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Abstract: The present investigation concerns thermomechanical interactions in a homogeneous isotropic thick plate in the
light of the two-temperature thermoelasticity theory with dual phase lag due to a ring load. The upper and lower ends of the
thick plate are traction free and subjected to an axisymmetric heat supply. The solution is obtained by using Laplace and
Hankel transform techniques. The analytical expressions of displacement components, stresses, conductive temperature,
temperature change and cubic dilatation are computed in a transformed domain. The numerical inversion technique has been
applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect of
thermal phase-lags and two temperatures are shown on the various components. Some particular cases of the result are also
deduced from the present investigation.
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I. INTRODUCTION

Classical Fourier heat conduction law implies an infinitely
fast propagation of a thermal signal which is violated in the
ultra-fast heat conduction system due to its very small di-
mensions and short time scales. Catteno [1] and Vernotte [2]
proposed a thermal wave with a single phase lag in which the
temperature gradient after a certain elapsed time was given
by q + τq

∂q
∂t = −k∇T , where τq denotes the relaxation

time required for thermal physics to take account of a hy-
perbolic effect within the medium. Here when τq > 0, the
thermal wave propagates through the medium with a finite

speed of
√
α/τq, where α is thermal diffusivity. when τq

approaches zero, the thermal wave has an infinite speed and
thus the single phase lag model reduces to the traditional
Fourier model. The dual phase lag model of heat conduction
was proposed by [3] q+τq

∂q
∂t = −k(∇T +τt

∂
∂t∇T ), where

the temperature gradient ∇T at a point P of the material at
time t+ τt corresponds to the heat flux vector q at the same
time at the time t+τq. Here k is thermal conductivity of the
material. The delay time τt is interpreted as that caused by
the microstructural interactions and is called the phase lag of
temperature gradient. The other delay time τq is interpreted as
the relaxation time due to the fast transient effects of thermal
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inertia and is called the phase lag of heat flux. This universal
model is claimed to be able to bridge the gap between micro-
scopic and macroscopic approaches, covering a wide range
of heat transfer models. If τt = 0, [3] refers to the model as
a single phase model. Numerous efforts have been invested in
the development of an explicit mathematical solution to the
heat conduction equation under a dual phase lag model. Quin-
tanilla [4] compared two different mathematical hyperbolic
models proposed by Tzou. Kumar and Mukhopadhaya [5] in-
vestigated the propagation of harmonic waves of assigned fre-
quency by employing the thermoelasticity theory with three
phase lags. Chou and Yang [6] discussed two dimensional
dual phase lag thermal behaviour in single-/multi layer struc-
tures. Zhou, Zhang and Chen [7] proposed an axisymmetric
dual-phase-lag bioheat model for laser heating of living tis-
sues. Kumar, Chawla and Abbas [8] discussed the effect of
viscosity on wave propagation in an anisotropic thermoelas-
tic medium with a three phase lag model. Ying and Yun [9]
built a fractional dual-phase-lag model and the corresponding
bio-heat transfer equation. Abdallah [10] used an uncoupled
thermoelastic model based on a dual phase lag to investi-
gate the thermoelastic properties of a semi infinite medium.
Rukolaine [11] employed dual phase lag models to study
unphysical problems. Tripathi, Kedar and Deshmukh [12]
discussed the generalized thermoelastic diffusion problem in
a thick circular plate with axisymmetric heat supply.

Chen and Gurtin [13], Chen et al. [14] and Chen et al. [15]
have formulated a theory of heat conduction in deformable
bodies which depends upon two distinct temperatures, the
conductive temperature φ and the thermo dynamical tem-
perature T . For time independent situations the difference
between these two temperatures is proportional to the heat
supply, and in the absence of heat supply the two temper-
atures are identical. For time dependent problems the two
temperatures are different regardless of the presence of heat
supply. The two temperatures T , φ and the strain are found to
have representations in the form of a travelling wave plus a re-
sponse, which occurs instantaneously throughout the body
(Boley and Tolins [16]).The wave propagation in the two
temperature theory of thermoelasticity was investigated by
Warren and Chen [17]. Youssef [18], constructed a new the-
ory of generalized thermoelasticity by taking into account
the two-temperature generalized thermoelasticity theory for
a homogeneous and isotropic body without energy dissipa-
tion. Several researchers studied various problems involving
two temperature, e.g. ( [19-27].

