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Abstract: Unconventional computing devices operating on nonlinear chemical media offer an interesting alternative to
standard, semiconductor-based computers. In this work we consider database classifiers formed of interacting droplets in
which a photosensitive variant of Belousov-Zhabotinsky (BZ) reaction proceeds. We introduce an evolutionary algorithm
that searches for optimal construction of a droplets-based classifier for a given problem. The algorithm is based on maxi-
mizing the mutual information between the database and the observed evolution of medium. As an example application of
chemical database classifiers we apply the idea to the dataset of points belonging to a unit cube. The dataset contains two
output classes: 1 for points belonging to a sphere with radius 0.5 located in the cube center, and 0 for points outside of the
sphere. The reliability of optimized chemical classifiers of such database for different numbers of droplets involved in data
processing is presented.
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I. INTRODUCTION

Modern information processing is dominated by semi-
conductor technology. Its success can be measured by
Moore,s law [1] saying that the circuit complexity, and thus
its functionality, doubles in every 18 months. However, it is
obvious that the trend predicted by Moore,s law cannot be
sustained indefinitely. Therefore, despite fantastic progress
of microprocessor industry, there is motivation to study al-
ternative methods of computing. The unconventional com-
puting [2-6] is a field of research dedicated to chemistry-,
physics- or biology-inspired computational strategies, struc-
tures and substrates. In contrast to the conventional com-
puters, based on von Neumann concept of computer archi-
tecture [7], unconventional computing interprets the natural
time evolution of the medium as a series of information pro-
cessing operations. In a distributed medium the time evo-
lution of all its parts proceeds simultaneously. As a conse-
quence, typical algorithms executed on an unconventional
computer are highly parallel.

Among many implementations of unconventional com-
puters, chemistry-based ones seem especially interesting be-
cause chemical reactions are responsible for information
processing in living organisms. It is believed that the ba-
sic features of biological computing activity are reflected
by a reaction-diffusion medium. Chemical reactions show-
ing qualitatively similar evolution as the nerve cells [8] have
been studied for many years. The Belousov-Zhabotinsky
(BZ) reaction [9] is a chemical process in which an organic
substrate is catalytically oxidized in an acidic environment.
Among its reagents one can distinguish activator (HBrO2),
whose concentration can grow autocatalytically at the appro-
priate conditions and inhibitors responsible for suppressing
the production of activator. Excitation of a medium, seen as
a rapid increase in concentration of the activator and next
of the inhibitor, can occur when the concentration of re-
action activator exceeds a threshold value or concentration
of inhibitor fails below a certain level. The reaction is rela-
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tively simple for both modeling and experiment because dif-
ferent states of the medium, corresponding to the oxidized
and the reduced forms of the catalyst, have different colors.
For properly selected initial concentrations of reagents BZ-
medium can show simple or complex oscillations or exhibit
excitability [10]. These types of behavior are schematically
illustrated in Figure 1. In an oscillatory case system states
are located on the limit cycle. A trajectory corresponding
to the excitable medium also forms a cycle-like structure in
the phase space, but the cycle is broken and there is a sta-
ble stationary state at one of its ends. Time evolution of ho-
mogeneous, excitable medium terminates in this state. An
excitable system can be activated by an external perturba-
tion. For a spatially distributed medium propagating pulses
or different types of spatio-temporal structures can be ob-
served [11]. If a perturbation leading to a high activator con-
centration is local, then activator diffuses around. Excitation
at a neighboring point can occur if activator concentration at
this point becomes sufficiently large. Subsequent excitations
of the neighboring points lead to formation of a propagating
pulse of excitation (a spike). A spike dissipates the chemical
energy of the medium. In a typical excitable medium spike
shape converges to a stable form independent of the initial
conditions. Many computational applications of a nonlinear
medium relate information with the presence of spikes at se-
lected points of the medium. Having in mind that reaction
and diffusion determine the time evolution of excitations, the
information processing with such system is called reaction-
diffusion computing [4].

