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Abstract: We analyze the ergodicity of three one-dimensional Hamiltonian systems, with harmonic, quartic and Mexican-hat
potentials, coupled to the logistic thermostat. As criteria for ergodicity we employ: the independence of the Lyapunov
spectrum with respect to initial conditions; the absence of visual “holes” in two-dimensional Poincaré sections; the agreement
between the histograms in each variable and the theoretical marginal distributions; and the convergence of the global
joint distribution to the theoretical one, as measured by the Hellinger distance. Taking a large number of random initial
conditions, for certain parameter values of the thermostat we find no indication of regular trajectories and show that the time
distribution converges to the ensemble one for an arbitrarily long trajectory for all the systems considered. Our results thus
provide a robust numerical indication that the logistic thermostat can serve as a single one-parameter thermostat for stiff
one-dimensional systems.
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I. INTRODUCTION

The introduction by Nosé and Hoover of deterministic
equations of motion consistent with the canonical ensem-
ble allowed to make a connection between microscopic and
macroscopic descriptions for ensembles different from the
microcanonical [1, 2]. However, there is a practical limita-
tion that impedes the use of the Nosé-Hoover equations for a
given system, namely ergodicity. Roughly speaking, a system
is ergodic if for almost any trajectory, taking long-time aver-
ages is equivalent to taking ensemble averages [3, 4]. For the
majority of physical systems, ergodicity can be tested only
through numerical experiments.

The Nosé-Hoover thermostat fails to be ergodic for a one-
dimensional harmonic oscillator [2]. Therefore, various alter-
native schemes have been proposed to simulate a harmonic
oscillator in the canonical ensemble [5-11], some of which
seem to be ergodic, in the sense that they pass a series of dif-
ferent numerical tests designed to detect this property. Among
the ergodic schemes, the “0532” thermostat is the only one
that requires the addition of a single thermostatting force [11]
(see also the discussion in [12]).

The “0532” model was inspired by the observation that
a cubic thermostat force enhances ergodicity with respect to
the linear (Nosé-Hoover) one [5, 6, 11]. Thus the authors
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in [11] started with a general parametric three-dimensional
dynamical system with a cubic friction force, designed to con-
trol directly the first three even moments of the momentum
p. They then adjusted the parameters for the case of a har-
monic potential, using a χ2 test, by imposing that the joint
probability distribution be Gaussian in the three variables.

The method described in the last paragraph can be ex-
tended in principle to more general one-dimensional poten-
tials. However, there are two major drawbacks. First, one has
to repeat the χ2 test for each potential, which is a computa-
tionally demanding task. Second, the form of the parametric
equations to be tested may depend on the potential of the
system to be thermostatted and thus the idea of generality
behind the Nosé-Hoover equations is lost. Furthermore, the
analysis in [13] has shown that this thermostat works well
for the one-dimensional harmonic oscillator, but not for the
quartic potential.

For these reasons it is relevant to ask if there is a gen-
eral scheme depending just on the addition of a single
thermostatting force that allows the generation of a large
family of ergodic singly-thermostatted one-dimensional sys-
tems (ST1DS). This is the challenge of the 2016 Ian Snook
prize [13] and the subject of this work.

We start from an algorithm to generate the equations
of motion known as Density Dynamics [14]. Combining
this scheme with the logistic thermostat introduced previ-
ously [15, 16] by two of the present authors, we generate a set
of ST1DS for different potentials and we show that such sys-
tems pass all the numerical tests for ergodicity. The advantage
of the Density Dynamics formalism is that the equations of
motion are the same in form for any Hamiltonian system, thus
retaining the spirit of generality of Nosé and Hoover [14]. The
superiority of the logistic thermostat comes from the fact that
the thermostatting force is highly nonlinear, thus enhancing
the ergodicity of the dynamics. Additionally, we show that
the equations of motion that we obtain are time-reversible.
All these aspects make the logistic thermostat appealing from
both a practical and a theoretical perspective.

