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Abstract: Assembler Encoding is a neuro-evolutionary method which represents a neural network in the form of a linear
program. The program consists of operations and data and its goal is to produce a matrix including all the information
necessary to construct a network. In order for the programs to produce effective networks, evolutionary techniques are
used. A genetic algorithm determines an arrangement of the operations and data in the program and parameters of the
operations. Implementations of the operations do not evolve, they are defined in advance by a designer. Since operations
with predefined implementations could narrow down applicability of Assembler Encoding to a restricted class of problems,
the method has been modified by applying evolvable operations. To verify effectiveness of the new method, experiments
on the predator-prey problem were carried out. In the experiments, the task of neural networks was to control a team
of underwater-vehicles-predators whose common goal was to capture an underwater-vehicle-prey behaving by a simple
deterministic strategy. The paper describes the modified method and reports the experiments.
Key words: evolutionary neural networks

I. INTRODUCTION

In recent years, an increasing interest has been noticed
in two domains of the artificial intelligence, i.e. evolutionary
computation and artificial neural networks (ANN). Evolu-
tionary techniques are usually used as global optimization
methods, while in turn, ANNs are applied in such problems
as, for example, approximation, identification, feature ex-
traction, and reinforcement learning. Successes in both do-
mains have promoted a new combined domain called the
neuro-evolution (NE) which uses the evolutionary approach
to search for effective ANNs. The evolution of ANNs pro-
ceeds as the evolution in humans. This means that every net-
work is represented in the form of a genotype, i.e. a chromo-
some or a set of chromosomes. The chromosomes include
all the information necessary to create an ANN. Chromo-
somes representing different ANNs are concentrated in one
or more populations. During evolution, the chromosomes are
replaced with their genetically modified offspring arisen as
a result of executing various genetic operators on parental

chromosomes. Using the rule whereby the genetic material
of better chromosomes, i.e. chromosomes encoding better
ANNs, has a greater chance to survive than the genetic ma-
terial of worse chromosomes, leading to better and better
ANNs generated within evolution.

There are a lot of NE methods (e.g. [3, 6, 7, 11-14, 24]).
In principle, all the existing methods can be divided into two
main classes, i.e. direct and indirect methods. As for the di-
rect ones, all the information necessary to create an ANN
(e.g. weights, number of neurons, number of layers) is di-
rectly stored in chromosomes. This way, to encode complex
networks complex chromosomes are necessary, which is the
main drawback of the direct methods. In turn, in the indirect
methods, chromosomes are recipes how to create a network.
Such methods can encode complex neural architectures by
means of relatively short chromosomes.

One of the indirect methods is Assembler Encoding
(AE). It originates from the cellular [6] and edge encoding
[11], although it also has features common with Linear Ge-
netic Programming presented, among other things, in [8, 15].
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Fig. 1. Using AE to create ANN [20]

In AE, an ANN is represented in the form of an Assembler
Encoding Program (AEP) whose structure is similar to the
structure of a simple assembler program. The AEP is com-
posed of two parts, i.e. a part including operations and a part
including data. The task of each AEP is to create a Network
Definition Matrix (NDM) which includes all the information
necessary to produce a network. During operation, the AEP
runs subsequent operations which gradually modify NDM.
When working, each operation can use data located at the
end of AEP. In AE, the process of ANN construction con-
sists of three stages (see Fig. 1): first, a genetic algorithm
(GA) is used to form a population of AEPs, next, each AEP
creates and fills up its own NDM, and finally, the matrices
are transformed into ANNs.

In the classic variant of AE (e.g. [19, 21, 22]), imple-
mentations of operations which can be used in AEPs do
not evolve, they are defined beforehand by a designer. Op-
erations can modify rows, columns of NDM, define ANNs
with a layered architecture, produce feed-forward, recurrent,
fully or sparsely connected ANNs. Moreover, they can be
general or adjusted to a problem. Since all the operations are
parametrized, each of them can be used to construct many
different neural architectures. Usually, the parameters of the
operations define topologies of ANNs to be built (which
items in NDMs are modified) and indicate data used by the
operations to determine weights of interneuron connections
(which data are copied into NDMs).

