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Abstract: Percolation transitions define gas- and liquid-state limits of existence. For simple model fluids percolation phe-
nomena vary fundamentally with dimensionality (d). In 3d the accessible volume (VA) and excluded volume (VE = V−VA)
percolation transitions occur at different densities, whereas in 2d they coincide. The region of overlap for 3d fluids can be
identified as the origin of a supercritical mesophase. This difference between 2d and 3d systems vitiates the hypothetical
concept of “universality” in the description of critical phenomena. Thermodynamic states at which VA and VE , for a spher-
ical molecule diameter σ, percolates the whole volume of an ideal gas, together with MD computations of percolation loci
for the penetrable cohesive sphere (PCS) model of gas-liquid equilibria, show a connection between the intersection of
percolation loci, and the 1st-order phase-separation transition. The results accord with previous findings for square-well and
Lennard-Jones model critical and supercritical fluid equilibria. Percolation loci for real liquids, e.g. CO2 and argon, can
be determined from literature thermodynamic equation-of-state data, and exhibit similar supercritical gas- and liquid-state
bounds. For these real fluids the mesophase bounds extend to low density and pressures and appear to converge onto the
Boyle temperature (TB) in the low-density limit.
Key words: percolation, phase transition, critical point, liquid phase, gas phase

I. INTRODUCTION

In 1863 J.W. Gibbs introduced the concept of a thermo-
dynamic state function to describe physico-chemical equi-
libria. Gibbs’ treatise [1] first explained how various thermo-
dynamic states, can be defined by points on surfaces. Every
state point, for example, of a one-component (C = 1) fluid
volume pressure-temperature surface V (p, T ), as illustrated
in Fig. 1, can be defined by the intersection of two lines.
A state with two degrees-of-freedom (F = 2) is defined by
the intersection of an isotherm and an isobar. For states with
2-phases (P = 2) where F = 1, either an isotherm or an
isobar crosses a coexistence line. A coexistence line can be
defined where two lines cross on Gibbs’ energy surface. The
triple point, whereupon F = 0, is where two coexistence
lines cross in the p, T plane, etc.

Also shown in Fig. 1 is the point, labeled “critical state”,
that has not been defined thermodynamically, i.e. where two
property loci cross. Its postulated existence has been based

upon a hypothesis regarding the form of the p-V -T equation-
of-state, first advanced in the PhD Thesis of van der
Waals [2]. Above a critical temperature”, there is deemed
to be “continuity of liquid and gas”. This implies that there
can be no distinction between gas and liquid phases, i.e. no
phase bounds along any supercritical isotherm.

In 150 years since Andrews’ discovery of a critical tem-
perature (Tc), however, nobody has reported a direct mea-
surement of a liquid-gas “critical volume” [3]. Moreover,
empirically parameterized cubic equations-of-state, in the
spirit of van der Waals, have required ever-increasing num-
bers of adjustable parameters to reproduce the thermody-
namic state functions with 5-6 figure numerical accuracy
along critical and supercritical isotherms [3, 4]. This pro-
gressive inadequacy of cubic equations-of-state is indicative
that the hypothesis of supercritical “continuity of gas and
liquid” may be suspect.
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Fig. 1. Illustration of a Gibbs surface [1]: p(V, T ) for a simple
fluid showing a hypothetical “critical volume” postulated by van

der Waals (1873) [2]

There is a 140-year history and an extensive literature
of cubic equations-of-state, from van der Waals 2-parameter
[2] to current research and compilations with 20+ parameters
[4]. As the thermodynamic experimental measurements have
improved in accuracy, to 5 or 6 figures, over the decades,
these sophisticated cubic equations, that are extensively used
for modern thermodynamic property data banks require an
ever-increasing complexity and more fitted parameters [1].

One reason for this progressive inadequacy is that the
continuous cubic functional forms are fundamentally inap-
propriate in the vicinity of TC and in the supercritical mid-
range between gas and liquid phases. A mesophase, confined
within percolation loci that bound the gas and liquid phases
by higher-order discontinuities, can readily be identified.
A simple numerical differentiation of NIST equations-of-
state, for example, can demonstrate the existence of the su-
percritical mesophase and observe the phase bounds, along
any isotherm, of any fluid (e.g. CO2 at T/Tc = 1.25: see
Fig. 2) for any of the 200 fluids in the NIST Thermophysical
Property data bank [4]. These boundaries are smoothed over
by the equations-of-state used to parameterize the original
p-V -T experimental data.

It is also known that at Tc there is a range of densities
along which the meniscus between a gas and liquid in co-
existence can be observed to disappear as temperature is in-
creased. Experimentally, a minimum coexisting liquid den-
sity is observed in coexistence with a maximum coexisting
vapor density at Tc. The difference is 15-20%. Presumed
“critical densities” have hitherto been obtained by using a
universal critical exponent to obtain Tc, in conjunction with
the law of rectilinear diameters, which defines a mean den-
sity of coexisting gas and liquid [3] and enables tabulations
of “critical densities” at Tc [4].