The structure of the paper is as follows. In section II., we
give an introduction to the Density Dynamics formalism and
present the logistic thermostat. In section III., we present the
numerical methods used to study ergodicity, together with
the results obtained. Finally, in section IV. we summarize our
results and present the conclusions.

II. DENSITY DYNAMICS

The Density Dynamics (DD) method was introduced by
Fukuda and Nakamura, inspired by the Nosé-Hoover equa-
tions of motion [14]. Afterwards, the same method was re-
derived by Bravetti and Tapias, starting from a dynamics
based on a generalization of Hamilton’s equations [15-17].

The DD method provides an algorithm for the generation
of a set of equations in a (2n+ 1)-dimensional space consis-

tent with a prescribed probability distribution (n being the
degrees of freedom of the physical system). For a general
description of the method we refer to [14-16]. In this section
we present its application to ST1DS.

Let n = 1 and consider the 3-dimensional extended phase
space with coordinates (q, p, ζ). A one-dimensional Hamilto-
nian system coupled to a thermostat is expected to present a
canonical probability distribution in (q, p). So, the invariant
distribution to be generated in (q, p, ζ) is of the form

ρ(q, p, ζ) =
e−βH(q,p)

Z
f(ζ) , (1)

where Z is a normalization constant and f(ζ) is a 1-
dimensional probability distribution in ζ , i.e. f(ζ) is a strictly
positive, smooth, integrable function with support in R. Ac-
cording to the DD prescription, the equations of motion con-
sistent with the probability density (1) are

q̇ =
∂H(q, p)

∂p
,

ṗ = −∂H(q, p)

∂q
+
f ′(ζ)

βf(ζ)
p ,

ζ̇ =
∂H(q, p)

∂p
p− 1

β
.

(2)

(3)

(4)

Consistency between the field v = (q̇, ṗ, ζ̇) and the distri-
bution (1) means that the Liouville equation is satisfied for
this pair, i.e.

div(ρv) = ∇ · (ρv) = (∇ρ) · v + ρ(∇ · v) =

=
∂ρ

∂q
q̇ +

∂ρ

∂p
ṗ+

∂ρ

∂ζ
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(
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∂q
+
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)

= ρ
(
− β ∂H

∂q

∂H

∂p
− β ∂H
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(
− ∂H

∂q

+
f ′

βf
p
)
+
f ′

f

(
∂H
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p− 1

β

))
+ ρ

(
∂2H

∂p∂q
− ∂2H

∂q∂p
+
f ′

βf

)
= 0 . (5)

Naturally, this proof extends directly to systems with more
degrees of freedom.

II. 1. The logistic thermostat
The set of equations (2)-(4) depends on the probability

distribution chosen for the extended variable f(ζ), associ-
ated with the effect of the thermal reservoir. By choosing
a Gaussian distribution with variance Q and mean 0, we re-
cover the time-reversible Nosé-Hoover equations of motion.
These dynamical equations modify the structure of Hamil-
ton’s equations by adding a linear friction term that obeys
a feedback equation that controls the kinetic energy [2]. For
the same system, one can consider different distributions
f(ζ). For instance, a Gaussian distribution for ζ2 introduces
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a cubic friction term, which considerably improves ergodic-
ity [5, 14, 18].

Following the observation that nonlinearity enhances er-
godicity, we choose f(ζ) to be a logistic distribution:

flogistic(ζ) =
e
ζ−µ
Q

Q(1 + e
ζ−µ
Q )2

=
1

4Q
sech2

(
ζ − µ
2Q

)
, (6)

where µ is the mean of the distribution and the variance is
Q2π2/3. We call this choice the logistic thermostat and refer
to Q as the “mass” associated with the thermostat, using the
same terminology as for the Nosé-Hoover case [19].