The operations with hand-made implementations are
used during the evolutionary process to form AEPs. A ge-
netic algorithm decides which operations to combine to-
gether, how to arrange selected operations, which values to
assign to input parameters of each operation, and which data
to use in individual operations. Such an approach appeared to

be effective in constructing simple and medium complexity
neural networks, which has been confirmed during series of
experiments (e.g. [19, 21, 22]). Ie same experiments showed,
however, that performance of AEPs with hand-made opera-
tions strongly depends on which operations are available to
the programs during the evolution. Since a designer who se-
lects and implements the operations usually has no a priori
knowledge of that which architectures of ANNs are appro-
priate for a problem to be solved, in most cases he also can-
not determine which operations should be used in AEPs to
effectively form the networks. In this case the only solution
is to experimentally tune the method by testing different con-
figurations of operations and selecting the one with the high-
est effectiveness. Since, however, there are a lot of possible
configurations of operations, the tuning process is usually
laborious and time-consuming.

To avoid such a long-lasting tuning process, Assembler
Encoding with Evolvable Operations (AEEO), modification
of the classic AE which is the subject of the paper, instead of
applying hand-made operations, uses operations whose be-
havior undergoes evolution. In AEEO, the operations take
the form of simple ANNs, say ANNs-operations. As in the
classic variant of AE, the task of ANNs-operations is to mo-
dify the content of NDM. They are run in different areas of
the matrix determining weights of interneuron connections
and other parameters of a resultant ANN. To fix the weights
of the connections (or values of other parameters), output
signals of ANNs-operations supplied with addresses of cor-
responding items in NDM are used. As in the classic variant
of AE, the whole set of ANNs-operations evolves accord-
ing to Cooperative Co-Evolutionary GA (CCEGA) [16, 17].
However, in this case the influence of the evolution on be-
havior of operations does not limit to defining their param-
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Parameters:
Pmax - maximum number of neurons in resulting ANN
MaxV alue - scaling value
Input:
p0,p1,p2,p3 - all operations have four parameters encoded in chromosome
Output:
updated fragment of NDM

column =abs(p0) mod (Pmax + 2)
//2 - two extra NDM columns for ANN parameters
rowInit =abs(p1) mod Pmax

numberOfIterations =abs(p2) mod (Pmax − rowInit)
FOR i = 0 , i ≤ numberOfIterations

row = rowInit+ i
NDMrow,column = D(abs(p3)+i) modDlength

/MaxV alue
END

Fig. 2. Example operation used in AE (NDMi,j is an element of NDM , where i = 1..Pmax, j = 1..Pmax +2, MaxV alue is a scaling
value which scales all elements in NDM to the range < −1, 1 >, Di is ith element of data, Dlength is the length of data)

eters, in AEEO, a modus operandi of ANNs-operations is
completely defined in the evolutionary way.

The solution above is based on Hypercube NeuroEvolu-
tion of Augmented Topologies (HyperNEAT) proposed by
Gauci and Stanley in [4]. In HyperNEAT, ANNs are pro-
duced by other ANNs called Compositional Pattern Produc-
ing Networks (CPPNs) which evolve according to NEAT
[24]. To generate an ANN, its neurons are first placed in n-
dimensional space. Then, weights of connections between
all neurons in the space are determined by a single CPPN.
To fix a weight between a pair of neurons the CPPN is sup-
plied with coordinates of the neurons. An output signal of the
CPPN indicates the weight of the connection. In order for the
CPPNs to be able to generate a diverse neural architectures
they can use different neurons, e.g. Gaussian, sigmoid, sinu-
soid, absolute.

In spite of strong resemblance between HyperNEAT and
AEEO, there are also differences between both methods.
First, HyperNEAT uses a single CPPN to form an ANN
whereas in AEEO a network is produced by many simple,
cooperating ANNs-operations. Second, each CPPN evolves
according to NEAT while ANNs-operations are constructed
with CCEGA. Besides that, there are also other minor differ-
ences between the methods. They mainly relate to the con-
struction of CPPNs and ANNs-operations and interpretation
of their input and output signals.

To test performance of AEEO, experiments on the pre-
dator-prey problem were carried out. During the experi-
ments, the task of AEEO was to produce neuro-controllers
responsible for controlling a team of Autonomous Underwa-
ter Vehicles (AUVs) whose common goal was to capture an
escaping AUV behaving by a simple deterministic strategy.
To obtain a point of reference for AEEO, in the experiments,

AE and NEAT 1 were also used. The choice of NEAT was
mainly dictated by the fact that it seems to be currently the
most successful NE method and therefore a sensible refer-
ence point. Moreover, it is widely applied [1, 2, 10, 24, 25]
and well understood, which means that it can serve as an
indication of the complexity of the testing problem used in
the experiments which is not a standard problem because of
AUVs.