Fig. 2. Difference between rigidity, (dp/dρ)T , as calculated from
NIST Thermophysical Properties equation-of-state [4] for CO2

isotherm T/Tc = 1.25 by a numerical differentiation, and that
obtained from the velocity of sound (c) tabulation using the ther-
modynamic identity ω = Mc2Cv/Cp (M is the molecular weight

and Cv/Cp is the heat capacity ratio)

The boundary separating the liquid state from the crystal
phase and subcritical gas is clearly defined by Gibbs crite-
ria for first-order phase transitions. The boundary separat-
ing the liquid phase from the supercritical fluid phase how-
ever, are ad hoc in modern texts on the liquid state. (see e.g.
Fig.3). Heyes [5], for example, defines the boundary of both
the “liquid” and “gaseous” states by a critical isotherm. In
Hansen and McDonald [6], the “gas phase” is bounded by a
critical isotherm, whereas the “liquid phase” is bounded by
an isobar! Since these lines have no thermodynamic status,
where does the liquid state begin and end one may reason-
ably ask? This question, “What is liquid?” [7], has remained
unanswered.

The van der Waals theory of a gas-liquid critical point is
based upon the assumption of “continuity”; this implies that
there are no discontinuities in thermodynamic state functions
of density or their derivatives along the critical and super-
critical isotherms. Van der Waals moreover postulated that a
fluid has an equation-of-state for which the first two deriva-
tives of pressure with respect to changes in density or volume
go to zero at a singular point on the Gibbs density surface.
“Universality”, embodied in renormalization group theory of
Wilson [8], is another fashionable concept used to describe
all critical phenomena from Ising models, spin glasses and
ferro-magnetic systems in both two and three dimensions.

There is an abundance of theoretical and experimental
evidence, however, going back at least 70 years, to the orig-
inal cluster theory of Mayer [9], that the nature of critical-
ity expected, i.e. when the Mayer cluster integrals diverge
for the supercritical fluid states, is inconsistent with van der
Waals hypothesis and Wilson’s theory [8] (for d = 3). Mod-
ern computational facilities have enabled the virial coeffi-
cients in the expansion of pressure in powers of density of
model systems up to order 12. The virial equations for hard-
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(a) (b)

Fig. 3. Textbook phase diagrams of a typical monatomic fluid showing the boundaries between the solid, liquid and gas phases: the super-
critical fluid is assumed to be a continuous single phase that spans all states above either Tc or pc. (a) the projection in the ρ-T plane from

Heyes [5] , and (b) from Hansen and McDonald [6] showing the density-(a) and pressure-(b) temperature planes respectively

sphere model molecular Hamiltonians may now be closed
analytically, essentially exactly. Comparisons with thermo-
dynamic pressures from MD simulations show a divergence
of the virial equations from the thermodynamic equation-of-
state at fluid densities below the freezing point [10, 11].

In the following sections, we will present further argu-
ments that reaffirm a previous conclusion [12], i.e. that there
are higher-order percolation transition loci that bound the
gaseous and liquid states. These percolation transitions can
be associated with the divergence of terms in Mayer cluster
integrals along supercritical isotherms. Intersection of two
percolation loci defines a ‘critical point’ in the p-T plane, or
a ‘critical line’ on Gibbs density surface ρ(T, p). Percolation
thresholds define state bounds that vitiate the hypothetical
concept of “continuity of gas and liquid” for simple atomic
and molecular fluids.

II. MAYER CLUSTER EXPANSION

The starting point for an exact statistical treatment of the
molecular theory of fluids is the expression for the partition
function for a classical model pairwise molecular Hamilto-
nian. The configurational factor (Q) of the partition function
can be expressed as an integral over phase space of the Boltz-
mann probability function [5, 6]

Q(V,N) =

∫
. . .

∫
exp(Φ(rN )/kBT )dr1 . . . drn (1)

For a pairwise Hamiltonian, Mayer [9] defines a function

fij = exp(−φij/kT )− 1 (2)

then the Boltzmann probability of any configuration of N
molecules is

exp(−Φ(rN )/kBT ) =
∏
j>i

(1 + fij) (3)

=1 +
∑

fij +
∑∑

fijfkl +
∑∑∑

etc. (4)

The n-th virial coefficient is then defined by a sum of
all possible cluster integrals, but which go to zero if any
molecule of the defined “cluster” is far away from all the
other, accordingly the total number of contributing clusters
of size n always decreases with n, but the integrals over all
space are of ever increasing dimensionality

bn = (n! V )−1
∫
. . .

∫
×
∑

(n > j > i > 1)
∏

fijdr1drn

(5)

and the pressure equation of state is the simple summation
provided the number of molecules in any cluster is finite
for a system in the thermodynamic limit, or alternatively,
the largest cluster is much smaller than the volume of the
system. Equation (1) and hence the derived thermodynamic
properties can be expected to exhibit higher-order thermody-
namic phase transitions at a sufficient density if the size of
contributory clusters to bn, for example, diverges at a perco-
lation transition.

For the hard-sphere fluid, the pressure is then obtained

Z =

∞∑
n=1

bnρ
n−1, (6)
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where Z = pV/NkBT and density ρ = N/V . For real
molecules with attractive forces bn is a function of temper-
ature. Van der Waals obtained an equation-of-state resem-
bling criticality and phase coexistence, by simply adding an
attractive mean field, proportional to the square of density,
to an “excluded volume” hard-sphere equation-of-state for
the thermodynamic pressure of N spheres of diameter s in
volume V at temperature T .