A version of BZ-reaction catalyzed with a ruthenium
complex can be efficiently controlled with illumination [10],
because the blue light activates such catalyst and leads to
production of Br− ions that inhibit the reaction [12]. Un-
der illumination the excitability of BZ medium decreases.
If a dark medium is self-excitable (oscillatory) then oscilla-
tion period increases with light intensity. For larger illumi-
nations the medium becomes excitable. In the majority of
studies on information processing with BZ reaction a com-
partmentalized excitable medium composed of excitable and
non-excitable (highly illuminated) regions was considered.

Computational properties of the medium are determined
not only by the kinetics of chemical processes, but also
by the structure of the medium [13]. Geometries of ex-
citable and non-excitable regions that define the basic logic
gates have been described [14-20]. However, the structures
of presented devices have to be developed by an intelli-
gent designer and there is no room for their self-generation
(although teaching of devices with stiff geometrical struc-
tures is possible if the feedback is introduced [21]). Quite
recently the interest in computing with BZ-reaction has
shifted towards more flexible media in which the structure
of medium can be transformed in time [22, 23]. One interest-
ing approach considers droplets containing solution of BZ-
reagents (BZ-droplets) surrounded by a solution of lipids in

an organic phase. Droplets are formed when a small amount
of BZ medium is immersed into an organic oil phase contain-
ing lipids or surfactants. The lipid molecules dissolved in the
organic phase cover the surface of a droplet and stabilize it
mechanically [23]. Therefore, droplets can be arranged into
larger structures that remain stable for a long time. When
two droplets come in contact, lipids form a bilayer at the
connection surface [24]. Molecules of BZ activator can dif-
fuse through this membrane and excite the medium behind,
triggering a chemical wave in the neighboring droplet, thus
information coded in excitation pulses can be transmitted be-
tween droplets.

Fig. 1. Time evolution of (a) oscillatory and (b) excitable BZ
medium. In the refractory phase (brown) the system is insensitive
to external perturbations. Perturbation of the medium in the respon-
sive state (red) can reduce time to excitation. Evolution of unper-

turbed, homogeneous, excitable medium ends in the stable state

Although it was shown that chemical processing of infor-
mation with BZ droplets is universal and all logic gates can
be constructed from a reaction-diffusion medium [4], neither
the speed of such gates nor their size can compete with mod-
ern silicon computers. Here we focus on chemical comput-
ers that can perform a complex classification function, i.e.,
that can discriminate a class from a number of input param-
eters. Each logic gate can be seen as a classification problem
for which the database is complete and the class is the gate
output. Classification problems are more general than logic
gates. Unlike the definition of a logic gate, which lists all
possible input states, a dataset considered in a typical clas-
sification problem contains a fraction of all possible cases.
Each test case contains a number of input variables (predic-
tors) and an assigned category (output class). The aim is to
find a generalizing algorithm or a device that correctly clas-
sifies the test cases. It is believed that it also gives the correct
answer in situations that are not contained in the dataset used
for training.

A high accuracy classification algorithm can be obtained
as a result of the teaching process. Typically a dataset con-
tains a number of test cases with known output classes that
can be used to test the progress of the training. This approach
is mainly used in machine learning techniques where the fi-
nal algorithm is implemented for standard, silicon comput-
ers. In the following, we demonstrate that a similar train-
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ing strategy can be adopted for designing chemical classi-
fiers implemented in a network of interconnected oscillatory
BZ droplets. In such a system, the values of predictors de-
scribing a single test case are transformed into input sig-
nals applied to droplets working as inputs of the network
using an external factor controlling BZ reaction (e.g. light
illumination). Interactions between chemical excitations in
the medium are responsible for information processing. The
time-evolution of chemical activity inside the network can
be traced and used as the output signal. Due to the continu-
ous, spatial and temporal character of chemical excitations,
a large number of different interactions between the droplets
are possible and the output signal can be very complex. We
demonstrate that evolutionary algorithm can be applied for
finding the conditions at which a given set of BZ-droplets
performs a classification task in the optimal way. As an ex-
ample of a classification problem we considered a dataset of
points located inside a unit cube. We demonstrate how sev-
eral interacting BZ droplets can recognize points belonging
to the sphere with radius 0.5 placed in the center of the cube.