The paper is organized as follows: section 2 is a presen-
tation of the original variant of AE, section 3 is a description
of AEEO, section 4 is a short presentation of NEAT, section
5 is a report on the experiments, and section 6 is a summary.

II. ASSEMBLER ENCODING

As already mentioned, in AE, ANNs are represented in
the form of AEPs and NDMs. The AEP is an ordered set of
predefined operations and data. The task of each AEP is to
create an NDM and to fill in it with values. To this end, the
operations are executed in turn, one after another. Each op-
eration modifies some fragment of the NDM dependent on
type and parameters of the operation (initially, all items in
NDM are set to 0; this means that there are no connections
between neurons). Each AEP is shaped in the evolutionary
way. The evolution decides about an arrangement of the op-
erations and data, and about values of operation parameters.
Implementations of the operations do not evolve, they are
defined beforehand [19].

The NDM is, in principle, a real valued Connectivity Ma-
trix defined in [12]. It stores all the information necessary to
construct a network. This information is included both in the
size and individual elements of the matrix scaled always to

1 C++ implementation of the method available on http://www.cs.ucf.edu/ kstanley/neat.html
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Fig. 3. NDM as Connectivity Matrix [19]

the range < −1, 1 >. The size of NDM determines the max-
imum number of neurons in ANN whereas individual ele-
ments of the matrix define weights of interneuron connec-
tions, i.e. a componenti,j determines a link from neuron i to
neuron j. Apart from the basic part, the NDM also contains
additional columns that describe parameters of neurons, e.g.
type of neuron (e.g. sigmoid, radial, linear), and bias (see
Fig. 3) [19].

The evolution of AEPs proceeds according to CCEGA
proposed by Potter and De Jong [16, 17]. In CCEGA, each
part of a solution evolves in a separate population. To form
a complete solution, selected representatives (usually the
best ones) of each population are combined together. Appli-
cation of this evolutionary scheme in relation to AEPs con-
sists in separate evolution of operations located at various
positions in the programs. The same applies to data which
also evolve in their own population. For example, an AEP
consisting of n operations and a sequence of data evolves in
n populations with operations and one population with data
(see Fig. 4). During the evolution, AEPs expand gradually.

Initially, all AEPs include an initial number of operations
and a sequence of data. When the evolution stagnates, i.e.
lack of progress in fitness is observed over some period, a set
of populations containing the operations is enlarged by one
population. It extends all AEPs by one operation [18].

In individual populations, the evolution proceeds accord-
ing to Canonical GA [5]. Individuals from each population
(either the operations or the data) are encoded in the form
of binary strings. Each chromosome-operation includes bi-
nary encoded parameters and code of the operation (e.g.
01000|11000|01000|00000|00100 represents the following
operation: CHGC0|-1|1|0|2). Chromosomes-data are strings
including binary encoded data [20].

During evolution, each individual is combined with se-
lected individuals from the remaining populations to form
a complete AEP. The program produces an NDM and, in
consequence, an ANN which is then put to an evaluation
test. The result of the test is used to fix fitness for all com-
ponents of the AEP. After the evaluation of all individuals
from a population a tournament selection is used to choose
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Fig. 4. Evolution in AE for n = 3 [20]

parental individuals for reproduction. To form offspring in-
dividuals, the parental ones are subject to three different ge-
netic operations, i.e. one-point crossover, mutation and the
so-called cut-splice whose task is to change the length of the
chromosomes-data.

III. ASSEMBLER ENCODING
WITH EVOLVABLE OPERATIONS

In AEEO, AEPs consist only of operations, the programs
do not use data. As mentioned above, the operations take the
form of ANNs which in AEEO are called ANN-operations.
The architecture of ANN-operations is determined by a de-
signer as well as in the evolutionary way. The number of
input and output neurons is adjusted to the task of ANN-
operations, the number of hidden neurons is determined by
a designer whereas topology and weights of interneuron con-
nections are defined in chromosomes. In order to enable the
ANN-operations to construct diverse neural architectures,
they can include various types of neurons, e.g. sigmoid, ra-
dial, linear, and sinusoid.

