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Abstract: The present work seeks to investigate the propagation of magneto-thermoelastic disturbances produced by
a thermal shock in a finitely conducting elastic half-space in contact with vacuum. Normal load has been applied on the
boundary of the existing media that is supposed to be permeated by a primary uniform magnetic field. We employ both
the parabolic type (dual phase-lag magneto-thermoelasticity of type I (MTDPL-I)) and hyperbolic type (dual phase-lag
magneto-thermoelasticity of type II (MTDPL-II)) dual phase-lag heat conduction models to account for the interactions
among the magnetic, elastic and thermal fields. The integral transform technique is applied to solve the present problem
and the analytical results of both cases have been obtained separately. A detailed analysis of results has been made in order
to understand the nature of waves propagating inside the medium and the effects of the phase-lag parameters. The effect
of the presence of magnetic field has been highlighted. Numerical results have also been obtained to analyze the effect of
magnetic field on the behavior of the solution more clearly and a detailed analysis of the results predicted by two models
has been presented. It has been noted that in some cases there are significant differences in the solution obtained in the
contexts of MTDPL-I and MTDPL-II theory of magneto-thermoelasticity.
Key words: magneto-thermoelastic waves, finite conductivity, thermal shock, dual phase-lag heat conduction theory-I, dual
phase-lag heat conduction theory-II

I. INTRODUCTION

The study of heat conduction theory has been made tra-
ditionally by using the classical Fourier law. This theory
of heat conduction has been carried out successfully and it
has been established that the results are in good agreement
with experimental data for most of the analyzed experimen-
tal conditions [1, 2]. But unfortunately, the approach of this
Fourier law is not capable in giving accurate results in some
situations, especially in situations involving very short times,
high-heat-fluxes and very low temperatures [3-5]. Further-
more, it predicts heat propagation with infinite speed which
is physically unrealistic. The classical coupled thermoelas-
ticity theory developed by Biot [6] is based on Fourier law of

the heat conduction and also suffers from this physical draw-
back that thermal signals propagate with infinite speed. Con-
sequently, efforts have been made and different non Fourier
models of heat conduction have been developed to surmount
the limitations of the Fourier approach. The simplest and
possibly the first one is suggested by Cattaneo [7] and also
by Vernotte [8] by introducing the concept of thermal relaxa-
tion time parameter. Accordingly, some generalized theo-
ries have also been proposed with the aim of removing the
paradox inherent in the classical coupled theory of thermo-
elasticity (CTE) given by Biot [6]. Firstly, Lord and Shul-
man [9] introduced the generalized thermoelasticity theory
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by employing the modified version of Fourier’s law given by
Cattaneo and Vernotte [7-8]. They introduced one thermal
relaxation parameter in the governing equations of heat con-
duction equation which results in the hyperbolic type heat
conduction equation. Later on, Green and Lindsay [10] pro-
posed a more generalized theory of thermoelasticity in which
Fourier law of heat conduction remained unchanged. Green
and Naghdi [11] established a theory of thermoelasticity that
permits the propagation of the thermal waves having finite
speed. However, this theory does not accommodate the dis-
sipation of energy of thermal signals. A more generalized
version of the heat conduction theory for deformable bodies
is also developed by Green and Naghdi [12] that accommo-
date the dissipation of energy of thermal waves.

It has been realized in recent years that the heat conduc-
tion theory of Catteneo and Vernotte also fails in some cases
since this theory still establishes an instantaneous response
between the temperature gradient and the energy transport.
Hence, to surmount the drawbacks of the classical heat con-
duction model as well as the Cattaneo-Vernotte model, Tzou
[13, 14] proposed the dual phase-lag (DPL) theory of heat
conduction. This model establishes that either the temper-
ature gradient may dominate the heat flux or that the heat
flux may dominate the temperature gradient. This approach
has been used to study the extensive variety of physical sys-
tems [15-18], structures with non linear boundary conditions
[19], thermoelastic vibrations [17] etc. Two dual phase-lag
thermoelastic models are subsequently developed by Chan-
drasekharaiah [20] by considering this dual phase-lag heat
conduction model [13, 14]. Several researchers have consid-
ered the dual phase-lag models to investigate the effects of
employing the dual phase-lag heat conduction. We particu-
larly mention the work in [21-28] and references there-in.
Nowadays, increasing attention is being dedicated towards
magneto-thermo-elastic interactions in a solid due to its sev-
eral applications in many areas like plasma physics, geo-
physics and related topics. In the case of nuclear field, the
extremely high temperature and the magnetic field that origi-
nates inside nuclear reactors influence their design and op-
erations [29]. This terminology is known as the theory of
magneto-thermo-elasticity. Basically, it is a combination of
two different disciplines: the theory of electromagnetism and
the theory of thermoelasticity. What must be recalled here
is the significant contributions in the theory of magneto-
thermoelasticity and the theory of extended thermodynam-
ics by several reserachers like Jordan and Eringen [30, 31],
Maugin [32], Radzikowska et al. [33], Maruszewski et al.
[34], Liu [35], Casas-Vazquez et al. [36], Lebon and Jou
[37], Jou and Casas-Vazquez [38] and Maruszewski et al.
[39]. Kaliski and Nowacki [40] investigated the magneto-
thermoelastic waves generated by a thermal shock in a per-
fectly conducting half-space in contact with vacuum. The
coupling between temperature and strain fields was studied
by Massalas and Dalamangas [41]. Then by using the ther-
mal relaxation time of the Lord-Shulman theory [7], Roy-

choudhuri and Chatterjee [42, 43] extended the problem [41]
in the generalized thermoelasticity. Furthermore, by using
the generalized theory of thermoelasticity developed by Lord
and Shulman [7], Sharma and Dayal Chand [44] and Roy-
choudhuri and Banerjee (Mukhopadhyay) [45] investigated
transient generalized magneto-thermoelastic waves in elastic
half-spaces due to a normal load acting on the boundary of
the half space.

In our work we employed the dual phase-lag thermoe-
lasticity theory and studied a problem of elastic medium in
the presence of the magnetic field with finite conductivity.
The structure of the problem has been constructed in such
a manner that both the normal load and thermal shock have
been enforced on the boundary of the media due to which
magneto-thermoelastic waves have been produced. We have
made an attempt to find the solutions for the deformation,
stress, temperature distributions and perturbed magnetic
field by using two different theories: namely the ’dual phase-
lag heat conduction theory of magneto-thermoelasticity-I
(MTDPL-I)’ and the ’dual phase-lag heat conduction the-
ory of magneto-thermoelasticity-II (MTDPL-II). Results ob-
tained from both theories have been presented and discussed
in a detailed way by highlighting the effects of phase-lag pa-
rameters due to the presence of the magnetic field.

II. PROBLEM FORMULATION

In our problem we have taken a homogeneous and
isotropic finitely conducting elastic half space permeated
by a primary uniform magnetic field such that a normal
load and thermal shock have been applied on the boundary
x1 = 0, due to which magneto-thermoelastic disturbances
have been initiated and allowed to propagate through the
medium x1 ≥ 0.

