0 −

√
C2√

C2 0

)(
u
v

)
+

(
f(u, v)
g(u, v)

)
, (23)

where:

f(u, v) = B11u
2 +B12v

2 +B14uv

+B15b1u
3 +B16b2v

3 + (B15b2 +B16b3)uv2

+(B15b3 +B16b1)u2v + o(|u|4),

g(u, v) = B21u
2 +B22v

2 +B24uv

+B25b1u
3 +B26b2v

3 + (B25b2 +B26b3)uv2

+(B25b3 +B26b1)u2v + o(|u|4).

Now we compute σ− defined below, it gives the stability or
instability of the periodic orbit about the endemic equilibrium
point, [40].

σ =
1

16
{fuuu + fuvv + guuv + gvvv}+

1

16
√
C2

{fuv(fuu + fvv)− guv(guu + gvv)− fuu)guu + fvv)gvv}

=
1

16
{6B15b1 + 2(B15b2 +B16b3) + 2(B16b3 +B26b1) + 6B26b2}

+
1

16
√
C2

{2B14(B11 +B12)− 2B24(B21 +B22)−B11B21 +B12B22} .

From the above discussion we can summarize the follow-
ing theorem:

Theorem 14. The periodic solution that is emanating from
the endemic equilibrium point (S1, I1, R1) in the neighbour-
hood of rc is stable (unstable) if σ < 0(> 0). Moreover, the
system is said to be super critical (sub critical) if σ < 0(> 0).

VII. NUMERICAL SIMULATION

To verify the theoretical findings numerical simulation
is performed considering empirical values of the parame-
ters. We consider first k = 100, p = 0.010, β = 0.01, d =
2.3, γ = 0.001, µ = 0.01, α = 0.021, r = 0.73 then only
the trivial equilibrium point (0, 0, 0) exists because r < d.
By Theorem 5 this equilibrium point is locally asymptotically
stable. Again the conditions of global stability of Theorem 6
are satisfied hence the trivial equilibrium point (0, 0, 0) is
globally asymptotically stable. The stability and global sta-
bility is justified from Fig. 1(a) and Fig. 1(b), respectively.
From Fig. 1(b) it is clear that from different starting points
the solution ultimately converges to the equilibrium point
(0, 0, 0).

For existence of disease free equilibrium points we have
r > d, so increase the value of r keeping all other parameters

fixed as in the previous one. Consider r = 8.73 then the
trivial equilibrium point is unstable (by Theorem 6) and con-
sequently the disease free equilibrium point (73.6541, 0, 0)
exists. For this parameter values we have R0 = 0.1252 < 1,
R01 = 0.1530 < 1, hence the endemic equilibrium point
does not exists and the disease free equilibrium is locally
asymptotically stable in nature. Fig. 2 (a)-(b) shows the lo-
cally asymptotic stable and global asymptotic stable behavior
of the disease free equilibrium point. In Fig. 2(b) the solu-
tions start from different initial points and ultimately go to
the disease free equilibrium point.

For existence of the endemic equilibrium point, the rate
of infection should be higher. Thus we increase the value of
p, r. Consider p = 3.010, r = 3.73 keeping the remaining
parameters fixed we obtained the endemic equilibrium point
(0.7837, 0.4752, 0.0021) (all values are taken as correct up
to four decimal place). Here R0 = 27.6746 > 1, R01 =
1.0047 > 1 and the conditions of Theorem 9 are satisfied.
Hence this equilibrium point is stable in nature. The con-
ditions of Theorem 10 are also satisfied for the considered
values of the parameters. The corresponding numerical so-
lution of the differential equations is shown in Fig. 3(a-b).
From Fig. 3 it is clear that the system (1) is globally asymptoti-
cally stable in the neighbourhood of this endemic equilibrium
point.
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To study the Hopf bifurcation we consider α = 0.47
9980, r = rc = 2.407734 and keeping other parame-
ters fixed, we obtain the endemic equilibrium point as
(1.1605, 0.0400, 0.0001). Then roots of the equation (10) are:
−2.3010,−0.0000± 0.3435i. Since one root is negative and
the other two have zero real part, the solution in the neigh-
bourhood of the equilibrium point will be periodic and the
endemic equilibrium point is a center. The value of[

d (Realλ)

dr

]
r=rc

6= 0,

hence the system will go through Hopf bifurcations. Since for
r = 2.36 < rc the system is stable and trajectory is a stable
spiral which is shown in Fig. 4(a). The bifurcation occurs
at r = rc and for r > rc the stable spiral jumps to an un-
stable spiral, finally closed orbit (limit cycle) arises after the
bifurcation, which is justified by figure 4(b).