Many researchers havealready worked on the problems
of dual phase lags with two temperatures considering differ-
ent mediums. Mondal, Malik and Kanoria [28] investigated
a problem of fractional order two temperature dual phase lag
thermoelasticity with variable thermal conductivity. Said [29]
discussed deformation of a rotating two temperature gener-
alized magneto thermoelastic medium with an initial heat
source due to hydrostatic initial stress. Said [30] studied two

temperature generalized magneto thermoelastic medium for
dual phase lag model under the effect of a gravity field and
hydrostatic initial stress. Lofty [31] worked on the elastic
wave motions for a photothermal medium of a dual phase lag
model with an internal heat source and gravitational field.

In this investigation, the thermoelastic interactions for the
dual phase lag heat conduction in a thick circular plate due
to a ring load is studied in the light of the two temperature
thermoelasticity theory. The components of displacements,
stresses, conductive temperature, temperature change and
cubic dilatation are computed numerically. Numerically com-
puted results are depicted graphically. The effect of dual
phase lag and two temperature are shown on the various
components.

II. BASIC EQUATIONS

The basic equations of motion, heat conduction in a homo-
geneous isotropic thermoelastic solid with dual phase lag and
two temperature in the absence of body forces, heat sources
are

(λ+ µ)∇ (∇.u) + µ∇2u− β1∇T = ρü (1)

(
1 + τt

∂

∂t

)
KT,ii =

=

(
1 + τq

∂

∂t
+ τq

2 ∂
2

∂t2

)
[ρCE Ṫ + β1T0ėkk]

(2)

T = (1− a∇2)φ

and the constitutive relations are

σij = 2µeij + δij(λekk − β1T ) (3)

ρT0S =

(
1 + τq

∂

∂t
+ τq

2 ∂
2

∂t2

)
(ρCET + β1T0ekk) (4)

Where λ, µ are Lame’s constants, ρ is the density assumed
to be independent of time, ui are components of displace-
ment vector u, K is the coefficient of thermal conductivity,
CE is the specific heat at constant strain, T is the absolute
temperature of the medium, σij and eij are the components
of stress and strain, respectively, ekk is dilatation, S is the
entropy per unit mass, β1 = (3λ + 2µ)αt, αt is the coeffi-
cient of thermal linear expansion. τt, τq are respectively the
phase lag of temperature gradient, the phase lag of heat flux,
a is the two temperature parameter. In the above equations,
a comma followed by suffix denotes a spatial derivative and
a superposed dot denotes a derivative with respect to time.
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III. FORMULATION AND SOLUTION
OF THE PROBLEM

Consider a homogeneous isotropic thick plate of thickness
2b occupying the space defined by 0 ≤ r ≤ ∞, −b ≤ z ≤ b.
Cylindrical polar coordinates (r, θ, z) having origin on the
surface z = 0, between the lower and upper surfaces of
the plate and the z-axis is assumed to be the axis of sym-
metry. Due to symmetry about z-axis, component uθ = 0,
and ur, uz and φ are independent of θ and are functions of
(r, z, t). The initial temperature in the thick plate is given
by a constant temperature T0, and the heat flux g0F (r, z) is
prescribed on the upper and lower boundary surfaces. For
t > 0, heat is generated within the plate at the rate f(r, t).
We consider a normal source (ring source) which emanates
from the origin of the coordinate axis and expands radically at
constant rate c over the surface. Under these conditions, ther-
moelastic quantities due to the ring load are to be determined.
As the problem considered is two dimensional,

u = (ur, 0, uz). (5)

Equations (1)-(2) with the aid of (5) take the form

(λ+ µ)
∂e

∂r
+ µ

(
∇2 − 1

r2

)
ur − β1

∂T

∂r
= ρ

∂2ur
∂t2

(6)

(λ+ µ)
∂e

∂z
+ µ∇2uz − β1

∂T

∂z
= ρ

∂2uz
∂t2

(7)