ZVW (HS) =
V

V −Nb2
=

∞∑
n=0

(b2 ρ)
2 (7)

The second virial coefficient b2 = 2ps3/3, and repre-
sents an excluded volume (Ve/N ) based only upon colli-
sion of only two spheres. Only the first two terms of van der
Waals hard-sphere equation are correct in describing the ex-
act virial equation-of-state at low density. Virial coefficients
beyond n = 2 depend upon the size of the cluster n, and can
be computed by integrating over all space, the excluded vol-
umes of clusters of spheres of ever-increasing size n using
Mayer’s equation (5).

Modern theories of simple liquids [6] are based upon
the assumption that the thermodynamic hard-sphere fluid
equation-of-state can be represented by equation (6), i.e. by
an expansion of the phase integral into the excluded volume
of small clusters of order n. A formal expression for the ex-
cluded volume, that takes account of all many-body correla-
tions in a dense fluid, and which give the chemical potential
and hence also correct equation-of-state for a system of N
hard-spheres, was derived by Hoover and Poirier[13]. They
considered the potential of mean force Ψ(r) between two
hard spheres in the equilibrium fluid as a function of separa-
tion (r). At zero separation, Ψ(0) relates to the chemical po-
tential, and for hard-spheres defines a “thermodynamic” ex-
cluded volume (Ve) which then defines the available volume
Va(= 1−V e). For any equilibrium thermodynamic state, the
available volume can be defined as the volume available for
relocation of any one sphere i, anywhere in an equilibrium
configuration, and is exactly related to the excess chemical
potential (m), relative to the ideal gas for large N according
to

− µ

kBT
= loge

QN−1
QN

= loge

(
1− 〈Ve〉

V

)
=

=
〈Va〉
V

=ρ→0

∞∑
n=1

n+ 1

n
bn+1ρ

n

(8)

The Mayer cluster expansion, equations (6) and (8), is
strictly only rigorous for thermodynamic properties at low
density where the ratio (V/n) for large cluster size must be
larger than the volume of cluster size n. Nonetheless, it has
been widely assumed in liquid state theory to represent the
thermodynamic state functions over the whole equilibrium
fluid range up to high liquid densities [6], although the as-
sumption is a dubious hypothesis. Equation (8) is often used

in MD computations to calculate the chemical potential. It
is often referred to as the “Widom method”, although pub-
lished by Hoover and Poirier [13] two years before Widom
[14].

As higher virial coefficients have become known through
advances in the power of modern computers, they begin to
follow a trend. For the hard-sphere fluid, the coefficients up
to b12 are now known following the recent computations of
b11 and b12 by Wheatley [15]. When the coefficients are ex-
pressed in powers of density relative to close packing, i.e.
Bn = bn (ρ/ρ0)n−1, Bn decreases linearly with n for large
n and the difference Bn − Bn−1(= ∆Bn) becomes con-
stant. Consequently, the hard-sphere virial equation-of-state
can be expressed analytically in a closed form, which is for-
mally exact, albeit with explicit numerical coefficients up to
Bm [10, 11].

Z = 1 +

m∑
n=2

Bnρ
∗n−1 + ρ∗m

[
Bm

1− ρ∗
− V0

(1− ρ∗)2

]
(9)

Vo =
√

2 (empirically: this is the close-packed volume per
sphere) and is the constant is the linear relationship between
n and ∆Bn Equation (9) may be the most accurate equa-
tion to date for the hard-sphere virial equation of state. How-
ever, it may not represent the hard-sphere fluid thermody-
namic equation of state with high precision at liquid-like
densities. When comparison of equation (9) is made with
high-precision MD pressures of the hard-sphere fluid, with
6-figure accuracy, a diversion is indicated at the density on
or below a percolation transition (PA) of the accessible vol-
ume (11).

III. IDEAL GAS PERCOLATION TRANSITIONS

Hoover et al. reported the first determination of a per-
colation transition [15]. For an impenetrable hard-disk fluid,
they obtained a value of the percolation transition density
ρPAs

2 = 0.4. For hard disks, this density of the accessible
volume (PA) coincides with the percolation of excluded vol-
ume (PE). For d = 2, ρPE = ρPA; this is not so when d = 3.
Relationships between dimensionality and percolation tran-
sitions can be summarized:
• d = 1 no percolation
• d = 2 PE and PA coincide ρPE = ρPA
• d = 3 there is an inequality and ρPE < ρPA
It is important to note that there is a fundamental dif-

ference between 2 and 3 dimensions. For 2d, there are
two regions, ‘gas-like’ ρ∗ < ρ∗PE and “liquid-like” ρ∗ >
ρ∗PE, whereas for 3d fluids there are three regions with a
mesophase, ρ∗PE < ρ∗ < ρ∗PA between gas and liquid phase
bounds. In the mesophase, both the pockets of availability
and clusters of exclusion sites percolate the system. The
mesophase is neither gas-like nor liquid-like. For spheres,
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Fig. 4. Excluded and accessible areas (black and white respectively) of penetrable spheres for a configuration of a two-dimensional ideal
gas close to the percolation transition

there are two percolation transitions associated with the ex-
cluded and available volumes. The VA-percolation transition
can equally be defined as the density at which the mean
“accessible” configurational integral of a single sphere in
the static field of all j (sometimes referred to as “Hoover’s
free volume” Vf ), within the equilibrium ensemble, changes
from being extensive at low density to intensive at high den-
sity. Above the percolation density ρPA, only the available
volume in the immediate vicinity of sphere-i is “accessible”.
It is the percolation of this property that may be identified
with the higher-order discontinuities predicted by the analy-
sis of the coefficients in the Mayer cluster expansion equa-
tion (5) [9].