II. CHEMICAL CLASSIFICATION COMPUTERS
CONSTRUCTED WITH OSCILLATING DROPLETS

We consider a chemical classification computer in the
form of a single geometrical structure of n×n nodes located
on a square lattice (Fig. 3). Each node represents a droplet
containing oscillating BZ medium. The droplets are inter-
connected with neighbors according to the von-Neumann
neighborhood as presented in Fig. 2. We assume that oscilla-
tions in each droplet can be individually controlled by exter-
nal illumination. After illumination is switched off, chemical
oscillations are restored immediately [25]. The time evolu-
tion of the network is investigated for 100 s, that is slightly
longer than 3 periods of oscillations in a separated droplet.
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Fig. 2. Typical time evolution observed in oscillatory BZ droplets.
(a) The influence of illumination on a BZ droplet. The times of each
phase refer to the model used in this paper. (b) If a droplet is excited
(A) then, after ∆t=1s excitation passes to all neighboring droplets
in the responsive phase. No droplet in the refractory state is excited

Given a droplet network, one of the droplets is consid-
ered as the output and a number of droplets are used as in-

puts (Fig. 3). The remaining droplets, called “normal”, trans-
mit and integrate excitations. Furthermore, they are used to
program the network by a sequence of illumination patterns.
That is, for different inputs, the input droplets are illuminated
differently, while the normal droplets are always illuminated
by the same sequence, representing the program.

Because the manual programming of nonlinear media is
hard and time consuming, we introduce an evolutionary al-
gorithm (EA) to find an optimal illumination sequence auto-
matically, here for each droplet a time interval during which
it is illuminated. Note that classical approaches that combine
EA with an artificial neural network (ANN) usually optimize
the network’s static parameters [26] or its structure [27, 28].
Here, however, we evolve for the given network a tempo-
ral control pattern (the illumination pattern) which is applied
together with each input.

The network fitness is evaluated by numerical simula-
tions based on a stochastic model of droplet interactions.
The fitness function measures the mutual information [29]
between chemical oscillation patterns and the database out-
put classes. The droplet with the highest mutual information
generates the output.

II. 1. The simplified event-based model of BZ-droplet
network

The evolved networks are simulated using a stochastic,
time-continuous model [30]. We assume that all droplets
which form a network have the same chemical composition.
The process of droplet activation and the excitation transfer
can be described by kinetic equations with diffusion terms.
However, even the most simplified model like the two vari-
able model (one variable is the concentration of bromous
acid that plays the role of reaction activator and another is the
concentration of the catalyst in its oxidized form that works
as the inhibitor) described in [31] is computationally expen-
sive, especially if it is applied to a three-dimensional, multi-
droplet structure. To reduce the computation time required to
calculate the time evolution of the network we used an event-
based model [25, 30] described below. We assumed that the
medium inside droplets oscillates because such behavior was
observed in experiments. There are three phases during an
oscillation cycle (cf. Fig. 1). A refractory phase begins just
after excitation and it is characterized by a high level of in-
hibitor. In this state a droplet becomes insensitive to chemi-
cal excitations coming from its neighbors. Next, the inhibitor
concentration decreases with time and after crossing some
threshold value the droplet enters the responsive phase in
which a stimulus incoming from any of the neighbors can
lead to an excitation. If no external triggering occurs then
the amount of inhibitor drops to a level when self-excitation
occurs. Rapid production of activator yields oxidation of the
catalyst, seen as the change of droplet color from red to blue
named below as an excitation phase. Having in mind exper-
imental results on interactions between droplets [25], we as-
sumed that the duration of the excitation, refractory and re-
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Fig. 3. Illustration of the droplet architecture studied herein. The time evolution of the network is studied for 100 s. An input is provided
by stimulating selected input droplets by illumination. The summed number of excitations appearing at one, particular droplet is taken as
the output. The control “program”, which we obtain by evolution, is a temporal illumination pattern applied to the remaining “normal”

droplets

sponsive phases are 1 s, 10 s, and 19 s respectively. These
numbers sum up to the typical oscillation period of 30 s.

