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Abstract: The behaviour of polymer solutions in highly confined geometries remains a subject of interest in rheology and
fluid dynamics. In this paper, we investigate how well the classical hydrodynamic description based on the Navier-Stokes
equations, Fourier’s Law and Fick’s Law describes the flow of a highly confined polymer solution. In particular, we examine
the effects of depletion of polymer concentration at the wall-fluid interface and strain rate coupling to the heat flux. We present
data from molecular dynamics simulations of a model polymer solution in explicit solvent undergoing planar Poiseuille flow
for channel widths ranging from around 10 solvent atomic diameters to around 80 solvent atomic diameters. We find that the
classical continuum approach works very well for channels wider than 20 solvent atomic diameters. For narrower channels,
we observe deviations in the velocity, temperature and concentration profiles due to density oscillations near the walls, the
polymer depletion effect, and possible weak strain rate coupling. For the narrowest channel, the wall effects extend to the
centre of the channel but the underlying profiles are quite well described by the classical continuum picture. By allowing
very long times of order 104 reduced time units for relaxation to the steady state and averaging over very long runs of order
105 reduced time units and 16 independent ensemble members, we are able to conclude that previously reported deviations
from the classical continuum predictions (I.K. Snook, P.J. Daivis, T. Kairn, J. Physics-Condensed Matter 20, 404211 (2008))
were probably the result of insufficient equilibration time. Our results are also sufficiently accurate and precise to verify the
expected quartic temperature profile predicted by classical hydrodynamic theory, with only a very small deviation which we
can attribute to nonlinear coupling of the heat flux vector to the strain rate.
Key words: polymer, Poiseuille flow, velocity, temperature, channel, molecular dynamics

I. INTRODUCTION

Understanding the movement of polymer solutions
through a channel is important to a range of processes like
field flow fractionation, lubrication and injection moulding,
as well as biological processes such as the flow of proteins
and DNA in micro and nanofluidic devices [1].

Classically, confined fluids have been modelled using
the Navier-Stokes equations and Fourier’s law, which allows

the prediction of velocity and temperature fields. The valid-
ity of this approach is widely recognised throughout all of
fluid physics. However, previous molecular dynamics (MD)
simulation results have suggested that the velocity and tem-
perature profiles for highly confined polymer systems cannot
adequately be described using the standard continuum ap-
proach [2]. Snook et al. [3] showed that polymer solutions
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experiencing planar Poiseuille flow in narrow channels exhib-
ited velocity profiles that deviated from the prediction near
the walls. For sufficiently narrow channels, these deviations
may become highly significant and classical predictions of
the velocity and temperature profiles will then be seriously
inaccurate. Nanofluidic devices for the processing of macro-
molecular solutions, including protein and DNA solutions,
can only be rationally designed if the flow can be modelled
accurately, so these discrepancies need to be resolved.

Nonequilibrium molecular dynamics (NEMD) simula-
tions using a sinusoidal transverse force (STF) by Baranyai
et al. [4] and Ayton et al. [5] demonstrated evidence of heat
flux in the absence of temperature gradients. MD simulations
of planar Poiseuille flow by Todd and Evans [6] also showed
that, even for a simple single component fluid, the tempera-
ture profile exhibited a significant quadratic deviation from
the quartic profile predicted from Fourier’s law. To explain
this effect these studies postulated that the heat flux couples to
the strain rate in the system, producing a quadratic deviation
in the temperature profile.

Hess and Mansour [7] derived the strain rate coupling
from the kinetic theory of gases and showed that it can ex-
plain deviations from classical temperature profiles in data
obtained from direct simulation Monte Carlo. It is important
to note, however, that the strain rate coupled contribution, in
Hess’ study, has the opposite sign to that seen in the work
mentioned previously.

Travis and Gubbins [8] found no evidence of strain rate
coupling in their molecular dynamics simulations of simple
fluids. While they asserted that the existence of strain rate
coupling is “unquestionable” they were sceptical of the mag-
nitude of strain rate coupling found in the work by Todd and
Evans [6].

Another current question in studies of polymer flow is
whether or not the well known ‘depletion effect’ is depen-
dent on the flow rate, or body force, applied to the system.
Previous research by Kairn [2] could not demonstrate any
dependence of the depletion on the body force. However, Ma
and Graham [9] theoretically predicted this effect in planar
Couette and Poiseuille flow of dilute polymer solutions.

In this paper, we compute the density, concentration, ve-
locity and temperature profiles across the channel for a planar
Poiseuille flow system simulated using in-house NEMD code.
By fitting the classical continuum predictions to the velocity
and temperature profiles we show that the classical treatment
gives a good description for weak external fields and wide
channels. From these fits, we extract effective viscosity and
thermal conductivity coefficients. We then compare these fit-
ted transport coefficients with linear transport coefficients
obtained from homogeneous equilibrium simulations. The
viscosity is also compared with the value obtained from ho-
mogeneous nonequilibrium simulations using the SLLOD
algorithm.

This is the first time, to the authors knowledge, that data
of such accuracy has been presented for polymer solutions,

allowing us to comment on the subtle effects that exist in this
system.

II. METHOD AND THEORY

For this study we used in-house molecular dynamics code
that has been described previously [10]. Results for bulk
polymer melt simulations performed by this program have
previously shown good agreement with research in the liter-
ature [11, 12]. This program explicitly solves the equations
of motion for every particle in the system, including solvent
particles, using Newtonian equations of motion.