To formulate our problem we need to consider all the ba-
sic governing equations of magnetic, thermal and mechani-
cal fields which are mutually interacting each other. Firstly,
we consider the following equations given by Maxwell [46]:

~∇× ~E = −µ0

C
.
∂~h

∂t
, (1)

~∇× ~h =
4π

C
~j, (2)

~∇.~h = 0. (3)

Generalized Ohm’s law is given as

~j = λ0

[
~E +

µ0

C
(~̇u× ~H0)

]
, (4)

where ~E, ~h, ~H0 represent the electric field, perturbed mag-
netic field and the initial constant magnetic field, respec-
tively. µ0 and λ0 are magnetic permeability and electrical
conductivity of the medium, respectively and C is the ve-
locity of light. ~j is the current density vector and ~u is the
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displacement vector. Equation of motion including electro-
magnetic field is given by ([40])

µ∇2~u+ (λ+ µ)~∇(~∇.~u)

+
µ0

4π
[(~∇× ~h)× ~H0]− γ~∇θ = ρ~̈u,

(5)

where λ, µ are Lame constants,γ = (3λ + 2µ)αt, αt be-
ing the coefficient of linear thermal expansion. θ = T − T0
where T0 is the uniform reference temperature of the body,
i.e. θ is the temperature above uniform reference temperature
T0. By employing dual phase-lag heat conduction model-II
(DPL-II; (see Tzou [13] and Chandrashekharaiah [20])), we
take the heat conduction equation for our study in the form

K

(
1 + τt

∂

∂t

)
∇2θ =

=

(
1 + τq

∂

∂t
+ τ2q

∂2

∂t2

)
(ρCv θ̇ + γT0u̇i,i).

(6)

Special case: In the above equation, substituting τ2q = 0,
we achieve the following heat conduction equation under
dual phase-lag model-I (DPL-I)[[13],[20]]:

K

(
1 + τt

∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t

)
(ρCv θ̇ + γT0u̇i,i).

(7)
The above two heat conduction models are known as hyper-
bolic type dual phase-lag magneto-thermoelastic model-II
(MTDPL-II) and parabolic type dual phase-lag magneto-
thermoelastic model-I (MTDPL-I), respectively, where τq
represents phase-lag of heat flux vector and τt represents
phase-lag of temperature gradient across the medium. Here
’Thomson effect’ has been neglected due to its very small
value. Cv is the specific heat at constant strain and ρ is the
density. From equations (1)-(4), after elimination of ~E and
~j, we achieve the following relation:

∇2~h− β~̇h = −β~∇× (~̇u× ~H0), (8)

where β =
4πλ0µ0

C2
For simplification, we assume that

the magneto-thermoelastic waves propagated in the medium
xi ≥ 0 depend on one direction i.e. x1 and the time
t. Furthermore, it has been assumed that the initial mag-
netic field vector is applicable towards x3 axis i.e. ~H0 =
(0, 0, H3), where H3 is a constant. Therefore, equations (1)-
(4) lead to

~j =
C

4π

(
0,−∂h3

∂x1
, 0

)
, (9)

~̇h = − C
µ0

(
0, 0,

∂E2

∂x1

)
, (10)

~j = λ0

[
0,

(
E2 −

µ0H3u̇1
C

)
, 0

]
. (11)

Since wave is propagating in x1 direction and we have as-
sumed that the magnetic field has been applied in x3 di-
rection, then consequently electric field is given by ~E =
(0, E2, 0), where

E2 = − C

4πλ0
.
∂h3
∂x1

+
µ0H3u̇1
C

. (12)

In view of the above assumptions, equations (5)-(8) reduce
to the forms

(λ+ 2µ)
∂2u1
∂x21

− µ0H3

4π
.
∂h3
∂x1
− γ ∂θ

∂x1
= ρ.

∂2u1
∂t2

, (13)

K

(
1 + τt

∂

∂t

)
∇2θ =

=

(
1 + τq

∂

∂t
+ τ2q

∂2

∂t2

)(
ρCv

∂θ

∂t
+ γT0

∂2u1
∂x1∂t

)
,

(14)

K

(
1 + τt

∂

∂t

)
∇2θ =

=

(
1 + τq

∂

∂t

)(
ρCv

∂θ

∂t
+ γT0

∂2u1
∂x1∂t

)
,

(15)

∂2h3
∂x21

− β ∂h3
∂t

= βH3
∂2u1
∂x1∂t

. (16)

For simplicity, in what follows we will use the notations
u1 = u, x1 = x.

Now, since the medium has been assumed to be in con-
tact with vacuum, the above equations need to be added to
the electrodynamic equations in vacuum. In vacuum, the sys-
tem of equations of electrodynamics reduce to the following
forms:

(
∂2

∂x′2
− 1

C2

∂2

∂t2

)
h̃3 = 0,(

∂2

∂x′2
− 1

C2

∂2

∂t2

)
Ẽ2 = 0,

~̇̃
h = C

(
0, 0,

∂Ẽ2

∂x′

)
,

~̇̃E = C

(
0,
∂h̃3
∂x′

, 0

)
, (17)

where x′ = −x.
For our present study, the equations (13), (14), (16), (17)

constitute the system under MTDPL-II model and the equa-
tions (13), (15)-(17) constitute the system under MTDPL-I
model. We will study both systems separately.
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III. INITIAL AND BOUNDARY CONDITIONS

In general, Maxwell’s electro-magnetic stress tensor Tij
in CGS unit is defined as Tij = µ0

4π (hiHj + hjHi −
δijhkHk) i, j, k = 1, 2, 3. Therefore, by using this relation
we have taken for our problem,

T11 = −µ0h3H3

4π
, T̃11 = − h̃3H3

4π
, (18)

where T11 and T̃11 are the components of Maxwell’s stress
tensor in the elastic medium and in vacuum, respectively.
The normal stress in the elastic medium is given by

σ11 = (λ+ 2µ)
∂u

∂x
− γθ. (19)

Therefore, we assume the following boundary conditions as

σ11 + T11 − T̃11 = σ0H(t) on x = x′ = 0, (20)

E2 = Ẽ2, h3 = h̃3 on x = x′ = 0, (21)

where H(t) is the Heaviside unit function and σ0 is a con-
stant stress. The thermal boundary condition has been taken
in the following manner:

θ(x, t) = θ0H(t) on x = x′ = 0, (22)

where θ0 is a constant. The initial conditions for the
MTDPL-II model are assumed to be homogeneous and they
are taken as

u(x, 0) = 0, θ(x, 0) = 0,
∂u(x, 0)

∂t
= 0,

∂θ(x, 0)

∂t
= 0,

∂2u(x, 0)

∂t2
= 0,

∂2θ(x, 0)

∂t2
= 0.

In the similar way, the initial conditions for MTDPL-I are
considered as

u(x, 0) = 0, θ(x, 0) = 0,
∂u(x, 0)

∂t
= 0,

∂θ(x, 0)

∂t
= 0

(23)

IV. SOLUTION OF THE PROBLEM

In order to simplify the solution of the problem, we intro-
duce the following notations and non dimensional quantities:

ξ =
C0x

k
,

τ =
C2

0 t

k
,

u′ =
C0(λ+ 2µ+ α2

0ρ)u

kγT0
,

z′ =
θ

T0
, k =

K

ρCv
,

ε =
γ2T0

Ce(λ+ 2µ+ α2
0ρ)

,

Ce = ρCv ,
h3 = h,

η1 =
µ0H3

4πγT0
,

η2 =
1

kβ
,

η3 =
H3γT0
ρC2

0

,

η4 =
C2

0

4πλ0k
,

η5 =
µ0γH3T0
ρC2

,

C2
1 =

λ+ 2µ

ρ
,

C2
0 = C2

1 + α2
0,

α =
C0

C
,

α2
0 =

µ0H
2
3

4πρ
,

τ ′q =
C2

0

k
τq ,

τ ′t =
C2

0

k
τt.