(1 + τt
∂

∂t
)K∇2T =

(
1 + τq

∂

∂t
+
τq

2

2

∂2

∂t2

)
×[

ρCE
∂

∂t
(1− a∇2)φ+ β1T0

∂

∂t
div u

] (8)

and Constitutive relations

σrr = 2µerr + λe− β1(1− a∇2)φ (9)

σθθ = 2µeθθ + λe− β1(1− a∇2)φ (10)

σzz = 2µezz + λe− β1
(
1− a∇2

)
φ (11)

σrz = µerz, σrθ = 0, σzθ = 0, (12)

where e = ∂ur

∂r + ur

r + ∂uz

∂z , err = ∂ur

∂r , eθθ = ur

r , ezz = ∂uz

∂z ,
erz = 1

2

(
∂ur

∂z + ∂uz

∂r

)

To facilitate the solution, the following dimensionless quanti-
ties are introduced

r′ =
ω1

c1
r, z′ =

ω1

c1
z, (u′r, u

′
z) =

ω1

c1
(ur, uz), t

′ = ω1t,

ω1 =
ρCEc

2
1

K
, c21 =

λ+ 2µ

ρ
(σ′rr, σ

′
θθ, σ

′
zz, σ

′
rz) =

=
1

β1T0
(σrr, σθθ, σzz, σrz),

(T
′
, φ′) =

β1
ρc21

(T, φ)
(
τ ′q, τ

′
t

)
= ω1(τq, τt)

(13)
We define Laplace and Hankel transform as

f̄ (r, z, s) =

∫ ∞
0

f(r, z, t)e−stdt (14)

f̄∗ (ξ, z, s) =

∫ ∞
0

f̂ (r, z, s) rJn (rξ) dr (15)

Using the dimensionless quantities defined by (13) in equa-
tions (6)-(8) and suppressing the primes for convenience and
applying the Laplace transform defined by (14) on the result-
ing equations and simplifying, we obtain(

∇2 − s2
)
ē−∇2φ̄+ δ1∇4φ̄ = 0 (16)

τ1q ζ2ē+ τ1q ζ1φ̄− (τ1q δ1 − τ1t K)∇2φ̄ = 0 (17)

where τ1q = 1 + sτq +
s2τq

2

2 , τ1t = 1 + sτt, ζ1 =
ρCEc

2
1

ω1
,

ζ2 =
β2
1T0

ρω1
s, δ1 = aω1

2

c21

Eliminating φ̄ and ē from equations (16)-(17), we obtain

(∇2 − k21)(∇2 − k22)( ē, φ̄) = 0 (18)

The solutions of the equation (18) can be written in the form
φ̄ =

∑3
i=1 φ̄i, ē =

∑3
i=1 ēi where, ēi, and φ̄i are solutions

of the following equation

(∇2 − k2i )
(
ēi, φ̄i

)
= 0, i = 1, 2 (19)

On taking Hankel transform of (19) defined by (15), we obtain(
D2 − ξ2 − k2i

) (
φ̄∗i , ē

∗
i

)
= 0 (20)

The solution of (20) has the form

ē∗ =

2∑
i=1

Ai (ξ, s) cosh(qiz) (21)

φ̄∗ =

2∑
i=1

diAi (ξ, s) cosh(qiz) (22)

where qi =
√
ξ2 + k2i , di =

τ1
q ζ2

τ1
q ζ1−ζ3q2i

, ζ3 = τ1q δ1 − τ1t k.
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We define the inversion of Hankel Transform as

f̄ (r, z, s) =

∫ ∞
0

f̄∗ (ξ, z, s) ξJ0 (rξ) dξ (23)

Applying inversion of Hankel transform defined by (23) on
the equations (21)-(22), we obtain

ē =

∫ ∞
0

{
2∑
i=1

Ai (ξ, s) cosh (qiz)

}
ξJ0(ξr)dξ (24)

φ̄ =

∫ ∞
0

{
2∑
i=1

di Ai (ξ, s) cosh (qiz)

}
ξJ0(ξr)dξ (25)

Using (6)-(8), (13), (24)-(25), we obtain the components
of displacement, stress components and conductive tempera-
ture, temperature change T , cubic dilatation in the Laplace
transform domain as

ūr (r, z, s) =

∫ ∞
0

E (ξ, s) cosh (qz) ξJ0 (ξr) +

2∑
i=1

[(−ηi + µi)q
2
i ξ

2cosh (qiz)]J1 (ξr)+

δ1µicosh (qiz)