All polymer beads and solvent atoms in this work inter-
act with the Weeks-Chandler-Andersen (WCA) potential [13]
which is a truncated and shifted version of the classic Lennard-
Jones (LJ) pair potential [14], given by

ΦWCA(r) =

{
ΦLJ(r) + ε if r < 21/6σ
0 if r ≥ 21/6σ

, (1)

where,

ΦLJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, (2)

ε is the potential energy well depth, σ is the pairwise sep-
aration at which the LJ potential is zero, and r is the pair
separation distance. At the truncation point of the WCA po-
tential, the force and the energy are both equal to zero. This
means that the WCA potential is particularly convenient be-
cause it is short ranged and therefore computationally cheap
and both the force and the energy go smoothly to zero at the
truncation point.

All polymer beads and solvent atoms have the same mass
m. Subsequently, all simulation parameters are given in terms
of reduced units based on the characteristic length scale σ,
energy scale ε and mass scale m of this molecular model.
The polymers are modelled as 20-site freely jointed chains
with each site being identical to a solvent atom. This model
is simple enough to be computationally convenient and yet
it includes the essential physics (excluded volume and non-
crossability of the chains) for a realistic model of polymer
dynamics [10, 11]. The equations of motion for the various
systems studied here are all solved using a 5th order Gear-
Predictor-Corrector integration scheme [16].

In the subsections that follow, we discuss the methods
used to obtain our results. Subsection A describes the sim-
ulations to determine the density, velocity, temperature and
concentration profiles for the highly confined polymer solu-
tions undergoing planar Poiseuille flow. Subsection B briefly
summarises the well-established predictions of classical hy-
drodynamics used to fit the velocity and temperature profiles
for planar Poiseuille flow. In subsection C we discuss the
equilibrium simulation methods based on the Green-Kubo
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Tab. 1. Overview of system properties. Nα is the number of molecules of species α. ρ refers to the nominal input density of the simulation.
For walled systems T is the wall thermostat temperature, for homogeneous systems it is the fluid thermostat temperature. c1 is the spatially
averaged value of the polymer mass fraction. Lβ refers to the undeformed length of the total simulation box (including walls) where

β = x, y, z. Shown in bold is the characteristic property for the associated system

System ID N1 N2 ρ T c1 Lx Ly Lz

GK 80 6400 0.841 1.0163 0.2 22.82 22.82 18.26
S0 0 8000 0.841 1.013 0 21.18 21.18 21.18
S5 20 7600 0.841 1.013 0.05 21.18 21.18 21.18
S10 40 7200 0.841 1.013 0.1 21.18 21.18 21.18
S15 60 6800 0.841 1.013 0.15 21.18 21.18 21.18
S21 82 6360 0.841 1.013 0.21 21.18 21.18 21.18
S25 100 6000 0.841 1.013 0.25 21.18 21.18 21.18
P83 84 6720 0.84 1 0.2 20.98 86.66 5.74
P23 24 1920 0.84 1 0.2 20.98 27.34 5.74
P11 12 960 0.84 1 0.2 20.98 15.47 5.74
HP1† 83 6720 0.84 1 0.1981 21.5 21.5 21.5

HP2† 84 6720 0.84 1 0.2 21.5 21.5 21.5

HP3† 85 6720 0.84 1 0.2019 21.5 21.5 21.5

HS1† 84 6700 0.84 1 0.1995 21.5 21.5 21.5

HS2† 84 6720 0.84 1 0.2 21.5 21.5 21.5

HS3† 84 6740 0.84 1 0.2005 21.5 21.5 21.5

† Constant pressure simulation, with P = 7.39. ρ and Lβ are average values.

formulae used to determine the viscosity, diffusion coeffi-
cient, thermal diffusion coefficient and thermal conductiv-
ity in multicomponent solutions. Because the Green-Kubo
method is based on linear response theory it is guaranteed
to yield the linear transport coefficients. However, it must be
applied carefully to ensure that fully converged integrals are
used to evaluate the transport coefficients. In this subsection
we also discuss computation of the partial enthalpies, which
are also required. Finally, in subsection D, we describe an
alternative method to obtain the polymer solution viscosity
from homogeneous nonequilibrium molecular dynamics sim-
ulations using the SLLOD algorithm. Evaluation of the linear
(Newtonian) viscosity with this method requires extrapolation
of the shear rate dependent viscosity to zero shear rate. The
results of these simulations serve as an important consistency
check on the Green-Kubo and planar Poiseuille flow values
of the viscosity.

An overview of simulation parameters for all systems
studied here can be seen in Tab. 1. In the system labels GK
refers to the Green-Kubo system, S to the SLLOD systems, P
to the Poiseuille flow systems, HP to the simulations to deter-
mine the polymer partial enthalpies, and HS to the simulations
to determine the solvent partial enthalpies. The numbers refer
to the polymer concentration percentage for the S systems
and to the approximate fluid accessible channel width for the
P systems. The numbers on HS and HP are simply sequential.
Note that the index ‘1’ for every property listed in Tab. 1 and
throughout the rest of this work, refers to the polymer species,
while ‘2’ refers to the solvent species.