As in AE, evolution of the AEPs proceeds according
to CCEGA, complete programs are sequences of ANN-
operations from different populations. An AEP consisting
of n ANN-operations evolves in n separate populations, the
first ANN-operation comes from the first population, the sec-
ond operation from the second population, and so forth.

At the genotypic level, each ANN-operation is repre-
sented in the form of a variable length chromosome consist-
ing of two parts. The first short part defines topology of the
ANN-operation whereas the second part includes its param-
eters. Construction of an ANN-operation proceeds in three
phases. First, topology of the ANN-operation is determined
based on the information contained in the first part of the

chromosome. To this end, binary values from this part are
directly copied into NDM, a single bit corresponds to a sin-
gle item in the matrix. When the number of bits is insuffi-
cient to completely fill in the matrix, the whole sequence of
bits is used again. In the next phase, the parameters from the
second part of the chromosome are successively introduced
into NDM. In this case, only items equal to one are modi-
fied. The remaining items, i.e. items equal to zero, remain
intact. As before, transfer of the parameters is performed in
a loop until all the elements in NDM have an value assigned
(see Fig. 6). In the last phase, NDM is transformed into an
ANN-operation.

CHGM0|59|-11|53|37


CHGM1|48|15|30|-3


CHGM1|-32|-20|29|7


Data:-34|-8|-46|46|58|-57|-4|-48|-1|52|-12|


-54|-7|40|35|23|-47|1|47|38|32|-46|55|-22|17


(a)

Operations:


0011000 0110111 1110100 0101011 0101001

1101110 0000011 0111100 0011110 1110000


0101000 1000001 1001010 0101110 0111000


Data:


1010001 1000100 1011101 0011101 0010111


1100111 1001000 1000011 1100000 0001011


1001100 1011011 1111000 0000101 0110001

0111010 1111101 0100000 0111101 0011001


0000001 1011101 0111011 1011010 0100010


(b)
Fig. 5. Phenotypic (a) and genotypic (b) representation of an exam-

ple AEP constructed with AE
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In the paper, three different variants of AEEO are pro-
posed, say AEEO1, AEEO2 and AEEO3. In all the variants
there is no communication between ANN-operations, they
simply modify the same NDM, one item of the matrix af-
ter another, and they receive the same fitness for their work.
Since, as it turned out in the experiments reported in [23],
the ability to produce NDMs with a content loosely scat-
tered throughout the matrix (such NDMs represent ANNs
with a sparse connectivity) is a very important property of
AEPs, AEEO has been especially designed to have such abil-
ity. In AEEO1 and AEEO3, ANN-operations move through
all items in NDM and each time they decide whether to up-
date a given item or not, initially, as in AE, all items are
set to 0, which means that there are no connections between
neurons. In turn, in AEEO2, each ANN-operation "jumps"
only to selected items assigning a value to each of them, the
items unvisited by ANN-operations remain 0. A detailed de-
scription of all the three variants of AEEO is given in the
following sections.
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III. 1. AEEO1

In AEEO1, ANN-operations are activated one after an-
other as operations in AE. Each ANN-operation is separately
run for each item in NDM. Each of them has two inputs, two
outputs and an assumed number of hidden neurons. The in-
puts indicate an item in the matrix to be modified (number
of row and column) whereas the outputs determine its value.
The first output decides whether to modify the item or not
whereas the second output determines a new value for the
item. The value from the second output is copied into NDM
if the signal from the first output is greater than an assumed
threshold (see Fig. 7). A detailed algorithm of AEEO1 is pre-
sented in Fig. 9.
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Fig. 7. Example operation of AEP in AEEO1 (ANN-oper1 mod-
ifies NDMi,j , value x is inserted into the matrix because y >
threshold, the operation tries to modify all items in NDM , i, j –

inputs, x, y – outputs of ANN–oper1)
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Fig. 8. Example operation of AEP in AEEO2 (ANN-oper1 modifies
NDMi,j , value x is inserted into the matrix, the operation modi-
fies only selected items in NDM , k,m indicate an item modified
in the previous step, i, j, x – outputs, k,m – inputs of ANN-oper1)