Excitation transfer between two interconnected droplets
occurs if one droplet is in the excited phase whereas the other
is in the responsive state. In our theoretical analysis we as-
sumed that a droplet can be triggered only by the four closest
neighbors (von Neumann neighborhood). For the simplicity
of simulation we introduced a propagation time parameter
tprop=1 s, identical for all droplets, regardless of the exci-
tation geometry. For the considered photosensitive reaction,
oscillations can be suppressed when a droplet is illuminated
with sufficient light intensity (see Fig. 2a). Then, illuminated
droplets remain in the refractory phase. When the illumina-
tion is switched off the droplet gets excited immediately. The
photoinhibition of oscillations is used here to evolve an il-
lumination pattern for the network in order to optimize its
functionality. We assume that each droplet i can be sepa-
rately illuminated, from the beginning of simulation t0=0 to
the time t(i)illum, therefore the illumination pattern is described
by a vector of illumination intervals [t0, t(i)illum]. When the il-
lumination time for a droplet is as long as the total time of
the simulation, the droplet remains inactive during the whole
simulation and it can be regarded as an empty slot in the net-
work.

Standard computers are built with the assumption that all
components are fabricated without any defects and that the
fluctuations that are present in the system do not affect the
results of the executed programs. However, a highly nonlin-
ear chemical medium, like the BZ reaction, is very sensitive
to internal and external fluctuations. For example, it has been
recently demonstrated [32] that local charges can change the
diffusion of particles (like the activator) through the mem-
branes (see also [33]) and modify times of signal propaga-
tion between droplets. In our model the stochastic effects are
introduced into simulations in the form of normal distributed
noise with the arbitrarily selected standard deviation of 0.05
added to tprop and to the times where a droplet remains in a

particular phase.
In a single simulation we register the time evolution of

oscillations in the system, i.e. the times at which excitations
occur in each droplet. We assume that a signal represented in
this way provides complete information necessary to analyze
the network dynamics.

II. 2. Information inflow and outflow
We consider three droplet types: input, normal, and out-

put (see Fig. 3). They are distinguished according to the
functionality in the network. Each droplet is assigned either
with an input or a normal type. A droplet i of the normal type
is inhibited during the time interval [0, t(i)illum].

Input droplets are used to feed the values of predictors of
each input case from the dataset into the network. In order to
evaluate a single network all test cases have to be simulated
separately. Illumination times of normal droplets t(i)illum re-
main the same for all test cases. The predictor values change
according to the test case, thus the illumination time of in-
put droplets for each case is different. If a dataset contains
k predictors, then we distinguish k different input types. For
the datasets considered here k = 3 and the predictors de-
scribe x−, y− and z− coordinates of a point in the unit
cube. Assume that vjs ∈ [0, 1] is the value of the predictor
s (s = 1, ..., k) for a test case j from a database. If a droplet
is of the input type, corresponding to the predictor s, then
during a simulation of this test case it will be illuminated in
the time interval [0, tstart + vjs(tend − tstart)]. The interval
[tstart, tend] is the same for all input droplets in a particu-
lar network, but can differ from genotype to genotype. The
values tstart and tend are optimized together with the set of
initial illuminations.

Note that the types of the droplets are also subjected to
evolution and thus the position of inputs might vary accord-
ing to generation. We also do not introduce any constraints
on the number of input droplets in the network. For exam-
ple, it is possible that there are three droplets with input type



A Chemical System that Recognizes the Shape of a Sphere 171

Fig. 4. Randomly selected points A and B in the structure of Parent 1 mark a rectangle, which is copied, along with the illumination inter-
val for inputs, to the Offspring during the recombination process. The other part of the Offspring comes from Parent 2. Then, during the
mutation, droplet types and initial illumination times are modified. Intensity of blue color in each droplet is proportional to its illumination

time

3 and no droplet with input type 1 in the newly generated
network as seen in Fig. 4. In this situation the predictor 3 is
provided to all corresponding input droplets and no informa-
tion about predictor 1 is transferred to the network.

Exactly one droplet of the network is selected as the out-
put droplet. The mutual information with the output class
distribution is checked separately for each droplet in the net-
work during the fitness evaluation procedure and the one
with the highest value is selected as the output droplet. Since
the mutual information in the droplets changes during evo-
lution, the position of the output is not fixed and also can
change from generation to generation. We do not exclude
the case in which an input droplet is used as the output one.