II. 1. Planar Poiseuille Flow
We perform simulations on three different highly con-

fined systems, subjected to an external body force in order to
generate Poiseuille flow. The external body force produces
Poiseuille flow without the need for a pressure gradient. The
only difference between the two is that in the body force
method, all of the fluid the properties, including the pressure,
are conveniently uniform in the flow direction because the
fluid is effectively in free fall. All three systems consist of a
polymer solution (20% by mass concentration) confined in
the y direction by two atomic walls. Each system is created
with a different separation between the two walls, allowing
us to investigate the effects of different levels of confinement.

In each system both walls consist of 228 particles each
arranged in 2 hexagonal-close-packed layers. We have found
that two layers for each wall is sufficient to provide ade-
quate temperature control and prevent fluid penetrations of
the walls. The nominal input mass density of the fluid is
ρ = 0.84. Because the reduced mass of each polymer site and
solvent atom in the system is 1, the mass density is equal to
the number density. Periodic boundary conditions (PBCs) are
used to extend the simulation box in the x (flow) direction and
z directions to provide an effectively infinite planar channel
for the solution to flow in. For a visualisation of this system,
see Fig. 1.

The equations of motion for the fluid are given by:

ṙiα =
piα
m

, (3)
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and

ṗiα = FWCA
iα + FCiα +miαF

e. (4)

In these equations the subscript α refers to the αth particle
on the ith molecule, ṙ is the velocity and p is the momentum,
both in the laboratory frame and m is the polymer site or sol-
vent atom mass. The rate of change in momentum, ṗ, is given
by an appropriate sum of forces on the particle. FC is the
sum of constraint-type forces on the particle and, as such, is
zero for solvent atoms. mFe is the gravity-like external body
force applied to all particles in the system to induce Poiseuille
flow, and FWCA is the sum of WCA pair-interaction forces
on the particle (see Eqn. 1).

Polymer bond lengths are rigidly constrained by applying
a force in Eqn. 4, FC , that satisfies the constraint condition,
|rij | = |rj − ri| = σ = 1.

We note that, given our potential and equations of mo-
tion, the polymer sites are identical to solvent sites, with the
exception that the polymer sites experience intra-molecular
constraint forces while the solvent sites do not.

The equations of motion for the walls are modified to
include a Gaussian thermostat and a constraint on the centre
of mass of the wall layers to prevent them from moving;

ṙi =
pi
m
, (5)

and

ṗi = FWCA
i + FWi − αβpi + λβŷ, (6)

where FWi = −k(ri− reqi ) is a harmonic force used to tether
the wall particles to their equilibrium positions, reqi , with
k = 57.15. This value of k has previously been shown to
provide good thermal coupling to the fluid [2, 3]. αβ is a
Gaussian isokinetic thermostat applied to each wall layer, and
λβ is a constraint applied to each wall layer to keep the y
position of the βth layer’s centre-of-mass constrained to its
initial value.

Finally, the equations of motion are solved using a 5th
order Gear predictor-corrector integrator with a reduced
timestep, δt, of 0.001.

We drive the polymer solution to flow by introducing a
gravity-like external force field in the x-direction, F ex , into
the equation of motion for the momentum given by Eqn. 4.
For this study we have used different values of F ex for each
system in order to achieve approximately the same magnitude
of velocity at the channel centre.

We equilibrated these systems for over 107 time steps
(104 reduced time units) each. Once these systems have
reached a steady state we compute histograms of the den-
sity, concentration, velocity and temperature profiles across
the channel and ensemble average over 16 independent sys-
tems each sampled every 20 steps for an accumulation period
greater than 108 time steps (105 reduced time units) in each
case. These profiles were computed using 400 bins across the
channel, giving bin resolutions ranging from approximately
0.2 atomic diameters to approximately 0.04 atomic diameters
depending on the channel width.

To retrieve the temperature profile we compute the
molecular centre of mass total kinetic energy density,
K = (2V )−1

∑Nmol

i pi · pi/mi, the momentum density in
the direction of flow, Jx, which is the x-component of the
molecular centre of mass momentum density vector given by
J = V −1

∑Nmol

i mivi, the molecular number of degrees
of freedom density, f = 3V −1Nmol, and the mass density,
ρ = V −1

∑Nmol

i mi. Note that mi is the mass of the ith
molecule, mi =

∑
αmiα, which for atomic species is the

same as the mass of the atom. We then post-process the data
to compute the temperature from the thermal kinetic energy,
using the following equation on a per-bin basis:

kBTk =
2Kk − J2

x,k/ρk

fk
(7)

where the subscript k is the corresponding bin across the chan-
nel. We use this method instead of calculating the temperature

Fig. 1. Snapshot of simulated system, Ly ≈ 86, W ≈ 83. Solvent atoms are shown as a grey continuum, polymer atoms are shown between
the walls in green, while the walls to either side are shown in blue. In this image, the x-direction is vertical, the y-direction is oriented

horizontally, and the z-direction on the axis that is into the page
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instantaneously using a fitted equation for the streaming ve-
locity. This ensures that we make no assumptions about the
functional form of the velocity profile, and that we can ap-
proach the ensemble average limit by simply increasing the
accumulation time.