III. 2. AEEO2
In AEEO2, ANNs-operations are activated one after an-

other as operations in AE and AEEO1. In contrast to the pre-
vious solution, each ANN-operation is run exclusively for
selected items in NDM, "jumping" from one to the other
and modifying their values. To select items for modification,
two separate outputs of an ANN-operation are used. Each
ANN-operation has two inputs and three outputs. The out-
puts indicate items for modification and determine their val-
ues whereas the inputs indicate items modified in previous
steps. Initially, the inputs of each ANN-operation are set to
zero. After activation of the network, the first two outputs
point out the first item to be updated whereas the third out-
put determines a new value for the item. In the next step, the
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Parameters:
T - threshold
Pmax - maximum number of neurons in resulting ANN
Input:
set of ANN-operations
LANN−oper - number of ANN-operations
Output:
NDM - network NDM

InitiateNDM(0)//all items in NDM are set to 0
FOR l = 1 , l ≤ LANN−oper

FOR i = 1 , i ≤ Pmax

FOR j = 1 , j ≤ Pmax + 2
//2 - two extra NDM columns for network parameters

IF ANN l
2(i, j) > T

//ANN l
k(i, j) - kth output of lth ANN-operation

//i and j are inputs to network
NDMi,j = ANN l

1(i, j)
END

END
END

END

Fig. 9. Using ANN-operations to form NDM in AEEO1

Parameters:
Pmax - maximum number of neurons in resulting ANN
S - maximum number of iterations
Input:
set of ANN-operations
LANN−oper - number of ANN-operations
Output:
NDM - network NDM

InitiateNDM(0)
FOR l = 1 , l ≤ LANN−oper

k = 0
m = 0
FOR i = 1 , i ≤ S

NDMANNl
1(k,m),ANNl

2(k,m) = ANN l
3(k,m)

//integer values are assigned to k and m
k = (integer)PmaxANN l

1(k,m)
m = (integer)(Pmax + 2)ANN l

2(k,m)
END

END

Fig. 10. Using ANN-operations to form NDM in AEEO2

first two outputs of the ANN are introduced into its inputs.
After the next activation of the network its outputs are used
to modify the next item. This process continues for an as-
sumed number of steps (see Fig. 8). A detailed algorithm of
AEEO2 is presented in Fig. 10.

III. 3. AEEO3
In AEEO3, each ANN-operation has two inputs and

three outputs, the inputs indicate an item in NDM updated
by the operation whereas the outputs are used for three dif-
ferent purposes, i.e. to determine a negotiation strength of
each ANN-operation, to determine whether the item should
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by modified or should not, and to determine a new value
for the item. Whereas in AE, AEEO1 and AEEO2 various
operations can have influence on the same items in NDM
(each operation works independently of other operations), in
AEEO3 each item is modified by a different operation. To
indicate which ANN-operation should determine the value
of a given item, negotiation outputs of all networks are com-
pared. An ANN-operation with the highest output signal is
entitled to modify the item. In order for the item to be up-
dated, the second output of the selected ANN-operation is
tested. If the output value is greater than an assumed thresh-
old the item gets the value from the third output of the ANN-
operation (see Fig. 11). A detailed algorithm of AEEO3 is
presented in Fig. 12.
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j
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x2
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Fig. 11. Example operation of AEP in AEEO3 (ANN-oper1 modi-
fies NDMi,j , value x1 is inserted into the matrix because y1 >
threshold and the negotiation strength of ANN-oper1 – z1 is
greater than strengths of other ANNs-operations, the operation tries
to modify all items in NDM , i, j – inputs, x1, y1, z1 – outputs of

ANN-oper1)

Fig. 13. Structure of chromosome in NEAT [24]

IV. NEUROEVOLUTION OF AUGMENTING
TOPOLOGIES

In contrast to AE and AEEO, evolution of ANNs in
NEAT proceeds within a single population. Each chromo-
some from that population is composed of two parts (see

Fig. 13) wherein a single ANN is directly encoded. The first
part of a chromosome informs about the number of neu-
rons and about the role of each of them, i.e. which neuron
is input, output or a hidden neuron. The second part deter-
mines connectivity in ANN. Each gene in this part includes
the information about the source, destination and weight of
a connection. Moreover, it also includes the so-called inno-
vation number indicating a moment of the evolution when
the gene is created. The innovation numbers are used for
two purposes, i.e. to increase efficiency of crossover so that
it could produce meaningful offspring, and to divide chro-
mosomes into species. The main goal of the division into
species is to protect innovations appearing during the evolu-
tion and to sustain structural diversity. Since new structures
compete within their own species they have time to be opti-
mized before they have to compete with more fit individuals
from other species. A key feature of NEAT is also increasing
complexity of ANNs over the course of evolution. NEAT be-
gins with a population of small, simple ANNs and then adds
to them next neurons and connections using structural muta-
tions for that purpose.