Using the above notations and non dimensional quanti-
ties on boundary conditions [(20)-(22)], we get the following
simplified forms of our boundary conditions:

C2
1

C2
0

u′,ξ − z′ + η′h̃ =
σ0
γT0

H(τ) on ξ = ξ′ = 0, (24)

h = h̃ on ξ = ξ′ = 0, (25)

−η4h,ξτ + η5u
′
,ττ + h̃,ξ = 0 on ξ = ξ′ = 0, (26)

z′ =
θ0
T0
H(τ) on ξ = ξ′ = 0, (27)

where we have used the notation η′ =
(1− µ0)H3

4πγT0
.

Further, the total stress σ1 in the elastic half space is
given by

σ1 = σ11 + T11. (28)

From the above equation, we get the dimensionless form
of total stress as σ′, where σ′ =

σ1
γT0

.

Now, the initial conditions for MTDPL-II model become

u′(ξ, 0) = 0, z′(ξ, 0) = 0,
∂u′

∂τ
(ξ, 0) = 0,

∂z′

∂τ
(ξ, 0) = 0,

∂2u′

∂τ2
(ξ, 0) = 0,

∂2z′

∂τ2
(ξ, 0) = 0.

Similarly, the initial conditions for MTDPL-I model are re-
duced to

u′(ξ, 0) = 0, z′(ξ, 0) = 0,
∂u′

∂τ
(ξ, 0) = 0,

∂z′

∂τ
(ξ, 0) = 0.

(29)
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Equation given by (17) get the form

h̃,ξξ − α2h̃,ττ = 0, Ẽ2,ξ′ξ′ − α2Ẽ2,ττ = 0, (30)

where ξ′ > 0 and ξ′ = −ξ, h̃3 = h̃. Now, we study the
present problem in the contexts of two different models –
MTDPL-I and MTDPL-II separately.

IV. 1. Case I: Magneto-Thermoelastic Dual Phase-lag
Model-II (MTDPL-II)

First, applying the above non dimensional quantities in
equations (13),(14) and (16), we obtain the following equa-
tions:

C2
1

C2
0

u′,ξξ − η1h,ξ − z′,ξ − u′,ττ = 0, ξ > 0, (31)

(1 + τ ′t
∂

∂t
)z′,ξξ −

(
1 + τ ′q

∂

∂τ
+ τ

′2
q

∂2

∂τ2

)
×

(z′,τ + εu′,ξτ ) = 0, ξ > 0,

(32)

η2h,ξξ − h,τ = η3u
′
,ξτ , ξ > 0. (33)

On setting τ ′t = 0 and τ
′2
q = 0 in above equations (31)-(33),

we find that the resulting equations are in agreement with
the equations of [45]. The above equations given by (31)-
(33) constitute the set of coupled partial differential equa-
tions with coupled boundary conditions in three variables u′,
z′ and h. It is very difficult to solve this system analytically,
therefore for the purpose of simplification it is assumed that
the perturbed magnetic field h varies very slowly with dis-

tance so that
∂2h

∂ξ2
≈ 0.

Then, equations (33) and (31) reduce to

h = −η3u′,ξ, ξ > 0, (34)

u′,ξξ − z′,ξ − u′,ττ = 0, ξ > 0. (35)

In order to solve the problem, we first apply Laplace trans-
form to both sides of equation (35) and we obtain the follow-
ing equation:(

∂2

∂ξ2
− s2

)
ū′ − ∂z̄′

∂ξ
= 0, ξ > 0 (36)

where, the over-headed bars represent the fields in the
Laplace transform domain. Equations (32) and (24)-(27) re-
duce to(

(1 + τ ′ts
2)
∂2

∂ξ2
− (1 + τ ′qs

2 + τ
′2
q s

3)s

)
z̄′−

εs(1 + τ ′qs
2 + τ

′2
q s

3)
∂ū′

∂ξ
= 0, ξ > 0,

(37)

C2
1

C2
0

∂ū′

∂ξ
− z̄′ + η′

¯̃
h =

σ0
γT0

1

s
on ξ = ξ′ = 0, (38)

h̄ =
¯̃
h on ξ = ξ′ = 0, (39)

η5s
2ū′ + (1− η4s)

∂h̄

∂ξ
= 0 on ξ = ξ′ = 0, (40)

z̄′ =
θ0
T0
.
1

s
on ξ = ξ′ = 0. (41)

Elimination of ū′ from equation (36) and equation (37)
yields

[(1 + τ ′ts
2)
∂4

∂ξ4
− (s(1 + τ ′qs

2 + τ
′2
q s

3) + s2(1 + τ ′ts
2)+

εs(1 + τ ′qs
2 + τ

′2
q s

3))
∂2

∂ξ2
+ s3(1 + τ ′qs

2 + τ
′2
q s

3)]z̄′ = 0.

(42)
The general solution of the above equation, vanishing at
ξ →∞ is given by

z̄′ = Ae−λ1ξ +Be−λ2ξ, (43)

where A and B are arbitrary constants and λ21 and λ22 are the
roots of the equation given below:

[(1 + τ ′ts
2)λ4 − (s(1 + τ ′qs

2 + τ
′2
q s

3) + s2(1 + τ ′ts
2)

+ εs(1 + τ ′qs
2 + τ

′2
q s

3))λ2 + s3(1 + τ ′qs
2 + τ

′2
q s

3)] = 0.
(44)

A, B are determined from equations (38),(41) and (43) as

A =
(k1λ

2
2(1 + τ ′ts

2)− k2s− k2τ ′qs3 − k2τ
′2
q s

4)

sη′′(λ22 − λ21)(1 + τ ′ts
2)

,

B =
−(k1λ

2
1(1 + τ ′ts

2)− k2s− k2τ ′qs3 − k2τ
′2
q s

4)

sη′′(λ22 − λ21)(1 + τ ′ts
2)

,

where, k1 =
θ0η
′′

T0
, k2 =

θ0η
′′

T0
+
θ0ε

T0
+
σ0ε

γT0
. By using

equations (34), (37) and (43), we achieve the following ana-
lytical solution of displacement and perturbed magnetic field
and total stress in the Laplace transform domain in terms of
A and B as

ū′(ξ, s) =
1

εs(1 + τ ′qs
2 + τ ′2q s

3)
×

[A{
(1 + τ ′qs

2 + τ
′2
q s

3)s− (1 + τ ′ts
2)λ21

λ1
}e−λ1ξ+

B{
(1 + τ ′qs

2 + τ
′2
q s

3)s− (1 + τ ′ts
2)λ22

λ2
}e−λ2ξ],

(45)

h̄(ξ, s) =

=− η3
εs(1 + τ ′qs

2 + τ ′2q s
3)

[A{−(1 + τ ′qs
2 + τ

′2
q s

3)s+

(1 + τ ′ts
2)λ21}e−λ1ξ +B{−(1 + τ ′qs

2 + τ
′2
q s

3)s+

(1 + τ ′ts
2)λ22}e−λ2ξ],

(46.1)
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σ̄′(ξ, s) =

=
1

εs(1 + τ ′qs
2 + τ ′2q s

3)

[
A{−(1 + τ ′qs

2 + τ
′2
q s

3)s+

(1 + τ ′ts
2)λ21}e−λ1ξ +B{−(1 + τ ′qs

2 + τ
′2
q s

3)s+

(1 + τ ′ts
2)λ22}e−λ2ξ

]
−
[
Ae−λ1ξ +Be−λ2ξ

]
.