We present the results for molecular centre-of-mass ve-
locities and temperatures in this work. While atomic versions
of this temperature calculation can be constructed, the atomic
version of the momentum density does not adequately ac-
count for the streaming angular momentum of the sites in the
system. To compensate for this one must be able to calculate
the correct streaming angular momentum densities in a bin
and subtract those components from the total kinetic energy
density. The correct determination of both the number and
localisation of the atomic degrees of freedom in a constrained
molecule is also non-trivial. Calculating temperatures in the
molecular representation circumvents these concerns.

II. 2. Continuum Predictions for Planar Poiseuille Flow
From continuum mechanics we can obtain equations for

the velocity and temperature by integrating appropriately sim-
plified balance equations.

Assuming constant viscosity and density throughout the
fluid, the continuum prediction for the velocity profile across
the channel in the steady state is given by:

vx(y) = −ρF
e
x

2η0

(
y2 − W 2

4

)
+ vw, (8)

where ρ is the nominal mass density of the fluid, F ex is the
external field in the x-direction, η0 is the zero strain viscosity,
y is the position in the channel in the y-direction, with the
centre of the channel located at y = 0, W is the width of the
channel accessible to the fluid and vw is the velocity at the
walls.

Neglecting the effects of thermal diffusion (which are
often assumed to be small or negligible) and assuming that
the thermal conductivity is constant the continuum prediction
for the temperature profile in the steady state is given by,

T (y) = −ρ
2(F ex)2

12ηλ

(
y4 − W 4

16

)
+ Tw, (9)

where λ is the fluid thermal conductivity and Tw is the tem-
perature at the walls.

These equations assume that the centre of the channel is
at y = 0. They do not account for shear rate, concentration or
temperature dependence of the transport coefficients or the
density. Therefore these effects must be small for them to be
valid.

For systems P83, P23, and P11 the accessible channel
widths are W = 82.5± 0.1, 23.15± 0.04 and 11.33± 0.02
respectively, determined by the distance between the first and
last bins to have significant non-zero values of the density
(greater than 10% of the bulk value).

To calculate the velocity and temperature profiles we
must obtain values for the viscosity and thermal conductivity.
These can be calculated using Green-Kubo relations. The
viscosity can also be computed by direct calculation and
extrapolation to zero strain rate in homogeneous NEMD sim-
ulations. In principle, the thermal conductivity can also be
computed by NEMD methods using the Evans-Cummings
heat flow algorithm and the colour diffusion algorithm [15],
but they have not been implemented in this work.

II. 3. Transport Coefficients From Equilibrium
To calculate the zero strain rate viscosity the following

Green-Kubo [17, 18] relation can be used,

η0 =

∫ ∞
0

G(τ)dτ. (10)

where [19],

G(τ) =
V

10kBT
〈Pts(0) : Pts(τ)〉, (11)

V is the volume of the simulation box, kB is Boltzmann’s
constant, T is the temperature of the fluid, and Pts is the
traceless symmetric part of the atomic pressure tensor.

For multicomponent systems the Green-Kubo relations
do not permit calculation of the thermal conductivity directly.
Instead we must compute the following phenomenological
coefficients,

Lqq =
V

3kB

∫ ∞
0

〈Jq(0) · Jq(τ)〉dτ, (12)

L11 =
V

3kB

∫ ∞
0

〈J1(0) · J1(τ)〉dτ, (13)

and

L1q =
V

3kB

∫ ∞
0

〈J1(0) · Jq(τ)〉dτ, (14)

where J1 is the instantaneous mass flux vector of species 1
and Jq is the instantaneous unprimed heat flux vector.

These phenomenological coefficients can be related to
transport coefficients through the following relations [20];

D′ =
L1q

ρc1c2T 2
, (15)

which is the thermal diffusion coefficient and,

Dm =
L11

ρc2T

[
∂µ1

∂c1

]
T,P

, (16)

which is the mutual diffusion coefficient. Here, µα is the
chemical potential of species α, cα is the mass fraction of
species α, subsequently referred to as ‘concentration’.
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For the thermal conductivity we must used the primed
phenomenological coefficient [20], L′qq , given by;

L′qq = Lqq − 2L1q(h1 − h2) + L11(h1 − h2)2, (17)

where hα is the partial enthalpy of species α. This primed
coefficient takes into account the transport of heat due to
thermal diffusive fluxes and mass fluxes and is related to the
corresponding transport coefficient, the thermal conductivity,
by,

λ =
L′qq
T 2

. (18)

II. 4. Viscosity from Homogeneous Shear
We can also calculate the viscosity from simulations of ho-

mogeneous systems experiencing constant strain rate. These
simulations can be performed using the SLLOD equations
of motion [21, 22], which permit the simulation of constant
strain rate in a periodically infinite fluid and are given by,

ṙiα = ciα + ri · ∇v, (19)

and

miαċiα = Fiα −mici · ∇v − αKmici, (20)

where Fiα is the sum of all interatomic and constraint forces
acting on site α of molecule i and αK is the thermostat mul-
tiplier for the Gaussian constraint thermostat that keeps the
kinetic temperature of the molecular centres of mass fixed.
Here we have used c to denote the thermal velocity also called
the peculiar velocity, where the streaming component of the
velocity is explicitly stated in the first equation as ri · ∇v.
This is in contrast to the previously stated equations of motion
where the streaming velocity is not explicitly known and p
refers to the total, ‘laboratory’, momentum. Also note that
the shearing deformation and thermostat are applied to the
molecular centres of mass. These equations allow the calcu-
lation of various properties evaluated at a particular strain
rate, which can then be extrapolated back to a zero strain rate
value.