Next we draw the dynamical behavior of the solution of
the system (1) through bifurcation study of different para-
meters r, α and β. Fig. 5 shows the bifurcation diagram of
the system (1) with respect to intrinsic growth rate r within
the interval 0 < r ≤ 10. From the figure it is clear that
all the populations remain in the stable state in the range
0 < r < 2.407734 and then the system has limit cycle
oscillation for all the populations. From this analysis it is
clear that if the rate of infection is high (here p = 3.010) then
the population density oscillates for high intrinsic growth rate
(r > 2.407734) and elimination of the disease is impossible.
Again from Fig. 5 it is clear that bifurcation is super-critical
with respect to the intrinsic growth rate. Biologically it is
most important if both: the rate of infection and the growth
rate is high, then controlling the disease is quite difficult.

Fig. 6 represents the bifurcation diagram with respect
to the inhibition coefficient (α) in the range 0 < α ≤ 4.

From the figure it is clear that for 0 < α ≤ 0.47998 the
number of all populations will increase, then in the range
0.47998 < α ≤ 1.28 the susceptible populations becomes
periodic and other two population start to decrease and ulti-
mately when α ≥ 1.28 the number of infected and recovered
populations diminish and the susceptible populations be-
comes stable in nature. Thus the inhibition parameter (α)
may be taken as an controlling parameter for controlling the
infection. Biologically it is the most important because if we
increase the social awareness programme then many diseases
are easy to control.

Fig. 7(a,b) represents the bifurcation diagram with re-
spect to the another inhibition coefficient (β) here considered
as the crowding effect or protection measure in the range
0 < β ≤ 1. From Fig. 7(a) it is clear that the all populations
have limit cycle oscillations in the range 0 < β ≤ 0.31. All
the population settle down to their respective steady state.
With the increase of β the infected and recovered class di-
minishes and the susceptible class become stable, which is
clear from Fig. 7(b).

VIII. CONCLUSIONS

In our considered model there are three equilibrium
points. One of them is the trivial equilibrium point, second
is the disease free equilibrium point and the third is the
endemic equilibrium point. The trivial equilibrium point
always exists, the disease free equilibrium point exists if
r > d and the endemic equilibrium point exists if R01 > 1.
The disease free equilibrium point is globally asymptoti-
cally stable under certain conditions. The endemic equilib-
rium point is globally asymptotically stable in the region

Ω1 =

{
(S, I,R) : 1 <

I1
I
<
R1

R
<
S1

S

}
, when R01 > 1
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Fig. 1. Phase portrait in the S-I-R space for k = 100, p = 0.010, β = 0.01, d = 2.3, γ = 0.001, µ = 0.01, α = 0.021, r = 0.73
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Fig. 3. (a) Time series of S-I-R plot for k = 100, p = 3.010, β = 0.01, d = 2.3, γ = 0.001, µ = 0.01, α = 0.021, r = 3.73.
(b) The phase portrait for the global stability for the same values of the parameters
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Fig. 4. Phase portrait for k = 100, p = 3.010, β = 0.01, d = 2.3, γ = 0.001, µ = 0.01, α = 0.479980 (a) for r < rc, (b) for r > rc, the
bold red line corresponds to the stable limit cycle
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Fig. 5. The bifurcation diagram with respect to the intrinsic growth rate (r) and the other parameters are k = 100, p = 3.010, β = 0.01,
d = 2.3, γ = 0.001, µ = 0.01, α = 0.479980

Fig. 6. The bifurcation diagram with respect to the inhibition coefficient (α) and the other parameters are: k = 100, p = 3.010,
β = 0.01, d = 2.3, γ = 0.001, µ = 0.01, and r = 8.702
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Fig. 7. The bifurcation diagram with respect to the inhibition coefficient (β) and the other parameters are k = 100, p = 3.010,
d = 2.3, γ = 0.001, µ = 0.01, α = 0.47998 and r = 8.702 (a) For 0 < β ≤ 10 and (b) Local amplification of Fig. (a) in 0 < β ≤ 1

and goes through super-critical Hopf bifurcation depending
on the intrinsic growth rate. From the analysis of the bifurca-
tion diagrams (Fig. 5–7) it is clear that the intrinsic growth
rate (r) and the inhibition coefficients (α and β) play an im-
portant role in controlling the disease. If the rate of infection
is low then at high intrinsic growth rate the disease is easy
to control. But if the rate of infection is high then at high
intrinsic growth rate the system shows oscillatory behaviour
and consequently eradication of the disease is impossible.
Again from the bifurcation diagram (Fig. 6, 7) it is clear that
if the inhibition coefficients are high, then eradication of the

disease is easy. So to control the disease, the social awareness
program and the protection measure play an important role.
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