(
ξ3

r
J2 − J1

(
ξ4 − ξ2

r2
+ ξ2q2i

)
+
ξ3

r
J0

)
] dξ

(26)

ūz (r, z, s) =

∫ ∞
0

F (ξ, z) sinh (qz) ξJ0 (ξr) +

2∑
i=1

[(−ηi + µi)sinh (qiz)ξJ0 (ξr)−

δ1µisinh (qiz)(
ξ2

r
J2 − J1

(
ξ3 +

ξ

r
) + ξq2i J0

)
]dξ

(27)

σ̄zz =
2µ

β1T0

∫ ∞
0

ξJ0 (ξr)

[
F (ξ, s) qcosh (qz) + (

2∑
i=1

(−ηi + µi)q
2
i−ζdiAi+λ

0Ai)cosh (qiz)

]
−

[δ1 (µiqi − ζBi) cosh (qiz) ( ξ3J0 (ξr)− J1 (ξr)

(
ξ − 1

r

)
+ ξq2i J0 (ξr)]dξ

(28)

σ̄rz =
µ

2β1T0

∫ ∞
0

ξ2J1 (ξr)
[
{
(
q2 − ξ2

q

)
E (ξ, s) qsinh (qz) + 2

2∑
i=1

(ηi − µi)qisinh (qiz)+

δ1µisinh (qiz) {(qi(
ξ3

r
J2 (ξr)) } − J1 (ξr)

(
ξ4 + q2i ξ

2 +
4

ξ2r2
+ q2i ξ

)
+

(
2

ξr
− ξ4 − ξ2 (ξ − 1)

r
+ q2i ξ

2

)
J0 (ξr)}

]
dξ

(29)

σ̄rr =
2µ

β1T0

∫ ∞
0

[
− ξ2J1 (ξr)E (ξ, s) cosh (qz) + (

2∑
i=1

(−ηi + µi) q
2
i (ξ2J1 (ξr)− ξ3J0 (ξr))+

δ1µi{J1 (ξr) (−ξ2
(
q2i + ξ2 − 3

)
+ J0 (ξr) ξ3

(
q2i+

1

r2
+ξ2

)
dξ
]
+∫ ∞

0

ξJ0 (ξr) cosh (qiz) [λ0 − ζdi
(
1 + δ1q

2
i − δ1ξJ0 (ξr)

)
+ δ1J1 (ξr)

(
1− 1

r

)
dξ

φ̄ =

∫ ∞
0

(d1 A1
(ξ, s) cosh (q1z) + d2 A2 (ξ, s) cosh (q2z)) ξJ0(ξr)dξ (30)

T̄ =

∫ ∞
0

2∑
i=1

(di Ai (ξ, s)cosh (qiz) [ ξJ0 (ξr)
(
1 + δ1q

2
i − δ1ξ

)
+ J1 (ξr) δ1ξ(1−

1

r
)]dξ, (31)
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where

G (ξ, s) =
ξ2E (ξ, s)

q
, q =

√
ξ2 +

ρc21
µ
s2, ηi =

λ+µ
ρc21

Ai(
µq2i
ρc21
− s2

) , µi =
diAi(

µq2i
ρc21
− s2

) ,

λ0 =
λ

β1T0
, ζ =

ρc21
β1T0

.

IV. BOUNDARY CONDITIONS

We consider a cubical thermal source and normal force of
unit magnitude along with vanishing of tangential stress com-
ponents at the stress free surface at z = ±b. Mathematically,
these can be written as

∂φ

∂z
= ±g0F (r, z) (32)

σzz = f (r, t) (33)

σrz = 0 (34)

V. APPLICATION

As an application, we consider a specific type of source func-
tion of the type

F (r, z) = z2e−ωr (35)

f (r, t) =
1

2πr
δ(t− r), (36)

where δ (t− r) is the Dirac delta function.
Applying Laplace transform and Hankel transform defined
by (14)-(15), on the equations (35)-(36), we obtain

F̄ ∗ (ξ, z) =
z2ω

(ξ
2

+ ω2)
3/2

, (37)

f̄∗ (ξ, s) =
1

2π
√
ξ2 + s2

c2

. (38)