To calculate the strain rate dependent viscosity we use the
following equation:

η(γ̇) = −Pyx
γ̇
. (21)

We then extrapolate this value back to zero strain rate to de-
termine the zero strain rate viscosity for a particular state
point,

η0 = lim
γ̇→0

η(γ̇). (22)

III. RESULTS

III. 1. Transport Coefficients
Using the Green-Kubo relations given by Eqns. 10-14 we

were able to calculate the phenomenological and transport
coefficients for this system.

The Green-Kubo system consisted of 83 20-site polymer
chains in solution with 6400 WCA atoms, each with mass 1,
for a total site number and mass concentration of 0.2. The
state point of this system was created to match the centre
channel state point obtained from preliminary results for the
strongest body force applied to the widest channel, system
P83 (see Tab. 1).

The partial enthalpies required to calculate L′qq using
Eqn. 17 are determined by creating a similar system and then
varying the number of molecules of one species while keep-
ing the number of molecules of the other species, and the
pressure, constant. We then calculate the enthalpy at that state
point and use these values to find a finite difference approx-
imation to the partial enthalpies at the relevant state point.
These results can be found in Tab. 2.

Using Eqn. 17 and Eqn. 18 with T = 1.0163, we find
that λ = 6.26± 0.16.

Fig. 2 shows the integral of the stress autocorrelation
function. It converges to a value of η0 = 3.68 ± 0.03, after
approximately 275 reduced time units. The stress is a very
slowly relaxing property for non-dilute polymeric fluids, even
for chain lengths of only 20 monomers.

0 50 100 150 200 250 300

τ

0

1

2

3

4

η
0

Fig. 2. Plot of the normalized cumulative integral of the stress au-
tocorrelation function for system GK (see Tab. 1) against the delay
time of the correlation function in reduced time units. The dashed

line gives the extracted value of viscosity, η

We also created a variety of systems at a similar state
point but different concentrations and induced the system to
flow using the SLLOD equations of motion, given by Eqn. 19
and Eqn. 20. We then calculated the strain rate dependent
viscosity for each concentration, and extrapolated the value
to the zero strain rate limit. Presented in Fig. 3 is the zero
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strain rate viscosity as a function of concentration for the
range explored by this work.

Tab. 2. Properties calculated from homogeneous simulations

System Property Value
GK L22(= L11) 1.79 ± 0.03 ×10−2

GK L2q(= −L1q) 2.72 ± 1.09×10−2

GK Lqq 6.51 ± 0.10
GK L′qq 6.47 ± 0.16
GK λ 6.26 ± 0.15
HP1-3 h1 10.0 ± 0.1
HS1-3 h2 11.4 ± 0.05
GK η0 3.69 ± 0.03
S0-25 η0 3.66 ± 0.04

The equation:

η0 = 2.15 + 6.19c1 + 7.03c21, (23)

gives a second order polynomial equation of best fit, in a least
squares sense, to this data.

0 0.05 0.1 0.15 0.2 0.25

2

2.5

3

3.5

4

4.5

Fig. 3. Plot of the zero strain rate extrapolated viscosity, as a function
of concentration. The dashed line gives a 2nd order polynomial least

squares fit to the data, shown by Eqn. 23

For details of these systems see IDs S0 to S25 in Tab. 1.

III. 2. Concentration Profiles
Before presenting the results for the velocity and tem-

perature profiles it is important to discuss the behaviour of
the density and polymer concentration across the channel,
as these factors have a strong effect on the local transport
properties of the fluid.

Fig. 4 shows the concentration profile across the channel
for systems P83 (left), P23 (middle), and P11 (right). This
concentration is a mass fraction defined as, for species α,

cα =
ρα

ρ1 + ρ2
. (24)

All confined systems shown here demonstrate a strong
depletion effect near the walls. One way to explain this deple-
tion is that it is caused by the large entropy cost for a polymer
to exist near the wall due to the lower entropy of the permitted
conformations in that region [23].

In system P83 (left), for the three lowest body force val-
ues, F ex = 0, 0.0001, and 0.0005 the behaviour of the con-
centration essentially does not change. However as the body
force increases to 0.001 we see a shear-mediated increase of
the polymer concentration in the centre of the channel, which
corresponds to an increase in the magnitude of the depletion
effect near the wall.

Similarly, in the P23 system (middle) the concentration
profile is mostly unaffected for the two lowest body force val-
ues, F ex = 0, and 0.001. However as the body force increases
to F ex = 0.005 and 0.01 we see an increasingly depleted
near-wall region and an increasingly enhanced concentration
in the centre region.

The pattern is the same in the P11 system (right), with the
three lowest body forces seemingly having little effect on the
concentration before the highest, F ex = 0.03, starts to deplete
the polymer more thoroughly near the walls.

In the absence of an external field, the perturbation to
the polymer concentration due to the presence of the walls
is a function only of the wall-fluid potential. The wall and
fluid are identical in each of the three systems, therefore the
perturbation due to the presence of the wall is also identical.
As the width of the channel decreases, the displaced polymer
molecules have less unperturbed channel space to retreat to-
wards. This leads to an increasing polymer concentration in
the channel centre, resulting in an increased local viscosity
as given by Eqn. 23.