In our previous works we used the logistic thermostat
with the choice of the parameters Q = 1 and µ = 2 and we
showed that this is a suitable choice to perform molecular
dynamics simulations [15, 16]. However, these particular val-
ues make the resulting dynamical system not time-reversible,
which is an important property for a dynamical model that
aims to simulate equilibrium. Here we fix this issue by sug-
gesting a different parameter choice. Choosing µ = 0, we see
that f(ζ) becomes an even function and it follows that the
corresponding equations of motion

q̇ =
∂H(q, p)

∂p
,

ṗ = −∂H(q, p)

∂q
−

tanh
(
ζ
2Q

)
βQ

p ,

ζ̇ =
∂H(q, p)

∂p
p− 1

β

(7)

(8)

(9)

are time-reversible, i.e. invariant under the transformation
(q, p, ζ, t) → (q,−p,−ζ,−t). Equations (7)-(9) constitute
our system that provides thermostatted dynamics for any one-
dimensional Hamiltonian system encoded in H(q, p).

III. NUMERICAL TESTS AND RESULTS

In this section we numerically test the ergodicity of the
system (7)-(9) for three Hamiltonian systems with Hamiltoni-
ans given by

H(p, q) =
p2

2
+ V (q) , (10)

with potentials
• V (q) = q2/2 (harmonic);
• V (q) = q4/4 (quartic);
• V (q) = −q2/2 + q4/4 (Mexican hat).

Throughout this section the (inverse) temperature is taken
as β = 1.0. The “mass” of the thermostat for the harmonic
and quartic systems is Q = 0.1, whereas for the Mexican hat
potential it is Q = 0.02. These values were chosen on the
base of preliminary tests designed to detect violations of er-
godicity. For instance, forQ = 0.1 in the case of the Mexican
hat potential we found 5 regular trajectories out of 1 million

initial conditions, thus indicating a violation of ergodicity.
For this reason the value of Q considered for such potential
is different from the one used for the other systems.

Before proceeding with the numerical analysis, we sum-
marize the relationship between such tests and ergodicity.
In essence, an ergodic thermostatted system is expected to
present a single chaotic sea of full measure in its extended
phase space, so that for almost any initial condition in this set,
the numerical distribution in time converges to the theoretical
distribution in the ensemble [9, 20, 21]. The study of the
chaotic sea relies on both the analysis of the Lyapunov spec-
trum for a large number of initial conditions and on the obser-
vation of Poincaré sections. With these tests one checks the
independence of the spectrum with respect to the initial con-
dition and discards the presence of islands that would violate
the assumption that the chaotic sea has full measure. Then one
proceeds to analyse the equivalence between the numerical
distribution and the theoretical one. For this, one observes the
visual agreement between the numerical histograms and the
marginal theoretical distributions and checks the mean values
of certain observables [5, 7, 14, 22]. Recently, stronger tests
have been used to analyze the convergence between distribu-
tions, based on distances in the distributions space [23, 24].
Here we consider the Hellinger distance [24, 25].

III. 1. Lyapunov characteristic exponents
For a dynamical system, the Lyapunov characteristic ex-

ponents (LCEs) are asymptotic measures characterizing the
average rate of growth (or shrinking) of small perturbations
of the solutions [26]. The set of LCEs is grouped in the Lya-
punov spectrum.

There are three facts about the Lyapunov spectrum that
are relevant for our numerical study: if the largest exponent in
the spectrum for a given trajectory is greater than zero, then
the trajectory is chaotic; if the sum of exponents in the spec-
trum for a given trajectory is equal to zero, then its nearby
volume is maintained on average; finally, if the spectrum
is independent of the initial condition, then the system is
ergodic.

In the following, we report the numerical conditions used
and discuss our results; for a similar study for different ther-
mostat models, see Ref. [21]. We take ten thousand random
initial conditions for each system, with a weight given by
the logistic distribution in ζ with mean µ = 0 and Q cho-
sen according to the potential, as specified above, and by the
normal distribution in p and q, with mean 0 and variance 1
for each variable. We follow the procedure of Bennetin et
al. [26, 27] to calculate the Lyapunov spectrum by setting up
the variational equations associated with the system (7)-(9)
and solving them together with the original system for each
initial condition, using a fourth-order Runge-Kutta integrator
with a step size of 0.005 and 107 time steps.