The ideal gas exhibits percolation transitions in both 2d
and 3d of the volume excluded and available to an addi-
tional hard-sphere molecule of diameter s. This exclusion
sphere diameter defines a reduced thermodynamic pressure
p∗ = pσ3/kBT and a reduced temperature T∗ = 1/p∗ =
V ∗ = 1/ρ∗. We designate the percolation transition reduced
densities, for example, as ρ∗PE and ρ∗PA respectively. Estimates
of ρ∗PE and PA for d = 2 ideal gas can easily be obtained pic-
torially using an EXCEL spreadsheet. For example, Fig. 3
shows a typical configuration, 2000 random numbers from a
uniform distribution 0-1, (N = 1000) in the vicinity of the
percolation transition. In sections IV and V below we show
that the percolation transitions of the ideal gas can be directly
related to the critical point coexistence and a supercritical
mesophase in the simplest model fluids to exhibit gas-liquid

criticality and liquid-liquid upper critical consolute temper-
ature (UCCT).

Until the present computations, PA has not been previ-
ously investigated or determined for the d = 3 ideal gas.
The transition density ρ∗PA is known to be 0.537 ± 0.05 for
the hard-sphere fluid [12]. We have used the same methods,
and criteria for percolation, as described previously for the
hard-sphere fluid. Both ρ∗PE and ρ∗PA have been computed for
a range of finite size systems ofN particles. Thermodynamic
limiting values (N →∞) have been obtained from the linear
trendlines.

A MD program solves equations of motion of a binary
mixture NA + NB . PA density values are obtained by the
mean-squared displacements of B average over many frozen
random configurations of ideal gas A. As the B particles do
not interact with themselves, we average over all NB in the
same MD simulation run. Plotting the point of zero diffusiv-
ity, Di(ρ,N)→ 0, against N (NA in MD run) gives a linear
trendline with the result ρ∗PA(N →∞) = 0.908± 0.01.

Every configuration either has a percolating cluster or
it does not. Clearly, for small finite systems, there will be
equilibrium configurations that percolate, and some that do
not, in the vicinity of PE. The percolation threshold in the
computations of Heyes et al. [17] was defined when 50% of
configurations have a percolating cluster. Here, we define PE
using an ensemble average definition of a percolation den-
sity [12]; i.e. ρ∗PE is the saddle-point density above which the
cluster size probability distribution P (n) is bimodal. This
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Fig. 5. Excess pressures of the Widom-Rowlinson binary fluid mixture along the isoplethXB = 0.1 from a MD simulation ofN = 10000
particles: the percolation transition densities indicated by dashed lines are computed directly using the methods as described previously

[11] and in the text

is the normalized probability of a site belonging to a clus-
ter of size n. Below ρ∗PEP (n) is a monotonic gas-like dis-
tribution, for densities above ρ∗PE it is bimodal. Using the
saddle-point definition of ρ∗PE(N) we have obtained the re-
sult ρ∗PE(N → ∞) = 0.668 ± 0.01 which is consistent with
previous literature values [18, 19].

IV. PENETRABLE SPHERE BINARY FLUID

The Widom-Rowlinson (W-R) model fluid [20] can be
regarded as a simple model of a binary fluid mixture; at a
lower temperature or, equivalently, higher pressure, it ex-
hibits a demixing phase transition similar to liquid-liquid
criticality. This model belongs to the general class of sym-
metric binary non-additive hard-sphere fluid mixtures de-
fined by collision diameters

σAA = σBB = (1 + α)σAB, (10)

where α is a dimensionless non-additivity, that varies from
−1, for the W-R penetrable-sphere model binary fluid, via
zero for one-component hard spheres, to infinity. Positive α
relates to ionic liquids and ionic crystal structures when mole
fraction XB = 0.5 [21].

We have determined the percolation pressures p∗PE along
selected isopleths of the binary W-R model fluid. MD simu-
lations have some advantages over Grand Canonical Monte
Carlo [22] (GCMC). Not least is the direct extraction of
transport properties for determination of r∗PA loci. These are
obtainable by “freezing” component A whilst allowing B
to diffuse. The cluster distributions that determine r∗PE also
yield accurate values for coexisting XB by integrating the
solute cluster probability distribution P (n) which decreases
monotonically, from a maximum at n =1, to zero for clusters

of B in solution of A, or vice-verser. Accurate MD pressures
are calculated from A-B collision frequencies. Changes in
pressure slopes can be observed from the MD excess pres-
sures defined relative to the ideal gas.

p∗ex = p∗ − ρ∗. (11)