For the P83 system the channel centre concentration
is only slightly above the nominal polymer concentration,
c1 = 0.20, at c1 ≈ 0.21, while for the P23 and the P11
systems the channel centre concentration rises to c1 ≈ 0.22
and c1 ≈ 0.24 respectively. This corresponds to a significant
increase in the channel centre viscosity.

Fig. 3 shows that the corresponding viscosity values
for concentrations of c1 = 0.2, 0.21, 0.22, and 0.24, are
η0 = 3.67, 3.75, 3.85, and 4.03 respectively. It is important
to account the increase in effective concentration when calcu-
lating predictions for the velocity and temperature profiles.

Another interesting feature of these concentration profiles
is the periodic bumps in the profile. These bumps are due to
density oscillations and atomic packing effects in the fluid.
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Fig. 4. Plot of the polymer mass concentration profile near the left wall for systems P83 (left), P23 (middle) and P11 (right) for various body
force values. The values for lowest to highest body force are given by dark blue diamonds, light blue triangles, light green circles, and
dark green squares. For most of the plots, all except the highest body force (dark green squares) lay on top of each other. For P83, F ex = 0,

0.0001, 0.0005, 0.001, for P23, F ex = 0, 0.001, 0.005, 0.01, and for P11, F ex = 0, 0.003, 0.015, 0.03

III. 3. Velocity Profiles
Before presenting results for the temperature profiles we

must verify that the velocity profiles are well described by
the zero strain rate viscosities obtained previously.

Fig. 5 shows the molecular centre-of-mass velocity profile
across the channel for systems P83 (left), P23 (middle) and
P11 (right). We fit polynomial equations of increasing order
to the velocity profiles, stopping when we retrieve random
residuals. The highest order fit to the velocity profiles is given
by:

vx(y) = k0 + k2y
2 + k4y

4 + k6y
6 + k8y

8 (25)

where k0 is the shift in the velocity profile and k2 =
−ρF ex/2η0. From this, we are able to extract a value for the
viscosity via comparison with Eqn. 8. Here, we assume that
the coefficient of the quadratic component is directly related
to the zero strain rate viscosity. This requires that the effect
of the second order term is only a result of the linear trans-
port equations. This also assumes that the fitted equation is

sufficient to describe the velocity profile, which is evidenced
by random residuals.

In Fig. 5, for system P83 (left), the fitted values for
the viscosity for F ex = 0.001, 0.0005, and 0.0001 are
η0 = 3.66 ± 0.1, 3.66 ± 0.1, and 3.78 ± 0.1 respectively.
These values show very good agreement with the Green-Kubo
value, η0 = 3.69± 0.03, and SLLOD value, 3.66± 0.04, for
the viscosity. It is important to note that the parameter for the
velocity at the wall in Eqn. 8 is a free parameter for this fit.

The uncertainties given for both the fitted viscosity, and
fitted thermal conductivity, presented in this work have been
obtained by varying the order of the equation fitted to the
data. Uncertainties obtained only from the mean squared er-
ror and degrees of freedom error in the fitting parameters only
account for the random error and are vastly underestimated.

Closer examination of the data shown in Fig. 5 for sys-
tem P83 shows that near the wall there is a slight difference
between the gradients of the fitted equation and the data. This
system lacks any strong effects due to density oscillations that
could significantly disturb the velocity near the walls. There-
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Fig. 5. Plot of the molecular centre-of-mass velocity profiles of the fluid in systems P83 (left), P23 (middle), and P11 (right), for the 4
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fore this deviation is likely due to the significant depletion of
concentration near the wall, as seen in Fig. 4, which would
significantly change the local value of the viscosity given by
Eqn. 23.

For the largest body force, F ex = 0.001, near the wall
the concentration of the polymer is, at most, c1 = 0.05 cor-
responding to a zero strain rate viscosity of η0 = 2.47 as
compared to the fitted viscosity η0 = 3.66. The P23 and P11
systems near-wall regions are dominated by the effects of the
density oscillations and so this feature is difficult to observe
in those systems.

The gradient of the velocity profile (i.e. the strain rate), is
given by,

γ̇ = −ρF
e
x

η0
y. (26)

Which, for the fitted viscosity gives γ̇(y = −41.3) =
0.0095. If, instead, we used the wall-adjacent concentra-
tion, c1 = 0.05, to determine the viscosity using Eqn. 23,
as an estimate to the local viscosity in this region we obtain
γ̇(y = −41.3) = 0.0140. This compares well with the gradi-
ent obtained from the data of γ̇(y = −41.3) = 0.0145, which
was determined by a backwards difference estimate of the
velocity gradient using the first two data points at y = −41.3
and −41.08.

For system P23 (middle) the corresponding values of the
fitted values of the viscosity for F ex = 0.01, 0.005, and 0.001
are η0 = 3.88± 0.4, 4.21± 0.4, and 4.14± 0.4. These val-
ues show good agreement with the zero strain rate viscosity
obtained from SLLOD with η0(c1 = 0.22) = 3.85 from
Eqn. 23.

The velocity near the wall in this system is strongly af-
fected by the density oscillations. Fig. 6 shows the residuals
of the fit to the velocity profile near the left wall overlaid

with the density oscillations. The residuals show strong de-
viations from a purely polynomial description which, with
the exception of the first peak, line up well with the density
profile oscillations. The presence of polymer depletion and
velocity slip, in addition to the density oscillations are the
most likely reasons the first residual peak is not aligned with
the first density peak.