(46.2)

IV. 2. Case II: Magneto-Thermoelastic Dual Phase-lag
Model-I (MTDPL-I)

The case when we apply τ
′2
q = 0 in the above solutions

of case I represent the case of MTDPL-I. Further, applying
τ
′2
q = 0 in equation (44), we get the following equation for

magneto-thermoelastic dual phase-lag model-I (MTDPL-I):

[(1 + τ ′ts
2)λ′4 − (s(1 + τ ′qs

2) + s2(1 + τ ′ts
2)+

εs(1 + τ ′qs
2))λ′2 + s3(1 + τ ′qs

2)] = 0.
(47)

We denote the roots of the above equation (47) as λ
′2
1 and

λ
′2
2 so that the solutions in the context of MTDPL-I can be

obtained from equations (43), (45), (46.1) and (46.2) by re-
placing λ1 and λ2 with λ1′, λ2′, respectively.

V. SHORT-TIME APPROXIMATION

It is clear from equations (44) and (47) that the roots
of both equations are dependent on Laplace transform pa-
rameter s. The closed form analytical solutions of the above
system in the physical domain is therefore a formidable
task. However, phase-lag effects are short-lived; therefore,
we attempt to understand the behavior of waves propagat-
ing through the medium by deriving the solutions applicable
for very small values of time. Hence, in this section we con-
centrate our attention on small-time approximated analytical
solutions for both the cases. For our analysis, we obtain our
results for MTDPL-I and MTDPL-II theories separately.

V. 1. Case-I: Magneto-Thermoelastic Dual Phase-lag
Model-II (MTDPL-II)

Assuming s to be very large, we obtain the solution of
equation (44) for large s as

λ1 =

√
a4
2τ ′t

s+
a5

2
√

2a4τ ′t
+

(
a4

1
2

8
√

2τ ′t
(
−a25
a24

+
4a6
a4

)−

√
a4

2
√

2τ
′3
t

)
1

s
+O(s−2),

(48)

λ2 =

√
a7
2τ ′t

s+
a8

2
√

2a7τ ′t
+

(
a6

1
2

8
√

2τ ′t
(
−a27
a26

+
4a8
a6

)−

√
a6

2
√

2τ
′3
t

)
1

s
+O(s−2),

(49)

where a1 = ((1 + 8ε)τ
′2
q + τ ′t)

2 − 4τ
′2
q τ
′
t , a2 = 2τ

′3
q (1 +

ε)2 − 2τ ′qτ
′
t ;

a3 = (1 + ε)2τ
′2
q + 2τ ′t + 2τ

′2
q (ε− 1), a4 = a

1
2
1 + τ ′t +

τ
′2
q (1 + ε), a5 = (1 + ε)τ ′q + a2

2
√
a1

;

a6 = 1 +
a

1
2
1

8 ( 4a3
a1
− a22

a21
), a7 = a

1
2
1 + τ ′t − τ

′2
q (1 + ε),

a8 = (1 + ε)τ ′q − a2
2
√
a1

. For the sake of convenience, we
write λ1 and λ2 in the following form:

λ1 =
s

v1
+B1 +D1(

1

s
) +O(s−2), (50)

λ2 =
s

v2
+B2 +D2(

1

s
) +O(s−2), (51)

where different notations in the above equations are given by
B1 = a5

2
√

2a4τ ′t
,

1
v1

=
√

a4
2τ ′t

,

D1 =

(
a

1
2
4

8
√

2τ ′t
(
−a25
a24

+ 4a6
a4

)−
√
a4

2
√

2τ
′3
t

)
,

B2 = a8
2
√

2a7τ ′t
,

1
v2

=
√

a7
2τ ′t

,

D2 =

(
a

1
2
6

8
√

2τ ′t
(
−a27
a26

+ 4a8
a6

)−
√
a6

2
√

2τ
′3
t

)
.

V. 1. 1. Solution in Laplace transform domain

Substituting values of A and B and λ1 and λ2 in the ex-
pressions of temperature, displacement and perturbed mag-
netic field given by (equations (43),(45), and (46.1)), we
achieve the solutions in terms of increasing powers of 1

s for
MTDPL-II in the following forms:

z̄′(ξ, s) =
v21v

2
2

η′′τ ′t(v
2
1 − v22)

[(
N1

s
+
N2

s2
)e−(B1+

s
v1

)ξ−

(
N ′1
s

+
N ′2
s2

)e−(B2+
s
v2

)ξ],

(52)

ū′(ξ, s) =
v31v

2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

[M1
1

s2
+M2

1

s3
]e−(B1+

s
v1

)ξ−

v32v
2
1

η′′ετ ′2q τ
′
t(v

2
1 − v22)

[M ′1
1

s2
+M ′2

1

s3
]e−(B2+

s
v2

)ξ,

(53)

h̄(ξ, s) =
η3v

2
1v

2
2

η′′ε(v21 − v22)
{[Q1

1

s
+Q2

1

s2
]e−(B1+

s
v1

)ξ−

[Q′1
1

s
+Q′2

1

s2
]e−(B2+

s
v2

)ξ},
(54)

where all constants used above are given by

N1 =
k1
v22

+k1τ
′
tB

2
2−2v1v2

(v1B2 − v2B1)

(v21 − v22)
(−k2τ ′q+

2k1B2τ
′
t

v2
),
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N2 = (
2k1B2

v2
−k2)−2v1v2

(v1B2 − v2B1)

(v21 − v22)
(
k1
v22

+k1τ
′
tB

2
2),

N ′1 =
k1
v21

+ k1τ
′
tB

2
1 − 2v1v2

(v1B2 − v2B1)

(v21 − v22)
×

(−k2τ ′q +
2k1B1τ

′
t

v1
),

N ′2 = (
2k1B1

v1
−k2)−2v1v2

(v1B2 − v2B1)

(v21 − v22)
(
k1
v21

+k1τ
′
tB

2
1),

M1 = (τ
′2
q −

τ ′t
v21

)(−k2τ
′2
q +

k1τ
′
t

v22
),

M2 = {(B1v1(τ
′2
q −

τ ′t
v21

) + τ ′q − 2B1τ
′
t) + (τ

′2
q −

τ ′t
v21

)(
2v1v2(v1B2 − v2B1)