For example, the isopleth XB = 0.1, shown in Fig. 5,
has four distinct regions. At high density, in the two-phase
region, the MD pressures averaged over 100 million A-B
collisions still show fairly large uncertainties. The maxi-
mum pressure along any isopleth coincides with the first-
order mixing-demixing transition. This reflects the thermo-
dynamic equilibrium condition of minimal Gibbs energy (G)
(since dGT = ρ−1dp) for equilibrium on either side of the
transition. At the mole fraction XB = 0.1 in the mesophase
region pressure increases linearly with density. In the one-
phase region, the MD data is sufficient to observe that the
percolation loci appear to be associated with changes in
slope that could reflect higher-order thermodynamic phase
transitions. The present data is not sufficiently accurate to es-
tablish the order or strength of discontinuities. The vertical
dashed lines in Fig. 5 correspond to the percolation transi-
tion densities computed explicitly: they coincide with appar-
ent changes in the slope of the excess pressure. The change
in the slope of p∗ex, and hence also p∗, is more pronounced.
The rigidity function ω = (dp/dρ)T appears constant in the
mesophase.

The connection between percolation loci and the phase
transition is clear from Fig. 6. Equation (8) exactly relates
VA or VE to chemical potentials, which determine equilib-
rium between phases. The essential result is that for the per-
colation of VA i.e. p∗PA in 3d (Fig. 6) which is around 35%
greater than the already known p∗PE for the ideal gas, i.e.
when ρ∗B in Fig. 6 is zero. Between these transition temper-
atures both VE and VA percolate. The mesophase only exists
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Fig. 6. Phase diagram of the W-R binary fluid in the pressure-density projection: p∗PE (blue) and p∗PA (green) are the percolation transition
pressure data points from MD simulations showing the ideal gas percolation pressures at ρ∗B = 0; two-phase coexistence pressure points

are red circles; the dashed black line is the critical divide

in 3d liquid-liquid or liquid-gas fluids. This result for the
ideal gas and W-R binary fluid is the verification of a con-
nection between percolation loci and the critical demixing
transition in the penetrable sphere binary fluid mixture.

As solute concentration (XB) increases, the pressure dif-
ference between the two percolation temperatures decreases
until it’s the same. From thermodynamic considerations, this
intersection triggers a first-order phase transition, with the
two different phases having the same T , p and chemical po-
tential. It is this fundamental property of percolation in 3d
that does not exist in 2d that vitiates the hypothetical concept
of universality, and confirms an alternative interpretation of
criticality for both one-component liquid-gas [12, 23], and
now also two-component liquid-liquid equilibria [24].

Along any isopleth, the pressure is a maximum at the
two-phase boundary to comply with the thermodynamic re-
quirement of minimum Gibbs energy. However, we have also
determined the coexistence line directly from the results for
theXB = 0.5 equimolar isopleth by a more accurate method
than GEMC [22], by accumulating the ensemble average
cluster size probability distribution P (n). From all MD runs
at densities of the phase separation (ρ∗ = 0.75) and higher
this determines the coexistence mole fractions as shown for
the density 0.8 in Fig. 7. The cluster size distribution is bi-
modal in the mesophase and monomodal in the one-phase
region. In the two-phase region it is bimodal with a hiatus.
Notice that the cluster size has begun to diverge at the den-
sity 0.68, which is just inside the mesophase (Fig. 6).

From the coexistence pressures, and from direct compu-
tations of PA and PE, we can obtain a phase diagram for the

W-R binary fluid. The reduced pressure loci of the percola-
tion transitions fit the trendlines (dashed lines in Fig. 6)

p∗PE = 0.661 + 0.617ρ∗B ,
p∗PA = 0.908 + 0.0171ρ∗B + 1.47ρ∗B

2,
thereupon establishing the connection between percolation
phenomena and the demixing phase transition. Fig. 6 shows
a horizontal dividing line at the critical pressure p∗c rather
than an Ising-like or van der Waals singular critical point.
We also note that the high-density fluid states at high pres-
sures are two immiscible fluids both of which obey the ideal
gas law.

The W-R binary fluid may be regarded as a simple model
of partially miscible dissimilar liquids, e.g. cyclohexane and
methanol. Many such binary liquid mixtures, just as seen
here for the W-R fluid, separate into two coexisting phases
at low enough temperatures. On heating, compositions of the
two phases become more and more similar and at a critical
temperature there is a single phase. This is the UCST. At
higher temperature there is just one liquid phase. It is pos-
sible to define various percolation thresholds for clusters of
solute molecules in the single liquid phase by analogy with
clusters of molecules in a gas phase. The present evidence
suggest that percolation loci that delimit the solution will
give rise to a mesophase and a coexistence line at the UCST.
Our simulation results for the W-R mixture suggest that the
phase diagram of real partially miscible binary liquids will
be determined by the intersection of percolation loci. The
present results for the W-R mixture should stimulate further
laboratory experimental research into percolation loci and
the critical divide at Tc in binary mixtures.
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Fig. 7. Integrated mole fractions of cluster size distributions for W-R binary fluid XA = XB = 0.5 for 5 state points: density ρ∗ = 0.60
green, 0.66 purple 0.68 blue, 0.75 red, 0.8 black, showing how the cluster size diverges in the mesophase, and how the coexistence mole
fraction is obtained in the 2-phase region. For the density ρ∗ = 0.8 (black points) the coexistence mole fraction is XB = 0.214± 0.01