V. EXPERIMENTS

In order to test effectiveness of AEEO, experiments on
the predator-prey problem were carried out. In the experi-
ments, the task of each ANN was to control a team of AUVs-
predators whose common goal was to capture a single AUV-
prey behaving by a simple deterministic strategy. The experi-
ments were carried out in simulation and in the configuration
with one prey nd three chasing predators. Both the predators
and the prey were implemented as AUV "Ukwial" (see Fig.
14) [9]. The behavior of all the vehicles was simulated by
means of a discrete time model described in [21].

Fig. 14. Vehicle "Ukwial" [21]
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Parameters:
T - threshold
Pmax - maximum number of neurons in resulting ANN
Input:
set of ANN-operations
LANN−oper - number of ANN-operations
Output:
NDM - network NDM

InitiateNDM(0)
FOR i = 1 , i ≤ Pmax

FOR j = 1 , j ≤ Pmax + 1
FOR l = 1 , l ≤ LANN−oper

nsl = ANN l
1(i, j) //negotiation strength

END
win = Index(ns) //index of winner ANN-operation
IF ANNwin

2 (i, j) > T
NDMi,j = ANNwin

3 (i, j)
END

END
END

Fig. 12. Using ANN-operations to form NDM in AEEO3

In the experiments, the predators and the prey lived in
a common artificial environment. To represent the environ-
ment, a square of 100×100 meters was used (see Fig. 15: to
simplify calculations, both the predators and the prey could
not submerge under the surface of the water). The environ-
ment did not contain any obstacles. In order to ensure infi-
nite space for the predators and the prey and for their strug-
gles, the environment was open at each side. Thus, every at-
tempt to move beyond upper, lower, right or left border of the
square caused the object to make such an attempt to move to
the opposite side of the environment [21].

Fig. 15. Artificial world for predators and prey [18]

The predators were controlled by a single ANN whose
task was to determine a movement direction for each of
them. At each time step, an ANN decided about the change
of the current course of each vehicle. The course could be
changed by: 0, 5, 10, . . . , 355 degrees (it is necessary to note
that decisions of ANN determined only a final state of the
vehicles which they ultimately should reach, while the real
course after the maneuver and duration of the complete ma-
neuver depended on current parameters of each vehicle).
The speed of the predators was constant during the tests and
amounted to 0.5 m/s.

In the experiments, two types of prey were used, i.e.
a simple and an advanced prey. The strategy of the simple
prey forced it to stand still when no predator was closer to
it than its range of vision (the range of vision of the prey
amounted to 50 meters) and to move directly away from the
nearest predator otherwise. In contrast to the simple prey,
the advanced one always took into account all visible preda-
tors. As before, it started to move only when some predators
were noticed. To determine the direction of the next move,
the first activity of the advanced prey was to calculate a sin-
gle position representing all predators in its close proximity.
The closer the predator was to the prey, the greater its influ-
ence was on the calculated position. In the following step,
the "common" position of the predators was treated as the
position of the closest (virtual) predator and the strategy of
the simple prey was used thereafter [21].

When moving, each prey could select the same actions
as the predators. The speed of the preys also amounted to
0.5 m/s. Since speed of the predators was the same as speed
of the escaping prey, they could not simply chase it to grasp
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it. We assumed that the prey was captured if the distance be-
tween it and the nearest predator was lower than 10 meters.

In all the experiments, ANNs had six inputs and three
outputs. The number of outputs corresponded to the num-
ber of predators. In turn, the number of inputs was twice
the number of predators. Each output gave commands to
one predator. In turn, each input informed about vertical or
horizontal distance between the prey and one of the preda-
tors [21].