II. 3. Evolution of BZ networks
In our simulations we consider a classifier formed by a

network of l = n2 droplets arranged in a n×n square lattice
where a droplet i ∈ {1, . . . , l} is characterized by its illumi-
nation time t(i)illum and functional type tpi. The droplet type
tpi ∈ {0, . . . , k} is selected from the k different predictors,
as explained in the last section, plus one extra value, e.g. 0.
A value of tpi = 0 denotes that the droplet i is not used as
classifier input, but should be illuminated according to the
value t(i)illum and thus represents the classification program.
More formally, we represent a genotype g as a tuple of the
list of functional types

−→
tp for each droplet, the list of the illu-

mination times
−−−→
tillum, and the two parameters tstart and tend

that define the time interval in which input droplets are illu-
minated. Note that tstart and tend are not global values but
are part of each genotype and thus they are co-evolved with
the network.

g = (
−→
tp,
−−−→
tillum, tstart, tend) ∈ {0, . . . , k}l × [0, texp]

l+2

(1)

0 ≤ tstart ≤ tend ≤ texp

0 ≤ tillumi
≤ texp

The evolution scheme is based on the approach presented
in [34]. The population size is µ = 8 parents and λ = 30
offspring. The number of generations is set to 500. Depend-
ing on the noise influence, either COMMA or PLUS strat-
egy was applied [35, 36]. The first option assumes that only
newly generated offspring are transferred to the next gen-
eration. This process is similar to natural procreation in the
sense that the parents give birth to the offspring population
and die afterwards. In contrast, when the PLUS strategy is
applied, a number of µ = 5 best parents are copied to the
next generation along with the offspring. In this case, an in-
dividual with high fitness can survive for many generations.

Following the typical (µ/ρ+, λ) evolution strategy no-
tation, our evolution hence resembles a (8/2 , 30) - strat-
egy for COMMA selection and a (5/2 + 25) - strategy for
PLUS selection. Following the standard recombination tech-
niques [37] ρ = 2 parents are involved in the procreation of
one offspring. A rectangular sub-grid of droplets from Par-
ent 2 constrained by two, randomly selected points A and B
is replaced with the corresponding sub-grid in Parent 2 as
illustrated in Fig. 4 to yield a new individual. The illumina-
tion interval of input droplets co-evolved with the network
is copied from the Parent 1 to the offspring. The newly gen-
erated individual is subjected to three subsequent mutation
operators with fixed mutation rates (see Fig. 4), according to
the following order:

1. Input illumination interval mutation
Times determining illumination interval of droplet
with input types, i.e. t(Offspring)

start , t(Offspring)
end are se-

lected from the normal distributions with the averages
t
(Parent1)
start , t(Parent1)

end , respectively, and σ2 = 10 as fol-
lows:

t
(Offspring)
start = N (t

(Parent1)
start , σ2) (2)

t
(Offspring)
end = N (t

(Parent1)
end , σ2)
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t
(Offspring)
start ≤ t(Offspring)

end

whereN (t, σ2) is a random number selected from the
normal distribution with average t and variance σ2. If
t
(Offspring)
start > t

(Offspring)
end both times are swapped, i.e.

t
(Offspring)
end is replaced with t(Offspring)

start and vice versa.
2. Droplet type mutation

We assume that input droplets can change into nor-
mal droplets and vice versa. The probability of droplet
transformation is ptype = 0.04. Regardless of droplet
type, the probability of obtaining an input droplet is
pinp = 0.12 and for the normal one 1− pinp.

3. Illumination time mutation
If a droplet i is of the normal type, then with a prob-
ability pillum = 0.04 its illumination time is mutated.
New illumination time for the Offspring tillumi is gen-
erated from the normal distribution with the average
tillumi

and σ2 = 25.
The values of all probabilities were selected arbitrarily

as being reasonably small, but still large enough to produce
noticeable changes in network functionality after mutation.
They should have little influence on the final optimized clas-
sifier, but definitely decide the rate of convergence towards
the optimum solution. Independently of the mutation oper-
ators, the fitness function always chooses the output droplet
that generates the highest mutual information to the desired
output class.