The relevant results regarding the Lyapunov spectra for
each case are reported in Tab. 1. With this test we deduce
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λ1 λ2 λ3

Harmonic 0.281± 2× 10−3 0.000± 3× 10−5 −0.281± 2× 10−3

Quartic 0.243± 2× 10−3 0.000± 4× 10−5 −0.243± 2× 10−3

Mexican hat 0.385± 7× 10−3 0.000± 7× 10−3 −0.386± 7× 10−3

Tab. 1. Mean Lyapunov characteristic exponents, estimated with 10000 different random initial conditions. The errors are standard deviations

that the systems are chaotic and that the exponents within
each spectrum add to zero, thus characterizing an equilibrium
system (zero average contraction of volume in the extended
phase space). Furthermore, the small relative value of the
standard deviation suggests the independence of the spectra
with respect to the initial condition.

Fig. 1. Poincaré sections for the harmonic potential. Around 3×107

crossings are shown for the section ζ = 0 (left) and 3× 106 cross-
ings for the section p = 0 (right). Additionally, the nullcline lines

p = ±1 (left) and q = 0 (right) are observed

We now proceed to analyze in depth this property. For
that, we consider one million initial conditions and integrate
the equations of motion needed to obtain the largest LCE for
a short time, but sufficiently long to discriminate between a
regular and a chaotic trajectory, which we estimate as 500
times the Lyapunov time (inverse of the largest Lyapunov
exponent [26]). Then we check the consistency between the
exponent obtained and the expected one as given in Tab. 1.
When a possible regular trajectory is detected via an anoma-
lously low value of the largest Lyapunov exponent, the equa-
tions are integrated for a longer time. We find that for the
three systems considered the spectrum is independent of the
initial condition.

III. 2. Poincaré sections
The second test of ergodicity is based on Poincaré sec-

tions for a very long trajectory. The visual observation of
“holes” in these sections is an indication of the lack of ergod-
icity [18].

We pick a random initial condition (weighted as in the
previous subsection) and integrate numerically the equations
(7)-(9) using the adaptive Dormand-Prince Runge-Kutta (4-5)
integrator up to a total time of 1.25× 107. Then we choose
two cross sections, given by ζ = 0 and p = 0 respectively,

and record a point each time the section is crossed. In this
way we construct the figures 1, 2 and 3.

Fig. 2. Poincaré sections for the quartic potential. 3× 107 crossings
are shown for the section ζ = 0 (left) and 3× 106 crossings for the
section p = 0 (right). Additionally, the nullcline lines p = ±1 (left)

and q = 0 (right) are observed

Fig. 3. Poincaré sections for the Mexican hat potential. Around
1×108 crossings are shown for the section ζ = 0 (left) and 4×106

crossings for the section p = 0 (right). Additionally, the nullcline
lines p = ±1 (left) and q = 0,±1 (right) are observed

We visually observe the absence of “holes” in the cross
sections, which constitutes an additional indication of ergod-
icity.

III. 3. Marginal distributions
Having determined the existence of the chaotic sea, we

proceed to analyze the relation between the distributions. In
figures 4, 5 and 6 we check that the numerical marginal distri-
butions correspond to the theoretical ones. In the next section
we provide a stronger test, which confirms the convergence
of the joint distribution.