Likewise, for System P11 the fitted equation seems to fit
the overall trend of the data well, and the corresponding val-
ues of the fitted viscosity for F ex = 0.03, 0.015, and 0.003 are
η0 = 4.2±1, 4.42±1, and 4.8±1. These values, although un-
certain, compare relatively well with the value of zero strain
rate viscosity obtained from SLLOD, η(c1 = 0.24) = 4.04,
given by Eqn. 23.

For the narrowest channel, strong density oscillations are
present across the entire channel width. We see the character-
istic velocity oscillations almost across the entire channel.

The perturbative force, the local density profile, is almost
identical between the P23 and P11 systems, and yet the mag-
nitude of the perturbation on the velocity is much higher in
the P11 system. These systems have the same walls, same
fluid and approximately same magnitude of the velocity pro-
file and oscillations in the density profile. Whatever coupling
exists between the velocity and density it must, therefore, be
proportional to either the applied external field, or possibly
the gradient of the strain rate in the system, as these are the
only significant characteristic differences between the differ-
ent systems. In such a case, a larger external force, or steeper
strain rate gradient, corresponds to a stronger coupling to the
density oscillations.

Overall we find that the continuum prediction for the ve-
locity profile is accurate to first order. In the P83 system, the
fit could be further improved by changing from the constant
viscosity to a local viscosity across the channel, which would
account for the deviation in the gradient near the walls. For
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Fig. 7. Plot of the molecular centre-of-mass temperature profiles of the fluid in systems P83 (left), P23 (middle), and P11 (right), for the 4
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the P23 and P11 systems the near-wall region is dominated
by density oscillations, obscuring the effect of polymer deple-
tion on the local viscosity. In these systems, the continuum
prediction could be improved by finding an appropriate non-
local coupling of the velocity profile to the density, which
should include either the magnitude of the applied external
field or possibly the gradient of the strain rate. The theoretical
framework for this has already been discussed by Glavatskiy,
Dalton et al. [24, 25].

III. 4. Temperature Profiles

Having predicted an acceptable value for the zero strain
rate viscosity, η0, for each channel width we can now fit
equations to the temperature profiles to retrieve the thermal
conductivity, λ.

Fig. 7 shows the molecular centre of mass kinetic temper-
ature across the channel for each value of the body force for
system P83 (left), P23 (middle) and P11 (right). By fitting

Eqn. 9 to the data we were able to extract a value for the ther-
mal conductivity. For the viscosity parameter, we used the
values obtained from SLLOD simulations given by Eqn. 23,
with c1 = 0.21, 0.22, and 0.24 for P83, P23, and P11 respec-
tively. In each system, the magnitude of the effect due to the
smallest body force is so small as to be barely indistinguish-
able from the equilibrium system, which has no temperature
gradient. Therefore we only present values for the thermal
conductivity from the data obtained from the two largest body
forces applied to each system.

The values of the thermal conductivity from the fitted
equation are; For P83 and body forces F ex = 0.001, and
0.0005, λ = 6.0 ± 0.1 and 5.6 ± 0.1. For P23 and body
forces F ex = 0.01, and 0.005, λ = 5.6± 0.7, and 5.3± 0.7.
For P11 and body forces F ex = 0.03, and 0.015, λ = 6 ± 2
and λ = 6± 2.

These values agree relatively well with the value calcu-
lated from equilibrium Green-Kubo, λ = 6.5 ± 0.1 with
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c1 = 0.2. Since the temperature profile is so well fitted by
Eqn. 9 estimating the uncertainties via change of the fitting
equation likely leads to underestimated uncertainties. The
standard error in the fitting parameters due to to the mean
squared error and degrees of freedom error in the fit itself is
also extremely small and likely to underestimate the uncer-
tainties. However, this assumes that all of the data points in
the temperature profile are independent. This is clearly not
the case, because the noise in neighbouring data points is
somewhat correlated.

The maximum magnitude of the effect for these tempera-
ture profiles is an approximately 1% deviation from the wall
temperature so the coefficient in Eqn. 9 is already very small.
The absolute values of the temperatures are dominated by
the free parameter for the temperatures at the walls, so even
a relatively large change in the value of the fitted thermal
conductivity can be compensated by a small extra shift in
the temperature slip value. For example, fixing the value of
the thermal conductivity for system P83 and F ex = 0.0005
at λ = 6 instead of the fitted value λ = 5.6 results in a
channel centre temperature change from T (0) = 1.0024 to
T (0) = 1.00233 which can easily be compensated with a
small shift in the profile height (i.e. from Tw = 1.0004 to
Tw = 1.00047) without significantly distorting the curve
and while maintaining visual congruity with the plotted data.
Therefore, we estimate the true uncertainty to be closer to
±0.5 than ±0.1 in this case.

The data presented here were very difficult to collect due
to the small absolute magnitude of the temperature profile
and the extent of statistical sampling required to reduce noise.
This justifies the isothermal assumption commonly made for
experimental Poiseuille flow, especially for the smallest body
force presented here, which is almost indistinguishable from
equilibrium.