II. 4. Fitness evaluation
The quality of a droplet-based classifier is measured by

a fitness function, which takes into account answers from
all test cases of the considered dataset as an argument. We
evaluate a network’s fitness using the mutual information be-
tween the total number of excitations in the output droplet
and the output class in the dataset. Such mutual informa-
tion, and hence the fitness value, can be interpreted as the
reduction of uncertainty about the output class when seeing
a particular number of excitations. After simulating all test
cases from the dataset, we sum up all excitations from every
pattern (separately for all droplets) to obtain excitation dis-

tribution Si for each droplet i. Then the mutual information
with the output class distribution Po is equal to:

I(Si : Po) = H(Si) +H(Po)−H(Si,Po). (3)

Here H(Si) and H(Po) are the Shannon entropies of
the summed excitations distribution in droplet (i) and the
distribution of output classes in the considered dataset, re-
spectively. H(Si,Po) is the joint entropy of both distribu-
tions. Let us note that if the number of excitations in a
droplet is always the same, independently of predictor val-
ues, then H(Si)=0 and H(Si,Po) = H(Po). As a result,
I(Si : Po)=0. On the other hand, if the excitation number is
perfectly correlated with the database output (for example,
two excitations for a point inside the sphere and one excita-
tion in the other cases) then H(Si) = H(Po) and H(Si,Po)
= H(Po). Now I(Si : Po) = H(Po), which means that all
output information of the database can be extracted from the
excitation number. In practice Si are different for various
droplets. The droplet with the highest correlation with the
dataset becomes the output of the classifier. It means that the
signal appearing in this droplet contains the maximum infor-
mation about the cases from a dataset and thus it can be used
for classification. The fact that one finds a droplet giving the
best answer does not solve the problem completely. An ad-
ditional effort needs to be made by the observer to interpret
this signal and to find a useful classification rule which can
be difficult [38]. In the approach presented here the output
of the network is limited, for simplicity, to a single droplet.
However, for more complicated classification problems, one
can consider signals combined from multiple droplets.

II. 5. Classification datasets
We tested our approach on an artificial dataset with test

points (cases) confined in a unit cube. Volume of the cube
was subdivided into two parts: (i) internal sphere with R =
0.5, centered at x0 = y0 = z0 = 0.5 and (ii) remaining part
with spherical volume subtracted. The coordinates x,y,z of
test cases were generated randomly and assigned with output
classes 0 and 1 according to the part of the cube they were
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Fig. 5. Fitness evolution for simulations with dataset containing 200 cases. Plots for network with following geometries are shown: (a)
2 × 2, (b) 3 × 3, (c) 4 × 4, (d) 5 × 5. The respective amount of mutual information for the best individual found was 0.26 bit, 0.43 bit,

0.46 bit and 0.42 bit
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Fig. 6. Fitness evolution for simulations with dataset containing 400 cases. Plots for network with following geometries are shown: (a)
2 × 2, (b) 3 × 3, (c) 4 × 4, (d) 5 × 5. The respective amount of mutual information for the best individual found was 0.30 bit, 0.34 bit,

0.36 bit and 0.37 bit

located in (outside and inside of the sphere, respectively).
Classification of a test case (x, y, z) can be summarized
with the following algorithm:

{
1, if (x− x0)

2 + (y − y0)
2 + (z − z0)

2 < R2,

0, otherwise.
(4)

The dataset was fixed and the test cases remained the same
for all simulations. In our studies we used two datasets con-
tainingN = 200 or 400 cases. Since the volume ratio of part
(i) to part (ii) was 1.09 the number of cases from each out-
put class were adjusted accordingly. That gave 95 and 191
cases from class 0 and 105 and 209 cases from class 1 for

N = 200 and N = 400, respectively. The entropies of these
datasets were HN=200(Po) = HN=400(Po) ≈ 0.998 bit.

III. RESULTS AND DISCUSSION

Evolution of droplet classifiers was studied for four sizes
of networks with nodes arranged on 2× 2, 3× 3, 4× 4 and
5×5 grids. The networks were evolved and tested separately
for datasets containing 200 or 400 cases (see Section II. 5.).
For each size of the network and the dataset we performed 25
simulations. In the initial part of simulation (first 50 genera-
tions) we allowed the system to evolve in a more expansive
manner by applying COMMA strategy. Then, to reduce the

(a) (b)

(c) (d)