Applying Laplace transform and Hankel transform on the
boundary conditions (32)-(34), we obtain and substitute the
values of φ̄, σ̄zz , σ̄rz , in (34)-(36), we obtain the values of
unknown parameters as

A1 = 41

4 , A2 = 42

4 , E(ξ, s) = 43

4 , where

4 = − 2µ

β1T0
cosh (qb) (411432 −412431) +

sinh (qb) (411422 −412421)

41 = g0F̄
∗ (ξ, z) (421432 −422431)−

f̄∗ (ξ, s) (411432 −412431)

42 = −g0F̄ ∗ (ξ, z)

(
2µ

β1T0
cosh(qb)432−

422sinh(qb)

)
+ f̄∗ (ξ, s) (−412sinh(qb))

43 = g0F̄
∗ (ξ, z)

(
2µ

β1T0
cosh(qb)431−

421sinh(qb)

)
+ f̄∗ (ξ, s) (411sinh(qb))

41i = diqisinh (qib) , 42i = ((µi − ηi) q2i − δ1µiqi−
ζdi (1+δ1) +λ

′
)cosh (qib) , 43i = (2(ηi − µi)qi+δ1µi)×

sinh (qib) , i = 1, 2. F̄ ∗ (ξ, z) and f̄∗ (ξ, s) are given by
equations (37)-(38).

VI. PARTICULAR CASES

(i) If a = 0, from equations (25)-(30), we obtain the cor-
responding expressions for displacements, and stresses,
conductive temperature, temperature change and cubic
dilatation for thermoelastic solid without two tempera-
ture and due to a dual phase lag.

(ii) If τq = τt = 0, we obtain the coupled expression in
thermoelasticity with a two temperature model.

(iii) τq = 0 then dual phase lag thermal model (DPLT)
model reduce to single-phase-lag thermal model
(SPLT)
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Fig. 1. Variation of displacement component ur with distance r Fig. 2. Variation of displacement component uz with distance r

VII. INVERSION OF DOUBLE TRANSFORM

Due to the complexity of the solution in the Laplace trans-
form domain, the inverse of the Laplace transform is obtained
by using the Gaver-Stehfast algorithm. [32-34] derived the
formula given below. By this method, the inverse f(t) of
Laplace transform f̄(s) is approximated by

f (t) =
log2

t

k∑
j=1

D (j,K)F

(
j
log2

t

)
with

D (j,K) = (−1)
j+M×

min(j,M)∑
n=m

nM (2n)!

(M − n)!n! (n− 1)! (j − n)!(2n− j)!
,

WhereK is an even integer, whose value depends on the word
length of the computer used. M = K/2 and m is an integer
part of (j + 1)/2. The optimal value of K was chosen as de-
scribed in the Gaver-Stehfast algorithm for fast convergence
of results with desired accuracy. The Romberg numerical in-
tegration technique (Press et. al. [35]) with variable step size
was used to evaluate the results involved.

VIII. NUMERICAL RESULTS AND DISCUSSION

The mathematical model is prepared with copper ma-
terial for purposes of numerical computation. The mate-

rial constants for the problem are taken from Dhaliwal and
Singh [36].

λ = 7.76× 1010Nm−2,

µ = 3.86× 1010Nm−2,

K = 386JK−1m−1s−1,

β1 = 5.518× 106 Nm−2deg−1,

ρ = 8954 Kg m−3,

a = 1.2 × 104m2/s2k,

b = 0.9 × 106m5/kg s2,

D = 0.88 × 10−8kg s/m3,

β2 = 61.38× 106 Nm−2deg−1

T0 = 293K,

CE = 383.1 J kg−1 K−1

The graphs have been plotted to study the effect of two temper-
atures on a dual phase lag thermal (DPLT) model and a single
phase lag thermal (SPLT) model on the various quantities in
the range 0 ≤ r ≤ 10.

1. In the figures th solid line corresponds to the dual-
phase-lag of heat transfer with two temperature (DPLT,
a = .06).