(v21 − v22)
+

1

τ ′q
},

M ′1 = (τ
′2
q −

τ ′t
v22

)(−k2τ
′2
q +

k1τ
′
t

v21
),

M ′2 = {(B2v2(τ
′2
q −

τ ′t
v22

) + τ ′q − 2B2τ
′
t)+

(τ
′2
q −

τ ′t
v22

)(
2v1v2(v1B2 − v2B1)

(v21 − v22)
+

1

τ ′q
},

Q1 = (−k2τ
′2
q +

k1τ
′
t

v1
)(− 1

τ ′t
+

1

v21τ
′2
q

),

Q′1 = (−k2τ
′2
q +

k1τ
′
t

v2
)(− 1

τ ′t
+

1

v22τ
′2
q

),

Q2 = (−k2τ
′2
q +

k1τ
′
t

v1
)(− 1

τ ′t
+

1

v21τ
′2
q

)+

(−k2τ
′2
q +

k1τ
′
t

v22
)(

2B1

v1τ
′2
q

− 1

τ ′qτ
′
t

)−

2v1v2(v1B2 − v2B1)

(v21 − v22)
)(−k2τ

′2
q +

k1τ
′
t

v1
)(− 1

τ ′t
+

1

v21τ
′2
q

),

Q′2 = (−k2τ
′2
q +

k1τ
′
t

v2
)(− 1

τ ′t
+

1

v22τ
′2
q

)+

(−k2τ
′2
q +

k1τ
′
t

v21
)(

2B2

v2τ
′2
q

− 1

τ ′qτ
′
t

)−

2v1v2(v1B2 − v2B1)

(v21 − v22)
(−k2τ

′2
q +

k1τ
′
t

v2
)(− 1

τ ′t
+

1

v22τ
′2
q

).

From equation (46.2), we further obtain the non dimensional
total stress in the half space in Laplace transform domain as

σ̄′(ξ, s) =
v21v

2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

{[P1
1

s
+ P2

1

s2
]e−(B1+

s
v1

)ξ−

[P ′1
1

s
+ P ′2

1

s2
]e−(B2+

s
v2

)ξ} − v21v
2
2

η′′τ ′t(v
2
1 − v22)

×

[(
N1

s
+
N2

s2
)e−(B1+

s
v1

)ξ − (
N ′1
s

+
N ′2
s2

)e−(B2+
s
v2

)ξ],

(55)

where

P1 = (−τ
′2
q +

τ ′t
v21

)(−k2τ
′2
q +

k1τ
′
t

v22
),

P ′1 = (−τ
′2
q +

τ ′t
v22

)(−k2τ
′2
q +

k1τ
′
t

v21
),

P2 ={−(−τ
′2
q +

τ ′t
v21

)(−k2τ
′2
q +

k1τ
′
t

v22
)(

1

τ ′q
+

2v1v2(v1B2 − v2B1)

(v21 − v22)
) + (−τ

′2
q +

τ ′t
v21

)×

(−k2τ ′q +
2k1B2τ

′
t

v2
) + (−τ

′2
q +

τ ′t
v21

)(−k2τ
′2
q +

k1τ
′
t

v22
)},

P ′2 =

{
−
(
−τ
′2
q +

τ ′t
v22

)
(−k2τ

′2
q +

k1τ
′
t

v21
(

1

τ ′q
+

2v1v2(v1B2 − v2B1)

(v21 − v22)
) + (−τ

′2
q +

τ ′t
v22

)×

(−k2τ ′q +
2k1B1τ

′
t

v1
) + (−τ

′2
q +

τ ′t
v22

)(−k2τ
′2
q +

k1τ
′
t

v21
)

}
.

This completes the solution in Laplace transform domain
for the case of MTDPL-II model.

V. 1. 2. Solution in physical domain

The solutions obtained in the previous section are given
in Laplace transform domain. The solution of different fields
in the physical domain can be derived by inverting the
Laplace transforms involved in the expressions given by
equations [(52)-(55)] for MTDPL-II case. By applying suit-
able formulae of Laplace inversion, we finally obtain the so-
lution in physical domain for the case of MTDPL-II as fol-
lows:

z′(ξ, τ) =
v21v

2
2

η′′(v21 − v22)
[e−B1ξ(N1H(τ − ξ

v1
)+

N2(τ − ξ

v1
)H(τ − ξ

v1
))− e−B2ξ(N ′1H(τ − ξ

v2
)+

N ′2(τ − ξ

v2
)H(τ − ξ

v2
))],

(56)

u′(ξ, τ) =
v31v

2
2

η′′ετ ′2q (v21 − v22)
e−B1ξ[F1(τ − ξ

v1
)×

H(τ − ξ

v1
) + F2(τ − ξ

v1
)2H(τ − ξ

v1
)]−

v31v
2
2

η′′ετ ′2q (v21 − v22)
e−B2ξ[M ′1(τ − ξ

v1
)H(τ − ξ

v1
)+

M ′2(τ − ξ

v1
)2H(τ − ξ

v1
)],

(57)
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h(ξ, τ) =
η3v

2
1v

2
2

η′′ε(v21 − v22)
{[Q1H(τ − ξ

v1
)+

Q2(τ − ξ

v1
)H(τ − ξ

v1
)]e−B1ξ − [Q′1H(τ − ξ

v2
)+

Q′2(τ − ξ

v2
)H(τ − ξ

v2
)]e−B2ξ},

(58)

σ′(ξ, τ) =
v21v

2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

{[P1H(τ − ξ

v1
)+

P2(τ − ξ

v1
)H(τ − ξ

v1
)]e−B1ξ − [P ′1H(τ − ξ

v2
)+

(τ − ξ

v2
)H(τ − ξ

v2
)]e−B2ξ} − v21v

2
2

η′′τ ′t(v
2
1 − v22)

×

{[N1H(τ − ξ

v1
) +N2(τ − ξ

v1
)H(τ − ξ

v1
)]e−B1ξ−

[N ′1H(τ − ξ

v2
) +N ′2(τ − ξ

v2
)H(τ − ξ

v2
)]e−B2ξ}.

(59)

V. 2. Case-II: Magneto-Thermoelastic Dual Phase Lag
Model-I (MTDPL-I)

In a similar way like MTDPL-II, assuming s to be very
large, we obtain the solution of equation (47) for large s as

λ′1 = C2 + s+
B4

s
+O(s−2), (60)

λ′2 = (
G1√
s

+

√
s

c2
) +O(s

−3
2 ), (61)

where the different constants which are independent of s are
given by

B4 = 16(2 + τ ′t) + 8τ
′2
q (1 + 2(1 + ε)2)− 1

2τ ′t
−
ε2τ

′2
q

16τ
′2
t

,

C2 =
ετ ′q
4τt′

;

G1 =
B2τ

′
q

2(2 + ε)τ ′t
,

1

c2
=

√
(2 + ε)τ ′q

2τ ′t
.