Fig. 8 shows a comparison between the density oscilla-
tions and the residuals for the purely quartic fit to the temper-
ature profile for systems P23 and P11. With the exception of
the first peak, where depletion and slip effects are strong, the
residuals are strongly anti-correlated with the density oscilla-
tions. The residuals for the widest system, P83, showed no
trends and, as such, have not been displayed.

Similarly to the case for the velocity profile residuals,
the temperature residuals of the P11 system show a much
stronger anti-correlation with the density oscillations than
the P23 system. This is consistent with the fact that that the
steady state temperature profile is the net result of internal
energy production due to the work done by the field driving
the flow, which is given by −Pyxγ̇ and heat conduction. We
expect the nonlinear, nonlocal coupling between the applied
external field and the confining field that is responsible for
both the shear pressure and the strain rate profiles [24, 25] to
result in a temperature profile that is strongly dependent on
the driving field.

The residuals for the P11 system (right) show a slight
trending increase towards the channel-centre which may be

caused by strain rate coupling to the heat flux. If this is the
case then the strain rate coupling coefficient, ξ, is of order 1,
where the (strain rate coupled) heat flux vector and resulting
temperature profiles are defined by [4, 6],

Jq(y) = −λ∂T (y)

∂y
− ξ ∂γ̇

2(y)

∂y
(27)

and

T (y) = −ρ
2(F ex)2

12λη

(
y4 − W 4

16

)
− ρ2(F ex)2ξ

λη2

(
y2 − W 2

4

)
+ Tw.

(28)

By comparing the coefficients in this equation we find that
the contribution of the quadratic term only dominates when
y <

√
12ξ/η. For our value of ξ this corresponds to a centre

channel region of −1.73 < y < 1.73. Systems P23 and P83
have respectively 3 and 30 times smaller values of the exter-
nal field. In these cases, the amplitude of the quadratic term
in the temperature profile is reduced by factors of 9 and 900.
Therefore, the lack of evidence in these cases might simply
be due to the noise in the data eclipsing the magnitude of
strain rate coupling effect.

Overall we find that the temperature profile is well de-
scribed by the continuum prediction given by Eqn. 9; any
coupling to the strain rate is weak for this system. In the P83
system, where the effects due to density oscillations are neg-
ligible, the fitted equations work extremely well. For systems
P23 and P11 the fits could be improved by an appropriate
coupling to the density profiles, which should include either
the magnitude of the applied external field or the gradient of
the strain rate as a factor.

IV. CONCLUSION

We performed equilibrium simulations of polymer solu-
tions, calculated transport coefficients, and compared them
with transport coefficients extracted from nonequilibrium
molecular dynamics Poiseuille flow simulations. We found
that the Newtonian zero strain rate viscosity represented the
velocity profile very well for systems over 20 atomic diam-
eters, with only a slight deviation near the walls due to the
polymer depletion effect. However, in channels of 20 atomic
diameters and less the perturbation of velocity due to the local
density oscillations becomes the dominant factor.

Similarly, we also found that the temperature profiles of
systems more than 20 atomic diameters wide were well de-
scribed by Fourier’s law. For narrower channels the density
oscillations start to have a major effect on the temperature,
however the underlying temperature profile is still well de-
scribed by the expected quartic equation.

We found some evidence of a small strain rate coupled
temperature with the strain rate coupling coefficient ξ ≈ 1.
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Results from STF NEMD simulations of simple fluids by
Baranyai et al. [4] and Ayton et al. [5] et al. indicated a strain
rate coupling coefficient of ξ ≈ 1 which compares well with
our result. Ayton et al. also postulated that one must use the
so-called ‘normal temperature’ to calculate the correct value
of the strain rate coupling. Our similar results indicate that, at
least for the systems and flow rates presented here, the kinetic
temperature is an appropriate temperature for calculation of
the strain rate coupling.

In contrast to these results, data from NEMD simulations
of simple fluids experiencing planar Poiseuille flow by Todd
and Evans [6] indicates a strain rate coupling coefficient of
ξ ≈ 80. In their work the temperature was determined in-
stantaneously from the thermal velocities at each timestep
using an approximation to the streaming velocity obtained
by fitting a polynomial equation to the instantaneous velocity
profile. Their large magnitude of ξ may have resulted from
an incorrect determination of the streaming velocity due to
the exclusion of higher order terms from the fit to the in-
stantaneously sampled velocity profile, which could be very
noisy.

The difficulty of investigating the strain rate coupling
phenomena in planar Poiseuille flow is that the region in
which the coupling term dominates is small. More highly con-
fined channels allow for this region to extend into a relatively
larger proportion of the channel, but also introduce density
oscillations that significantly perturb the temperature profile.
Increasing the chain length of the polymer molecules might
lead to a higher strain rate coupling coefficient, allowing the
region where the strain rate coupling dominates to extend,
such that the effect will be more prominent in wider channels
where perturbations due to density oscillations are spatially
limited.

Inadequate determination of the streaming velocity can
also lead to a spurious contribution to the magnitude of the
strain rate coupling in systems where the temperature profile
is not correctly determined. For NEMD STF simulations this
could be investigated by performing simulations with a larger
number of particles per averaging bin, a running average esti-
mate to the streaming velocity, or a post-processed estimate
for the streaming velocity. This would ensure a correctly cal-
culated local temperature from which the strain rate coupling
coefficient could be determined.
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