Fig. 7. Illumination patterns for optimized classifiers of the dataset containing 200 test cases. Plots for network with following geometries
are shown: (a) 2× 2, (b) 3× 3, (c) 4× 4, (d) 5× 5. Circles represent droplets in a network and brightness of the blue color is proportional
to the initial illumination time. The conversion of time to the blue color is shown on a vertical bar in (a). If no blue color is visible then
the droplet was active from the beginning of the experiment. High blue color intensity corresponds to illumination time close to the total
simulation time. The amount of mutual information contained in each droplet evolution is marked with a red color in the form of a pie
chart where the sector size is normalized to the maximal value of mutual information that can be obtained from employed inputs. The
output droplet is marked with a wide black border and the numbers of the input droplets correspond to the predictor number in the dataset
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(c) (d)

Fig. 8. Illumination patterns for dataset containing 400 test cases. Plots for network with following geometries are shown: (a) 2 × 2, (b)
3× 3, (c) 4× 4, (d) 5× 5. Notation as in Fig. 7

noise we switched to PLUS strategy for the remaining 450
generations.

The amount of mutual information in the networks is
shown on the fitness evolution plots in Figs. 5 and 6 for
dataset containing 200 and 400 cases, respectively. As ex-
pected, the mutual information is an increasing function of
network size except the case of 5 × 5 classifiers, for which
the optimization seems uncompleted. The smallest classifier
(2 × 2) gave nearly half of the mutual information with the
dataset compared to larger networks. It indicates that the
number of nodes was insufficient for a reliable classifica-

tion. ForN = 200 the highest fitness value was observed for
4× 4 network (0.49 bit at generation 157). Yet it was a ran-
dom event and in consecutive generations fitness stabilized
around 0.45 bit which was still higher than for the rest of
the networks. In the cases (a-c) fitness value was stable for
at least 180 generations before optimization was terminated
while for 5×5 classifier it was stable within last 100 genera-
tions only. We expect that for longer runs of the evolutionary
algorithm the larger network could be still improved, finally
yielding a fitness value that is higher than for the smaller sys-
tems. This observation is supported by the data for N = 400

Tab. 1. Amount of mutual information (MI), classification rules and the corresponding classification accuracies for 200 and 400-case
datasets, for all considered network sizes. The “stupid”classifier that allocates all points inside the sphere has accuracy ∼52%

200 cases 400 cases
MI Accuracy Rule MI Accuracy Rule

2× 2 0.26 bit 77%
S ∈ 〈2, 3〉 → 1

0.30 bit 77.5%
S ∈ 〈3, 4〉 → 1

S < 2 ∨ S > 3→ 0 S < 3 ∨ S > 4→ 0

3× 3 0.43 bit 84%
S ≤ 5→ 1

0.34 bit 79%
S ∈ 〈2, 4〉 → 1

S > 5→ 0 S < 2 ∨ S > 4→ 0

4× 4 0.46 bit 87.5%
S ≤ 3→ 1

0.36 bit 80%
S ∈ 〈2, 4〉 → 1

S > 3→ 0 S < 2 ∨ S > 4→ 0

5× 5 0.42 bit 85%
S ≤ 6→ 1

0.37 bit 81%
S ∈ 〈3, 5〉 → 1

S > 6→ 0 S < 3 ∨ S > 5→ 0
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Fig. 9. Distribution of a summed number of excitations, appearing in a single simulation at the output droplet in classifier evolved for
200-case dataset. The height of bars is normalized to the number of instances belonging to a given output class (0 or 1)

test cases shown in Fig. 6. Here, the fitness value after 500
generations was highest for the 5 × 5 network (0.37 bit at
generation 443). However, for a larger dataset the solution
did not stabilize within the selected number of generations
except for the smallest network. It suggests that longer evo-
lution runs should be applied to optimize the classifiers. In
the case of 4×4 network the fitness function has not reached
its plateau yet.