V. 2. 1. Solution in Laplace transform domain

From the same pattern as in case V.1.1, applying τ
′2
q =

0 and replacing λ1 with λ′1 and λ2 with λ′2 in equations
[(43),(45) and (46.1)] and in the expressions of A and B we
obtain the following results for MTDPL-I:

z̄′(ξ, s) =
1

η′′τ ′t(−1 + 2G1

c2
)
[
S1

s2
+
S2

s3
]e−(s+C2)ξ−

1

η′′τ ′t(−1 + 2G1

c2
)
[
S′1
s

+
S′2
s2

]e
−(
√

s
c2

+
G1√

s
)ξ
,

(62)

ū′(ξ, s) =
1

η′′τ ′qτ
′
tε

[
L1

s2
+
L2

s3
]e−(C2+s)ξ−

c2
η′′τ ′qτ

′
tε

[
L′1

s
3
2

+
L′2

s
5
2

]e
−(
√

s
c2

+
G1√

s
)ξ
,

(63)

h̄(ξ, s) =
1

η′′τ ′qτ
′
tε(1− 2G1

c2
)
[R1

1

s
+R2

1

s2
]×

e−(C2+s)ξ − 1

η′′τ ′qτ
′
tε(1− 2G1

c2
)
×[

R′1
1

s
+R′2

1

s2

]
e
−(
√

s
c2

+
G1√

s
)ξ
,

(64)

where different notations are given by

S1 = (k1τ
′
t −

k2τ
′
q

c22
),

S2 = (
−2G1k1k2τ

′
qτ
′
t

c2
−

(−2C2+
1

c22
)

(−1+ 2G1
c2

)
(k1τ

′
t −

k2τ
′
q

c22
)),

S′1 = k1τ
′
t ,

S′2 = {(−k2τ ′q + 2C2k1τ
′
t) + k1τ

′
t

(−2C2+
1

c22
)

(−1+ 2G1
c2

)
},

L1 = τ ′t(
k1τ
′
t

c22
− k2τ ′q),

L2 ==
2k1τ

′
tτ
′
qG1

c2
+ (

τ ′t
c2
− τ ′q − C2τ

′
t)(−k2τ ′q +

k1τ
′
t

c22
),

L′1 = (−τ ′q +
τ ′t
c22

)(−k2τ ′q + 2k1C2τ
′
t),

L′2 = k1τ
′
t(2C2 − 1

c2
)(τ ′q −

τ ′t
c22

)− c2G1(τ ′q −
τ ′t
c2

),

R1 = τ ′t(
−k1τ ′t
c22
− k2τ ′t),

R2 = [
2G1k1τ

′2
t

c22
+ (2C2τ

′
t − τ ′q)(−k2τ ′q +

k1τ
′
t

c22
)],

R′1 = k1τ
′
t(−τ ′q +

τ ′t
c22

),

R′2 = [
2G1k1τ

′2
t

+ (−τ ′q +
τ ′t
c22

)(−k2τ ′q + 2k1C2τ
′
t)].

Similarly, we obtain the non dimensional total stress in
Laplace transform domain (from eq. (46.2)) for MTDPL-I
model is given by

σ̄′(ξ, s) =
1

η′′ετ ′qτ
′
t

[{b1
s

+
b′1
s2
}e−(C2+s)ξ − {d

s
+
d′

s2
}×

e
−(G1√

s
+
√

s
c2

)
]− 1

η′′τ ′t(−1 + 2G1

c2
)
[
S1

s2
+

S2

s3
]e−(s+C2)ξ +

1

η′′τ ′t(−1 + 2G1

c2
)
[
S′1
s

+
S′2
s2

]e
−(
√

s
c2

+
G1√

s
)ξ
,

(65)
where

b1 = 2C2τ
′
t(
−2G1

c2
+ (−2C2 +

1

c2
))(−k2τ ′q +

1

c22
),

b′1 = (
−2G1

c2
+ (−2C2 +

1

c2
))(−k2τ ′q +

1

c22
)×

(
1

τ ′q
(−k2τ ′q +

1

c22
) +

2G1

c2
(−2C2 +

1

c2
)),

d = (2C2 −
1

c2
)k1(1 + τ ′t) + 2C2 −

1

c2

τ ′t
c22
×

(−k2τ ′q + 2k1C2τ
′
t) + (−k2τ ′q + 2k1C2τ

′
t)

(
2G1τ

′
t

c2
− τ ′q

)
,



Investigation on Magneto-thermoelastic disturbances Induced by Thermal Shock in an Elastic Half Space 209

d′ = (
1

τ ′q
(−k2τ ′q + 2k1C2τ

′
t) + k1(1 + τ ′t)(−2C2 +

1

c2
))×

(
τ ′t
c22

) + (
2G1τ

′
t

c2
− τ ′q)(2C2 −

1

c22
)(−k2τ ′q + 2k1C2τ

′
t).

This completes the solution in Laplace transform domain
for the case of MTDPL-I model.

V. 2. 2. Solution in physical domain

In a similar way like the case of MTDPL-II, the solution
of different fields in physical domain for this case can be
derived by inverting the Laplace transform involved in the
expressions given by equations [(62)-(65)]. By using suit-
able formulae of Laplace inversion, we obtain the solution
in physical domain for the present case as follows:

z′(ξ, τ) =
1

η′′τ ′t(−1 + 2G1

c2
)
×

e−C2ξ[S1(τ − ξ)H(τ − ξ) + S2(τ − ξ)2H(τ − ξ)]−
1

η′′τ ′t(−1 + 2G1

c2
)
[S′1Erfc(

ξ

2c2
√
τ

)+

S′24τ i2Erfc(
ξ

2c2
√
τ

)],

(66)

u′(ξ, τ) =
1

η′′τ ′qτ
′
tε
e−C2ξ[L1(τ − ξ)H(τ − ξ)+

L2(τ − ξ)2H(τ − ξ)]− c2
η′′τ ′qτ

′
tε
×[

F1(4τ)
1
2 i Erfc(

ξ

2c2
√
τ

)+

F2(4τ)
3
2 i3Erfc(

ξ

2c2
√
τ

)
]
,

(67)

h(ξ, τ) =
1

η′′τ ′qτ
′
tε(1− 2G1

c2
)
[R1H(τ − ξ) +R2(τ − ξ)×

H(τ − ξ)]e−C2ξ − 1

η′′τ ′qτ
′
tε(1− 2G1

c2
)
[R′1Erfc(

ξ

2c2
√
τ

)+

R′24τ i2Erfc(
ξ

2c2
√
τ

)],

(68)

σ′(ξ, τ) =
1

η′′ετ ′qτ
′
t

[e−C2ξ{b1H(τ − ξ) + b′1(τ − ξ)×

H(τ − ξ)} − {d Erfc( ξ

2c2
√
τ

)+

d′4τ i2Erfc(
ξ

2c2
√
τ

)}]− 1

η′′ετ ′t(−1 + 2G1

c2
)
e−C2ξ×

[S1(τ − ξ)H(τ − ξ) + S2(τ − ξ)2H(τ − ξ)]+
1

η′′ετ ′t(−1 + 2G1

c2
)
[S′1 Erfc(

ξ

2c2
√
τ

)+

S′24τ i2Erfc(
ξ

2c2
√
τ

)],

(69)

where inErfc(z) =
∫∞
z
in−1erf(x)dx, i0Erfc(z) =

Erfc(z), i−1Erfc(z) = 2√
π
e−z

2

.