V. PENETRABLE SPHERE GAS-LIQUID
CRITICALITY

Probably the simplest 3D model Hamiltonian of a molec-
ular fluid, which is continuous in phase space, and exhibits
liquid-gas criticality and two-phase gas-liquid coexistence,
is the penetrable cohesive-sphere (PCS) fluid [20, 22]. The
internal energy (U ) is simply

U = 3NkBT/2 + ε(〈VE/v0〉 −N), (12)

where kB is Boltzmann’s constant and T is temperature (K);
the angular brackets denote a configurational average. Equa-
tion (12) defines an attractive molecular energy complemen-
tary to the volume of overlapping clusters, i.e. VE as defined
above for an ideal gas, of a configuration of N penetrable
spheres, and v0(= 4πσ3/3) is the volume of a sphere. At
low temperatures, this model exhibits the exact properties of
an ideal gas in both the low-density (gas phase) and high-
density (liquid-phase) limits. Hence we note that there exists
a liquid-like state with the properties of the ideal gas law.

Every state of the PCS fluid corresponds to a transcribed
state of the W-R binary model fluid. The exact equations for
the transcription from the W-R binary percolation and co-
existence pressures (Fig. 6) to the PCS one-component gas-
liquid pressure (Fig. 8) are

pressure [PCS]p∗ = [W −R](p∗ − Z∗A/v0)kBT/ε (13)
density [PCS]ρ∗ = [W −R]ρ∗B , (14)

where ZA∗ is the thermodynamic activity of a component
defined as lnZ∗ = m/kBT and m is Gibbs chemical po-
tential relative to the ideal gas. Gibbs energy change, hence
Z∗, can be obtained by integrating the excess pressure loci
at constant T , with respect to density.

µ/kBT =

∫
(p∗ − ρ∗id)d loge(ρ

∗
B) (15)

The PCS fluid is the simplest imaginable continuous
Hamiltonian model to exhibit liquid-gas coexistence and a
critical temperature. There is a coexistence line at the inter-
section of percolation loci in the p-T plane. This is consis-
tent with what we have observed for square-well [12, 23],
Lennard-Jones [26, 27] model fluids, and also real fluids
[28]. Above a liquid-gas critical coexistence line there is su-
percritical mesophase. The liquid state extends to a low den-
sity and pressure limit that will obey the ideal gas equation-
of-state. This raises the question: could there exist a high
temperature limit of the percolation transition loci in real
fluids in the dilute gas limit? Various evidence suggests this
may indeed the case. Next, we report experimental evidence



Percolation Transitions and Fluid State Boundaries 289

Fig. 8. Phase diagram of the one-component PCS liquid-gas system obtained by transcription of two-component W-R pressures p∗(r∗B)

from thermodynamic properties of real fluids, gleaned from
our knowledge of percolation transitions in model fluids.

VI. REAL FLUIDS

Although lacking a molecular-level definition, for any
real fluid, for which the Hamiltonian is generally unknown,
the percolation loci can be defined and obtained phenomeno-
logically along any thermodynamic equilibrium isotherm
by the rigidity inequalities [28]. In the case of real fluids
with attractive potentials, the percolation transition bound-
ing the gas phase, i.e. the counterpart of PE for impenetrable
spheres, has been designated PB, as it is essentially a per-
colation of ‘bonded clusters’. For real intermolecular forces,
definition of a “bonded cluster” for percolation transitions
is a more nebulous mathematical contraption of Mayer in-
tegrals lacking the precise definition of hard spheres and
square wells. A contributing “cluster” is not necessarily the
same as our physical concept of a small cluster of molecules,
for example, that characterize a low temperature gas phase.
At higher temperatures, as the configurational integral in
equation (1) approaches zero, and contributing clusters may
be more diffuse in configuration space.

Rigidity (ωT ) is the work required to isothermally and
reversibly increase the density of a fluid; with dimensions of
a molar energy (Fig. 9). This simple state function relates
directly to the change in Gibbs energy (G) with density at
constant T according to

ωT = (dp/dρ)T = ρ(dG/dρ)T (16)

Inequalities that distinguish gas from liquid are:

gas ρ < ρPB (δω/δρ)T < 0, (17)
meso ρPA < ρ < ρPA (δω/δρ)T = 0, (18)
liquid ρ > ρPA (δω/δρ)T > 0. (19)

It is clear from eqn. (16) that ω ≥ 0, i.e. rigidity must al-
ways be positive: Gibbs energy cannot decrease with pres-
sure when T is constant. From these definitions, moreover,
not only can there be no “continuity” of gas and liquid, but
the gas and liquid states are fundamentally different in their
thermodynamic description. Rigidity is determined by num-
ber density fluctuations at the molecular level, which have
different but complementary origins in each phase, hence the
symmetry [28]. There is a distribution of many small clusters
in a gas with one large void, there is a distribution of unoc-
cupied pockets in the liquid with one large cluster.