2. The small dashed line corresponds to the single -
phase-lag of heat transfer with two temperature (SPLT,
a = .06).
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Fig. 3. Variation of stress component σzz with distance r Fig. 4. Variations of stress component σrz with distance r

Fig. 5. Variation of conductive temperature φ with distance r Fig. 6. Variations of temperature change T with distance r
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Fig. 7. Variations of cubic dilatation e with distance r Fig. 8. Variations of stress component σrr with distance r

3. The solid line with a centre symbol circle corresponds
to dual-phase-lag of heat transfer without two tempera-
ture (DPLT, a = 0).

4. The small dashed line with a centre symbol diamond
corresponds to single-phase-lag of heat transfer with
two temperature (SPLT, a = 0).

Fig. 1. exhibits variations of displacement component ur
with distance r. Here we notice that, away from the load-
ing surface, DPLT and SPLT follow opposite oscillatory be-
haviour corresponding to both the cases, i.e. with two temper-
ature and without two temperature. Fig. 2 shows variations
of displacement component uz with distance r. It is noticed
that variations of uz owing to DPLT corresponding to both
the cases decrease as r increases. Amplitude of oscillation
corresponding to SPLT is greater as compared to DPLT; how-
ever, the behaviour is opposite oscillatory for the whole range
corresponding to the models DPLT and SPLT. DPLT (SPLT)
models, with two temperature and without two temperature,
follow similar oscillatory trends with change in amplitude
of oscillation. Fig. 3. shows Variation of stress component
σzz with distance r. We find that there is a sharp increase
for the range 0 ≤ r ≤ 2 in σzz corresponding to DPLT in
both the cases a = 0 and a = .06 and trends are oscillatory
with a decrease in amplitude. Corresponding to the case of
SPLT, for a = 0 and a = .06, trends are similar oscillatory
with a difference in amplitude. However, DPLT and SPLT
show opposite oscillatory trends. Fig. 4. gives variations of
stress component σrz with distance r. It is evident from this
figure that there are small variations in σrz corresponding
to DPLT and SPLT for a = .06, whereas for a = 0, the

pattern is opposite oscillatory. Fig. 5. gives variation of con-
ductive temperature φ with distance r. Here in this case we
notice that either there are sudden increases and decreases
or there are small variations. Here descents are observed at
the points r = .5 and r = 2.5 and hikes are observed at the
points r = 6.5 and r = 9. With two temperatures there are
hikes and descents while without two temperature there are
small variations. Fig. 6. exhibits Variations of temperature
change T with displacement r. Here there is a hike at the
point r = 1 and descents at the points r = 2.5, r = 4.5,
r = 6.5 and a small hike is observed at r = 9 and small
variations are observed for the remaining range except the
small neighbourhoods of these points. Fig. 7 shows Variations
of cubic dilatation e with displacement r. Here, also either
are small variations or sudden increase and decrease. Fig. 8.
exhibits variations of stress component σrr with distance r.
Here opposite trends are observed corresponding to the cases
of without two temperature and with two temperature. As it
is evident that without two temperature there is a descent at
the point .5 whereas there is a hike at the same point in case
of two temperature. While comparing the effect of phase lags,
the trends are similar in both cases.

IX. CONCLUSION

From the graphs it is evident that:
(i) There is a significant impact of two temperatures and

phase lags (DPLT and SPLT ) on behaviour of defor-
mation on various components of stresses, components
of displacement, conductive temperature, temperature



Effect of Two Temperatures and Thermal Phase-lags in a Thick Plate due to a Ring Load with Axisymmetric Heat Supply 161

change and cubic dilatation in the ring.
(ii) DPLT(SPLT) for a = 0 and a = .06 follow opposite

oscillatory trends in case of ur, uz , σrz, σrr and σzz .
While from the graphs of φ, e, T the trends of DPLT
and SPLT in both the cases a = 0 and a = .06 are
observed to be similar oscillatory.

(iii) We notice from σrr, φ, e, T that either the varia-
tions are very small or result in sudden hikes and
dumps whereas in the rest of the cases variations move
smoothly.

(iv) The use of thermal phase-lags in the heat conduction
equation gives a more realistic model of thermoelastic
media as it allows a delayed response to the relative
heat flux vector.

The result of the problem is useful in the two dimensional
problem of dynamic response due to various thermal and me-
chanical sources which has various geophysical and industrial
applications.
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