VI. ANALYSIS OF ANALYTICAL RESULTS

The solution obtained in sections V.1.2 and V.2.2 for dif-
ferent fields in the physical domain indicate some significant
information predicted by two different models of dual phase-
lags. From the short time approximated solutions given by
equations (56)-(59) in the context of MTDPL-II model and
the solutions given by (66)-(69) in the case of MTDPL-I we
can observe that the solution of each field consists of two
parts under both the theories of magneto-thermoelasticity
(MTDPL-I and MTDPL-II); one part of solution is modi-
fied elastic and the other one is modified thermal in nature.
In the case of the MTDPL-I model, the terms containing
H(τ − ξ) represent modified elastic wave propagating with
speed unity. Hence, in this case we conclude that the non
dimensional speed of elastic wave is finite and equal to 1,
which imply that non dimensional speed of elastic wave is
not effected by any of the phase-lag parameters τ ′q and τ ′t
and it is also independent from the effect of magnetic field.
We further note that the modified elastic wave in this case is
propagating with an attenuation andC2 is the attenuating co-
efficient of this wave. From the expression of C2 it is evident
that the attenuation coefficient is clearly dependent on phase-
lag parameters τ ′q and τ ′t in such a manner that on increasing
τ ′q , attenuation coefficient increases and when we increase
τ ′t , the value of attenuation coefficient decreases. Attenua-
tion coefficient is also dependent on the magnetic field (see
eq. (60)). It is observed that the value of attenuation coef-
ficient decreases when magnetic field increases. The other
part of solutions of each field in case of the MTDPL-I the-
ory is not wave type, but a diffusive type and implies that the
speed of thermal wave is not finite in this case. The solution
is, however, influenced by the presence of the magnetic field.

The solution under the MTDPL-II model is completely
different in nature. In this case, solution of each field like dis-
placement, temperature, total stress consists of two different
waves propagating with finite speeds and attenuating with
distance. Here, v1 and v2 are the finite speeds of the modi-
fied elastic and modified thermal waves, respectively (since
v1 < v2). Accordingly, in the solutions of temperature, dis-
placement and stress under MTDPL-II, the terms which con-
tain H(τ − ξ

v1
), represent the contribution of elastic mode

wave in the neighborhood of the wavefront ξ = v1τ ; simi-
larly the terms containing H(τ − ξ

v2
) represent the incorpo-

ration of thermal mode wave in the neighborhood of wave-
front ξ = v2τ . The expressions for the speeds denote that
both the speeds are influenced by the two phase-lags τ ′q and
τ ′t and both are effected by the magnetic field, too. Further-
more, B1 and B2 represent attenuation coefficients for the
modified elastic wave and modified thermal wave, respec-
tively. B1 and B2 both are dependent on two phase-lags and
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also both are dependent on magneto-thermoelastic coupling
constant ε. This implies that the speed and attenuation of
both the waves are influenced by the magnetic field under
MTDPL-II model.

Furthermore, we observe in case of MTDPL-II that the
physical fields such as temperature, stress and perturbed
magnetic field have discontinuities with finite jumps at both
the elastic and thermal wave fronts but displacement is con-
tinuous at both the wavefronts (see equations (56)-(59)).

However, in the context of the MTDPL-I model, we find
different results. We observe here that only stress and per-
turbed magnetic field are discontinuous with finite jumps at
elastic wavefront but temperature and displacement are free
from any discontinuities (see equations (66)-(69)). This re-
sult is also in contrast with the results of [45] in which Lord
Shulman model (LS model) has been used and in that model
we see that temperature, stress and perturbed magnetic field
suffer from discontinuities with finite jumps at both the elas-
tic and thermal wavefronts and only displacement is free
from any discontinuties. This indicates a distinct feature of
dual-phase-lag model-I.

The finite jump discontinuities at the elastic wave front in
MTDPL-I model and the finite jump discontinuities at elas-
tic and thermal wave fronts in case of the MTDPL-II model
for different fields are obtained as follows:

Finite jumps under the MTDPL-II model:

[z′+ − z′−]ξ=v1τ =
v21v

2
2

η′′(v21 − v22)
[N1e

−B1v1τ ],

[z′+ − z′−]ξ=v2τ =
−v21v22

η′′(v21 − v22)
[N2e

−B2v2τ ],

[h+ − h−]ξ=v1τ =
η3v

2
1v

2
2

η′′ε(v21 − v22)
{[Q1e

−B1v1τ ],

[h+ − h−]ξ=v2τ =
−η3v21v22

η′′ε(v21 − v22)
{[Q′1e−B2v2τ ],

[σ+ − σ
′−]ξ=v1τ =

v21v
2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

[P1e
−B1v1τ ]−

v21v
2
2

η′′τ ′t(v
2
1 − v22)

{[N1e
−B1v1τ ],

[σ+ − σ
′−]ξ=v2τ =− [

v21v
2
2

η′′ετ ′2q τ
′
t(v

2
1 − v22)

[P ′1e
−B2v2τ ]−

v21v
2
2

η′′τ ′t(v
2
1 − v22)

[N ′1e
−B2v2τ ]],

Finite jumps in the context of the MTDPL-I model:

[σ+ − σ
′−]ξ=τ =

1

β′′ετ ′qτ
′
q

[b1e
−C2τ ]−

1

η′′ετ ′t(−1 + 2G1

c2
)
[S1e

−C2τ ],

[h+ − h−]ξ=τ =
1

η′′τ ′qτ
′
tε(1− 2G1

c2
)
[R1e

−C2τ ].

VII. NUMERICAL RESULTS AND DISCUSSION

In the previous section, we made an attempt to derive
short-time approximated analytical results predicted by two
models MTDPL-I and MTDPL-II that represent the effects
of magneto-thermo-elastic interaction and highlighted the
effects of phase-lag parameters and presence of magnetic
field. However, in the present section we aim to illustrate
the problem and instead of short-time approximated solu-
tions we study the behaviour of numerical values of the
physical fields like temperature, displacement and stress and
perturbed magnetic field with distance under two different
models: MTDPL-I and MTDPL-II. Here, we employ the
numerical method proposed by Bellmen et al. [47] for the
inversion of Laplace transforms, and compute the numer-
ical values of these physical quantities by directly solving
equations (43)-(47) numerically. We have used software
Mathematica for our computational work. The results are
plotted for MTDPL-I and MTDPL-II models separately to
show the behaviour of the fields at three non-dimensional
times 1.21, 0.69 and 0.13. In order to observe the effects
of magnetic field, we also plot the corresponding results
under DPL-I and DPL-II models by assuming the mag-
netic parameters in our solution to be zero. We have cho-
sen the copper material for our numerical computation. We
have used the following physical data for the copper ma-
terial: k = 1.14cm2/ s, T0 = 20oC, H3 = 104 oersted;
λ = 1.387 × 1012 dyn/cm2, µ = 0.448 × 1012 dyn/cm2,
ρ = 8.930g/ cm3; µ0 = 1, αt = (16.5 × 10−6)oC−1

We further assume the following dimensionless values
σ′0 = σ0

γT0
= 1, θ′0 = θ0

T0
= 1, τ ′q = 0.2, τ ′t = 0.15.