Ergodicity of One-dimensional Systems Coupled to the Logistic Thermostat 15

Fig. 4. Histograms compared with exact marginal distributions (solid
line) for the harmonic potential

Fig. 5. Histograms compared with exact marginal distributions (solid
line) for the quartic potential

Fig. 6. Histograms compared with exact marginal distributions (solid
line) for the Mexican hat potential

III. 4. Hellinger distance
The DD formalism, by construction, predicts that the joint

invariant probability density is (1), where in our case f(ζ) is
given by (6) and µ = 0. Explicitly, we have

ρ(p, q, ζ;Q) =
e−βH(q,p)

Z

sech2
(
ζ
2Q

)
4Q

(11)

In this section we analyze the convergence of the numerical
joint distribution associated with a very long trajectory to the
theoretical invariant distribution (11). For the comparison we
use a measure of distance between distributions, the Hellinger
distance, which in the extended phase space is defined as [25]

DH(g||f) = 2

∫ ∫ ∫ (√
g −

√
f
)2

dq dp dζ , (12)

where f and g are two three-variate distributions. To calculate
this distance, we again integrate a random initial condition
with the Dormand-Prince Runge-Kutta (4-5) integrator for
a total time t = 1.25 × 106 and sample q, p, ζ at a uniform
time dtsampling = 0.125. For each time interval we determine
the experimental joint density by using the Kernel Density
Estimation method [25] and then we integrate numerically the
equation (12) by considering g as the experimental density
and f the theoretical one (11). The domain of integration cor-
responds to the smallest rectangular domain in the extended
phase space that contains the whole region explored by the
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Fig. 7. Hellinger distance for the three potentials as a function of integration time. The right panel shows the log-log plot

trajectory. The results of the evolution of the Hellinger dis-
tance with time are displayed in figure 7. As the figure reveals,
there is a convergence to the expected distribution with time
in all three cases. This completes our study of ergodicity for
the potentials considered.

Finally, in order to check that our results do not depend
on the integration scheme, we have also performed the sim-
ulations using the geometric integrator for systems in the
canonical ensemble that we have proposed in [16]. All the
tests give the same results, thus confirming that they are inde-
pendent of the choice of the integrator.

IV. CONCLUSIONS

In this work we have performed a thorough numerical
investigation on the ergodicity of three important singly-
thermostatted one-dimensional systems. We employed a lo-
gistic thermostat within the context of the Density Dynamics
formalism, with the corresponding equations of motion be-
ing a set of coupled time-reversible differential equations,
see (7)-(9). These equations have the same structure as those
of Nosé-Hoover, but they differ in the friction term, being
linear in the Nosé-Hoover case and highly non-linear in our
(logistic) case.

For the one-dimensional Hamiltonian systems studied,
with a quadratic, quartic and Mexican hat potentials, we nu-
merically studied their ergodicity using four tests:
• Independence of the Lyapunov spectrum from the ini-

tial condition.
• No visual holes in the Poincaré sections.
• Agreement between marginal distributions and numeri-

cal frequencies.
• Convergence of the joint numerical distribution to the

theoretical one, quantified by the Hellinger distance.
All the systems considered passed these numerical tests

for ergodicity, thus providing strong numerical evidence that
the dynamics of the logistic thermostat with suitable parame-

ter values is ergodic for such systems. The programs used for
the simulations, written in the Julia language, are available
at [28]. Our results show the relevance of the Density Dynam-
ics formalism as a method to generate dynamics compatible
with an arbitrary probability distribution. Additionally, we
remark the superiority of the logistic thermostat to enhance
ergodicity with respect to other thermostats previously used
in this framework [9].

In future work, we plan to explore in depth the structure of
the phase space as the parameters Q and β are varied. As the
ST1DS are time-reversible dynamical systems, they present
characteristics which are very similar to those of Hamilto-
nian systems (e.g. periodic orbits, tori, stochastic regions,
etc.) [29, 30]. This structure has been analyzed, for instance,
for the harmonic oscillator coupled to the Nosé-Hoover ther-
mostat, showing very interesting properties [31-33]. An anal-
ysis of this kind may help to understand the nature of the
ergodic behaviour displayed for the parameters chosen in this
work.

Additionally, it would be a challenging task to consider a
theoretical approach to ergodicity of thermostatted systems
by exploiting its geometric structure, as has been done for
hamiltonian systems [34].
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