V. 1. Evaluation of ANNs

In order to evaluate ANNs, ninety different testing sce-
narios were applied. The first thirty scenarios were used to
"learn" ANNs. The remaining ones were applied in a gen-
eralization phase to evaluate prepared ANNs in terms of
their capability to generalize knowledge acquired during the
"learning" phase. Individual scenarios differed in an initial
position of the prey (see Fig. 16), the number of steps the
predators could make to capture the prey, and the type of
the prey (simple or advanced). Consecutive scenarios were
more and more difficult. Initially, the predators had to cap-
ture the simple prey and they could make 40 steps, which
means 40 decisions of ANNs (400 seconds for a chase, one
step took 10 seconds). The predators which passed the first
exam had to do the same but in 30 steps. In the next sce-
nario, the maximum number of steps which the predators
could make to capture the prey was decreased once again,
this time to 20 steps. The predators which captured the prey
in all the previous scenarios had to face the advanced prey.
As before, they had to perform their task first in 40, then in
30, and finally in 20 steps. The main purpose of gradual re-
duction of the number of steps which predators could make
to capture the prey was to ultimately obtain the chase strat-
egy without unnecessary moves and wandering. The preda-
tors should finally be able to quickly organize a chase and
effectively cooperate in order to capture the prey.

In all the scenarios, starting positions of all three preda-
tors were the same. The predators always started from posi-
tion (0,0). All the scenarios are described in Tab. 1.

To measure effectiveness of each ANN, the following
evaluation functions (or fitness functions) were used:

f(ANN) =

n∑
i=0

fi (2)

f l
i =



dmax −min
p

di(p), prey not captured in

ith scenario

fcaptured + (80−mi)/a, prey captured in

ith scenario

0, prey not captured in previous scenario

(3)

fg
i =


dmax −min

p
di(p), prey not captured in

ith scenario

fcaptured + (80−mi)/a, prey captured in

ith scenario

(4)
where

f l
i – reward received in ith learning scenario

fg
i – reward received in ith generalizing scenario

di(p) – distance between prey and predator p in end
state of ith scenario

dmax – maximum distance between two points in en-
vironment

fcaptured – extra reward for grasping prey in single sce-
nario (fcaptured = 100)

mi – number of steps to capture prey (mi ≤ 40, 30
or 20)

a – this value prevents situation in which partial
success is better than success in all scenarios

n – number of scenarios ("learning" phase: n =
30, generalization phase: n = 60).

(a)

(b)

Fig. 16. Starting positions of prey in learning (a) and generalizing
(b) scenarios

V. 2. Experimental results
In the beginning of the experiments, all the compared

methods were tuned to the problem. To this end, each of
them was run many times for different parameter settings
(see Appendix). For one setting thirty evolutionary runs were
carried out. Results obtained for the best setting were then
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Tab. 1. Description of scenarios used in the experiments

no. of scenario max no. of steps type of prey initial positions

1-5 40 simple

Fig. 19(c) (learning scenarios)

6-10 30 simple

11-15 20 simple

16-20 40 advanced

21-25 30 advanced

26-30 20 advanced

31-40 40 simple

Fig. 19(d) (generalizing scenarios)

41-50 30 simple

51-60 20 simple

61-70 40 advanced

71-80 30 advanced

81-90 20 advanced

used to compare the methods. The comparison was made
based on three criteria. First, the learning ability, i.e. the abil-
ity to evolve effective neural solutions, was tested. Second,
ANNs were also analyzed in terms of their capability to gen-
eralize knowledge acquired during the evolutionary process.
To this end, each ANN was tested on tasks which were not
presented to them before.

Since the main motivation to design AE and AEEO was
the need for the method capable of building complex neuro-
controllers for a team of underwater vehicles operating au-
tonomously in order to perform a common task or even
a number of tasks, both related methods were also compared
in terms of their predisposition to build complex neural ar-
chitectures. It was assumed that in order for a method to
have such a predisposition, first of all, it has to be able to
represent elaborate networks in a compact form or in other
words, it has to have the potential for phenotypic-genotypic
compression. Simply we recognized that it is impossible to
evolve complex networks at the level of equally complex
genotypes, and to this end, compact representation is nece-
ssary. To measure the compression, the following formula
was used:

Comp(ANN) = Size(ANN)/Size(AEP) (5)

where

Size(ANN) – number of NDM items necessary to define
ANN (since in the experiments all NDMs
were of size 13x15 and all neuro-controllers
were feed-forward, to define each each of
them 91 NDM items were necessary – all
the items above the diagonal of NDM),

Size(AEP) – number of 7-bit integer genes in AEP en-
coding ANN.