The rigidity isotherm data, from the NIST Thermophysi-
cal Properties [4], for CO2 is shown in Fig. 9. If inequal-
ities (17 to 19) thermodynamically define the percolation
loci, then it follows that at low density rPA must approach
the Boyle temperature (TB) by definition. This is the tem-
perature above which the second virial coefficient is positive
and below which it is negative. In the pressure-density plane
the percolation loci show maxima and approach the ideal di-
lute gas limit. The same behavior is seen for other liquids,
such as liquid argon (Fig. 10) showing the critical isotherm
(Tc = 151 K) and 7 supercritical isotherms

The initial slope of the percolation loci in the pressure
plots (Fig. 10) corresponds to the intercept temperatures ob-
tained from percolation loci (shown in Fig. 9 for CO2) at low
density, as ω = NkBT for an ideal dilute gas. This result
suggests that all fluids will exhibit characteristic percolation
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Fig. 9. Isotherms for the rigidity of fluid phases of carbon dioxide from NIST thermophysical tables [4]: the loci of gas and liquid phase
bounds according to empirical criteria equations (17 to 19) are green and blue respectively: red lines are supercritical isotherms, blue
lines are sub critical isotherms, the purple isotherm is Tc (305K): the Boyle temperature TB = 725 K corresponding to a rigidity (RTB)

6.03 kJ/mol where R is the gas constant

loci stemming from the constitutive Boyle temperature TB
whereupon the second virial coefficient b2(T ) changes sign.
It becomes negative at lower temperatures due to clustering
in the gas phase arising from the attractive strength of inter-
molecular forces relative to kBT .

The percolation loci in Fig. 10 are seen to extend to low
density. However, the NIST equations-of-state for argon is

not as precise as the data for CO2, and it is not as clear
from the derivatives of the NIST argon isotherms that the
mesophase extends to the Boyle temperature at a very low
pressure. When the raw data from Gilgen et al. [29, 30] are
used to obtain the supercritical phase bounds for argon, as
shown in the T -ρ phase diagram (Fig. 11), it is not as con-
vincing as the case of CO2, but within the experimental un-

Fig. 10. Supercritical pressure isotherms of fluid argon: the data are plotted from NIST Thermophysical Property Tables [4] showing the
loci of PB and PA (green and blue respectively) defined by the linear mesophase region bounds equation (18)
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Fig. 11. T -ρ phase diagram for fluid argon using only data points obtained from Gilgen et al. [29, 30] indicating the percolation loci that
bound the liquid and gas states: the blue-green filled circles are the gas-liquid (respectively) coexistence densities; open circles are the
gas-liquid percolation bounds from equations (17 to 19); solid red circles are the LRD data points; the dotted red line is the extrapolated

LRD equation trendline

certainties, the percolation loci approach the Boyle temper-
ature but appear to merge at a lower temperature. More ac-
curate p-V -T measurements for supercritical argon in this
low-density region would be helpful.

This raises the question: “if the percolation loci describe
long-range connectivity of sites in a gas and holes in a liquid,
how can they extend to dilute gas densities obeying the ideal
gas law ?”. The answer may be that the exact concept of free
volumes and available volumes, for hard-sphere and square-
well fluids do not have the Mayer mathematical percolation
properties of real molecules with continuous intermolecular
potentials. Also, for real fluids, the concept of a physically
“bonded cluster” of occupied sites in a gas, or the compli-
mentary unoccupied pockets in a liquid, are only the same
as Mayer’s clusters in equation (5) at low temperatures. As
the temperature increases above the critical temperature, the
mathematical clusters of Mayer will become larger and more
nebulous, and hence percolate at a lower density, as the con-
figurational integral (Q) equation (1) approaches zero at the
Boyle temperature.

To understand the percolation properties of clusters of
real molecules, therefore, we will need to analyze the for-

mally exact resolution of the partition function into Mayer
cluster integrals that define the virial coefficients bn(T ) in
equation (5). A central assumption of the Mayer theory,
which implies it may only be rigorous for gaseous states, is
that the bn are independent of the volume of the system. The
bn are sums of multi-dimensional integrals whose integrands
have near total cancellation between positive and negative
terms. Hence, miniscule contributions from continuous pair
potentials at low density and higher temperatures could di-
vergent. Mayer’s mathematical clusters [9] are not the same
as our mental concept of physical clusters of the gas phase
sitting in potential minima at a low temperatures, and can
diverge to large distances at low densities and exhibit perco-
lation transitions where very weak, relative to kBT, repulsive
and attractive interactions may be influential.

From the Mayer analysis, it would appear that whenever
the number of contributing terms in the summation of the
irreducible integrals in equation (5) diverges, there will be
a higher-order phase change on the Gibbs density surface
along the isotherm [9]. There may be a number of reasons
for such a divergence in various model and real systems.
At the Boyle temperature (TB) the second virial coefficient
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Fig. 12. Postulated p-T phase diagram for fluid argon showing the supercritical mesophase: the blue and green dashed lines are the gas
and liquid supercritical state bounds; the red circle is the critical point black circle triple point; the tiny light greed shaded area is generally
referred to as liquid “state” but the liquid “phase” appears to extend to high temperatures and to exist above the critical temperature, and

at all pressures above the Boyle temperature (TB)

changes from negative to positive, by definition and also the
configurational partition function (Q) in equation (1) is equal
to zero. Also, if a sum diverges at a given density, there
will be a change in the analytical functional representation
of the partition function. For simple model pair potentials,
e.g. Lennard-Jones, b2 can be obtained exactly, albeit semi-
numerical [30]. At present, it is not known whether or not
there is a non-analytic higher-order discontinuity in b2(T )
at TB for n-m potentials generally [31]. The presence of
percolation loci, however, suggest p(ρ)T may become non-
analytic, with a higher-order phase change, as it crosses zero
at TB for fluids at high dilution or when pV/NkT ∼ 1.