The distribution of mutual information and illumination
pattern for the networks evolved for dataset containing 200
and 400 cases are shown in Figs. 7 and 8 respectively. For
N = 200 the classification problem was easier due to a lower
number of test cases and the corresponding classifiers were
optimized faster than those evolved for N = 400 case
dataset. For N = 200 the optimized classifiers, except the
smallest one, contained input droplets for all coordinates,
thus they take into account values of all predictors. Usually
for both dataset sizes there is just one droplet for which the
fitness value is much larger than for the others. The exception
is Fig. 7c case as there are three droplets containing a very
similar amount of mutual information. It is also interesting to
note that the geometry of input droplets and the output ones
obtained for 4 × 4 and 5 × 5 networks are similar. Remark-
ably for N = 200, only in 2 × 2 network, an input droplet
was selected as the output, whereas for all larger classifiers
normal type droplets were the output ones. On the contrary,
for N = 400, the input droplet for the first predictor (in 1) is
always selected as the output (cf. Fig. 8). Such configuration
does not seem optimal since the output droplet is dominated

by its own input signal. We expect that the optimized clas-
sifier should rather promote integration of signal incoming
from many inputs as shown in Figs. 7b-d. In these cases the
amount of mutual information (visible as the size of the red
sector) was much smaller for individual input droplets than
the value of signal integrated at the output.

Allowed optimization of 5 × 5 network has reached the
local plateau (cf. Fig. 6d), but the classifier is missing input
droplet for the second predictor (in 2). Therefore the evolu-
tionary optimization has to proceed longer to achieve a phys-
ically acceptable result and include all coordinates.

The distribution of a summed number of excitations, for
the best found networks are shown in Figs. 9 and 10 for
dataset containing 200 and 400 cases, respectively. In such
form the signal can be easily interpreted and used to build
classification rules. Here we constructed the rules according
to the majority principle, i.e. for a given number of excita-
tions we selected the rule that classifies more cases correctly.
For example, for the network shown in Fig. 9d the following
rule was constructed:{

S ≤ 6→ 1,

S > 6→ 0,
(5)

where S is the summed number of excitations at the output
droplet. Note that in all cases the distribution of number of
excitations can be divided into two or three parts by apply-
ing one or two threshold values (marked with dashed lines
on the plots). A rule based on two thresholds, constructed
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Fig. 10. Distribution of a summed excitations number at the output droplet in classifier evolved for 400-case dataset. Notation as in Fig. 9
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for the number of excitations distribution shown in Fig. 9a,
can be formulated as:{

S ∈ 〈2, 3〉 → 1,

S < 2 ∨ S > 3→ 0.
(6)

Rules for both datasets and all analyzed network sizes are
given in Tab. 1 along with the classification accuracies they
provided. For a smaller dataset the best accuracy obtained
was 87.5%, using 4 × 4 droplet network. In case of a large
dataset it was 81%, obtained with the largest 5× 5 network.
Yet, in this case one can expect further improvement if the
system is longer evolved. For all studied network sizes we
observed correlation between the amount of mutual infor-
mation and the classification accuracy. Even though we used
simple rule constructions the obtained classification accura-
cies are high. That suggests that classification functional-
ity is learned by the networks during the evolution process
rather than implemented later as an intricate set of rules se-
lected by a person interpreting the results.

IV. CONCLUSIONS

In the paper we presented the idea of using evolutionary
algorithms for the design of chemical classifiers based on BZ
droplet network. The classifier was supposed to predict if a
point from a unit cube belongs to a centrally located sphere.
Chemical interactions between the nodes of network were
adjusted by external illumination to achieve the best match
with a database. We considered two databases of a different
size and chemical media characterized by various numbers
of interacting nodes. Surprisingly, even a relatively small
classifier made of 16 droplets can solve the considered ge-
ometrical problem with over 85% of classification accuracy.
It is hard to expect that such a small system can recognize
3 dimensional geometrical objects yet it was able to deter-
mine quite accurately the location of a point with respect to
a sphere. It demonstrates the flexibility of classifier design
operating on relatively simple nonlinear chemistry.

We believe that classifiers working on chemical pro-
cesses find applications where chemistry-based information
processing seems especially important. One field of applica-
tions includes smart drugs with chemical classifiers built into
their surrounding capsule. If there are warnings about infec-
tion in their neighborhood, then the classifier generates an
output signal that opens the capsule and releases the drug.
Chemical engineering is another field of potential applica-
tions for the classification computers. Many catalytic reac-
tions proceed at high temperatures, where silicon technol-
ogy does not work. It is known that some catalytic reactions
are highly nonlinear and show oscillations and excitability
needed for information processing strategies described in
this paper.
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