BEHAVIOUR OF TEMPERATURE UNDER MTDPL-I
AND MTDPL-II

It is clear from Figs 1, 2 and 3 that the results of temper-
ature field under DPL-I and MTDPL-I are almost the same.
Similarly, the results of DPL-II and MTDPL-II are also in
complete agreement. However, the results under DPL-I and
MDPL-I are significantly different from the results under
DPL-II and MTDPL-II models. This implies that although
the effect of magnetic field is not prominent in the behaviour
of temperature field under MTDPL-I and MTDPL-II mo-
dels, there are significant differences among the results of
two different theories (MTDPL-I and MTDPL-II). This dif-
ference decreases as the time decreases. Although, the be-
haviour of temperature is in decreasing trend in all figures
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Fig. 1. Variation of temperature z′ with dis-
tance ξ, time = 1.21

Fig. 2. Variation of temperature z′ with dis-
tance ξ, time = 0.69

Fig. 3. Variation of temperature z′ with dis-
tance ξ, time = 0.13

Fig. 4. Variation of displacement u′ with
distance ξ, time = 1.21

Fig. 5. Variation of displacement u′ with
distance ξ, time = 0.69

Fig. 6. Variation of displacement u′ with
distance ξ, time = 0.13

Fig. 7. Variation of stress σ′ with distance ξ,
time = 1.21

Fig. 8. Variation of stress σ′ with distance ξ,
time = 0.69

Fig. 9. Variation of stress σ′ with distance ξ,
time = 0.13

but we observe that the non-dimensional temperature field
achieves a negative value before approaching to zero value
in MTDPL-II but it is always positive in MTDPL-I case.

BEHAVIOUR OF DISPLACEMENT UNDER MTDPL-
I AND MTDPL-II

Figs. 4, 5 and 6 represent the nature of displacement field
at various times τ = 1.21 and 0.69 and 0.13 for MTDPL-I

and MTDPL-II models. Here, the effect of magnetic field is
prominent in both cases (MTDPL-I and MTDPL-II) at all
three times, although its effect gradually decreases as the
distance from boundary increases. The consequence of the
presence of magnetic field is in such a manner that the value
of displacement becomes lower in the presence of magnetic
field at higher time but this behaviour becomes opposite at
smaller time (i.e., at τ = 0.69 and τ = 0.13). Here the value
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Fig. 10. Variation of perturbed magnetic
field h with distance ξ, time = 1.21

Fig. 11. Variation of perturbed magnetic
field h with distance ξ, time = 0.69

Fig. 12. Variation of perturbed magnetic
field h with distance ξ, time = 0.13

of displacement becomes greater when we consider the pres-
ence of magnetic field in the medium. This fact is evident
for both theories MTDPL-I and MTDPL-II. Furthermore,
the maximum numerical value of displacement is greater
in the MTDPL-II model in comparison to the results under
MTDPL-I model and there is a prominent difference in pre-
dictions by MTDPL-I and MTDPL-II models.

BEHAVIOUR OF STRESS UNDER MTDPL-I AND
MTDPL-II

Figs. 7, 8 and 9 exhibit the nature of stress field at differ-
ent times 1.21 and 0.69 and 0.13 predicted by two models.
It is noted that the influence of magnetic field is signifi-
cant on the nature of stress field in the contexts of both the
models. In the absence of magnetic field, when the distance
ξ = 0, the value of stress is 1 at all three times in cases
of MTDPL-I and MTDPL-II models, but in the presence of
magnetic field the value of stress becomes greater than 1
under both the theories. Furthermore, we also observe that
the minimum value of stress in case of MTDPL-I is greater
than the minimum value of stress in case of MTDPL-II at
higher times, i.e., at τ =1.21 and τ = 0.69 (see Figs. 7 and
8). However, Fig. 9 indicates that at very small time, the
minimum value of stress in case of MTDPL-I is less than
the minimum value of stress under the MTDPL-II model.
Furthermore, the difference between two models decreases
as time decreases.

BEHAVIOUR OF PERTURBED MAGNETIC FIELD
UNDER MTDPL-I AND MTDPL-II

Figs. 10, 11 and 12 display the nature of perturbed mag-
netic field at different times 1.21 and 0.69 and 0.13 for two
models. Here the difference between the predictions by two
models is significant. The minimum value of perturbed mag-
netic field in MTDPL-II is lower than the minimum value
of perturbed magnetic field for MTDPL-I. However, the
maximum value of perturbed magnetic field in MTDPL-II is

greater than the maximum value of perturbed magnetic field
for MTDPL-I.

VIII. CONCLUSION

In the present work we employed the dual phase-lag
magneto-thermoelasticity theory and studied a problem of
elastic half space with finite conductivity permeated by
a uniform magnetic field. The boundary of the half space is
subjected to a normal load and a thermal shock that originate
magneto-thermoelastic waves inside the medium.

We have presented a thorough analysis of the effects of
magnetic field on wave propagation, and to investigate the
nature of distributions of different fields like temperature,
displacement, stress and perturbed magnetic field in the me-
dia in contexts of two models of magneto-thermoelasticity
with dual phase-lags, namely MTDPL-I model and MTDPL-
II model. The numerical values of distributions of the phys-
ical fields for a suitable material have also been computed
and displayed in graphical forms.

Significant differences among the analytical results pre-
dicted by two models MTDPL-I and MTDPL-II are ob-
served. In the case of MTDPL-I we found that a solution
of each field consists of two parts. The first one is a wave
part that is identified as a modified elastic wave and the sec-
ond part is not wave type, but of diffusive type. The non-
dimensional speed of elastic wave is found to be finite and
equal to 1, i.e. the dimensionless speed of elastic wave is not
effected by any of the phase-lag parameters τ ′q and τ ′t and it
is also independent of the effect of the magnetic field. But the
attenuation coefficient of modified elastic wave is dependent
on phase-lag parameters τ ′q and τ ′t . However, we note that
the solution of each field variable in case of the MTDPL-II
model consists of two coupled waves: modified elastic and
modified thermal wave. The non-dimensional speed of both
the waves is finite and dependent on phase-lag parameters
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τ ′q and τ ′t and magnetic field, too. Furthermore, we observe
that temperature, stress and perturbed magnetic fields have
discontinuities with finite jumps at both the elastic and ther-
mal wave fronts and displacement is observed to be contin-
uous in nature at both the wavefronts in the context of the
MTDPL-II model. However, we obtain different results un-
der the MTDPL-I model. We observe here that in this case,
only stress and perturbed magnetic field show discontinuities
having finite jumps at elastic wave front but the temperature
and displacement are free from any discontinuities.

We also observe significant differences in the numerical
results predicted by two different models. It is noted that the
non dimensional temperature achieves a negative value for
a region before approaching to zero value in MTDPL-II but
it is always positive under MTDPL-I case. While observ-
ing the nature of stress, it is found that the minimum value
of stress in MTDPL-I is greater than the minimum value of
stress in MTDPL-II at higher time, although during initial
time of interaction the minimum value of stress in MTDPL-
I is lower than the minimum value of stress in MTDPL-II.
Furthermore, the maximum numerical value of displacement
is greater in case of MTDPL-II as compared to the case of
MTDPL-I.

The magnetic field is not prominently effective in the dis-
tribution of temperature in the contexts of both the MTDPL-I
and MTDPL-II models, however, the stress field and dis-
placement field are effected by the presence of magnetic field
under both models.
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