VII. CONCLUSIONS

Results for the percolation transition loci comparing both
real and model fluids have reaffirmed previous conclusions
[12, 23-27] that there is no critical point singularity on Gibbs
density surface for gas-liquid condensation. Rather, there is
a horizontal dividing line at the critical temperature, above
which there exists a mesohase between the percolation loci
that bound the liquid and gas phases. Computer experiments
have certain advantages over real laboratory measurements;
not least is an absence of impurities, zero gravity, and peri-
odic boundaries or no interfaces. One cannot blame the “flat-
ness” at Tc, on these undesirable artifacts, as in historic re-
buttals to evidence against van der Waals [32]. These com-
monly used excuses to disregard otherwise compelling lab-

oratory p-V -T evidence, “gravity”, “impurities”, and “sur-
faces” are all absent in the computer simulations. Heyes
(25,26), for example, concludes unequivocally, from his ex-
tensive computations of the L-J fluid in the vicinity of Tc,
that the coexistence envelope has a flat top, i.e. that the van
der Waals singularity is nonexistent.

Equation-of-state data are perhaps not the most reliable
to decide this question of flatness as it is not easy to dis-
tinguish a low curvature region from one that is in fact a
straight line in p(ρ)T . The literature critical-point universal-
ity theory predicts that the temperature or pressure scales as
(∆ρ)δ along the critical isotherm [33], which could there-
fore be very flat anyway in that hypothesis. In fact a lot of
p-V -T experimental results for real molecular fuids have re-
quired exponents δ = 3 to 4, or even higher [33] in order
to create a parabola with a singular maximum to within the
limits of experimental uncertainty. These experimental re-
sults have been adversely prejudiced by prevailing theory.
Fifty years ago, Rowlinson’s opening first sentence in refer-
ence [33] reads: “At a critical point the intensive properties
of two coexisting phases become equal.” Since when did van
der Waals hypothesis become scientific fact we ask?

On the universality hypothesis, and dimensionality de-
pendence of the description of criticality, we conclude that
for d = 2, since PE (or PB) = PA for all densities (or con-
centration XB), the phase behaviour and criticality will be
different with no mesophase. We conjecture, therefore, that
the 2d percolation locus will intersect the equimolar isopleth
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with a critical singularity at XB = 0.5 for the d = 2 W-
R model. Another consequence of the absence of a d = 2
mesophase would be no metastability beyond the first-order
phase boundaries, and, unlike d = 3, no metastability and
hence no spinodals within the subcritical bimodals. The exis-
tence of a mesophase and subcritical metastability is a prop-
erty only of d = 3 systems. This difference in the description
of liquid-gas criticality between 2d and 3d vitiates the hypo-
thetical ‘universality’ concept as applied to liquid-gas, and
binary-liquid, criticality.

Results for various percolation loci suggest that all real
atomic and molecular fluids will have a liquid state that is
bounded only by a percolation transition that extends from
the coexisting liquid state at Tc to the Boyle temperature
(TB). If state boundaries are defined phenomenologically by
inequalities (17-19), the liquid-state boundary is seen to ex-
tend to low-density gas-like states. On the basis of these ob-
servations, it is the gas phase, i.e. as defined by the inequal-
ity eqn. (17), which exists in a limited area of the T -p plane
rather than the liquid, as illustrated in Fig. 12.

We note, however, since there can be no zero of density
or pressure for a real fluid, as they become logarithmic to
high dilution, the ideal gas does not exist in reality. The sign
of the second virial coefficient would determine the desig-
nated state, by the rigidity criterion. Thus, the ‘liquid’ area
of existence may extend to infinite pressure and temperature,
whereas the ‘gas’ phase extends to infinite dilution only be-
low a certain temperature. This is contrary to what is hith-
erto generally believed to be ‘liquid’, and reopens the debate
“What is Liquid” [7].

Finally, we conclude that there can be no “universality”
[see some of the articles and discussions that gave recog-
nition to this concept by M.S. Green, G.E. Uhlenbeck, J.S.
Rowlinson, M.E. Fisher, J.V. Sengers in reference 33] in
the description of criticality as applied to liquid-gas and
liquid-liquid critical points. The mesophase is a fundamental
property of bonded-molecule cluster percolation and com-
plementary vacant-site cluster percolation loci only in 3d,
which do not exist in 2d. Although there may well be Ising-
like critical-point singularities on the density surfaces of 2d
fluids, all the evidence we can see reaffirms the conclusion:
there is a critical dividing line for real 3d liquid-gas thermo-
dynamic equilibria, and no van der Waals critical point.
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