Since NEAT is a direct method which directly maps all pa-
rameters of an ANN into a genotype (one-to-one mapping,
each parameter of an ANN has a counterpart in a geno-
type), it was not subject to phenotypic-genotypic compres-
sion analysis.

Results of the experiments are summarized in Tab. 2.
Generally, they showed that all the variants of AEEO out-
perform rival methods in terms of both the learning ability
and generalization ability of ANNs. Particularly significant
is a greater effectiveness of AEEO compared to NEAT which
is currently one of the most successful NE methods. Despite
the fact that ANNs produced with NEAT were in most cases
much more complex than those evolved according to AEEO,
they also appeared to be definitely less successful in control-
ling AUVs than the latter. Even though NEAT-ANNs were
gradually expanded within the evolution, which should ad-
just them to the problem, increase in their complexity, in
most cases, did not harmonize with increase in their effec-
tiveness.

Due to similar mechanisms applied in AE and AEEO,
ANNs produced in both cases were of similar complex-
ity. A different approach to constructing operations con-
tributed, however, to differences in performance of both re-
lated methods. It appeared that the solution in which evo-
lution is mainly responsible for constructing operations is
more efficient than hand-made operations. This is confirmed
by the results of all the AEEO variants, each of them pro-
duces ANNs in a slightly different way, nevertheless, their
efficiency is evidently higher than other methods. ANNs-
operations have generally a greater freedom in producing di-
verse neural architectures than their counterparts from AE.
Operations used in the classic AE work within the bounds
determined mainly by their implementations. They cannot
change NDMs in the way different from that imposed by
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Tab. 2. Results of experiments (LPh – learning phase, GPh – generalization phase; e.g. fitness 2888.34 means 28 scenarios in which prey
was captured, on average; complete success means that prey was grasped in all learning or generalizing scenarios)

AEEO1 AEEO2 AEEO3 AE NEAT

average fitness LPh 2812.24 2831.42 2888.34 2582.2 2598.54

max fitness LPh 3020.25 3020.75 3021.31 3020.43 3018.22

min fitness LPh 1812.1 1911.14 1911.09 1811.34 1309.3

% of evolutionary runs ended with complete success 60% 62% 67% 27% 30%

average fitness GPh 3787.23 4039.21 4243.93 3399.57 2943.45

max fitness GPh 5422.76 5543.63 5856.08 5438.04 4831.86

min fitness GPh 1334.82 1765.16 1574.38 651.12 834.5

% of complete successes in generalization phase 0%

average compression 3.03 3.51 3.04 2.08

max compression 7 15.16 10.11 3.37

min compression 1.02 1.01 0.98 1.38

1st ANN-operation 0100110 0110101 0011100
2nd ANN-operation 0100110 0011011 1111100 1100100 0001110 0100000 0111100 0001110 1001101

0010001 0010011 1001010 1111101 1100011 0101011 1100011 0001110
(a) AEP including two ANNs-operations (binary chromosomes)

0 0.68254 0 0 0.222222 0.68254 0 0 0.222222 0 0
0.68254 0.222222 0 0 0.68254 0 0 0.222222 0.68254 0 0
0.222222 0 0 0.68254 0.222222 0 0 0.68254 0 0 0.222222
0.68254 0 0 0.222222 0 0 0.68254 0.222222 0 0 0.68254

0 0 0.222222 0.68254 0 0 0.222222 0 0 0.68254 0.222222
0 0 0.68254 0 0 0.222222 0.68254 0 0 0.222222 0
0 0.68254 0.222222 0 0 0.68254 0 0 0.222222 0.68254 0
0 0.222222 0 0 0.68254 0.222222 0 0 0.68254 0 0

(b) NDM representing 1st ANN-operation

0 0.857143 0 0 -0.238095 -0.142857 0 0 0.444444 0 0
0.015873 0.238095 0 0 0.444444 0 0 -0.698413 0.539683 0 0
0.793651 0 0 -0.31746 -0.746032 0 0 -0.777778 0 0 0.84127
-0.777778 0 0 0.444444 0 0 0.857143 -0.238095 0 0 -0.142857

0 0 0.444444 0.015873 0 0 0.238095 0 0 0.444444 -0.698413
0 0 0.539683 0 0 0.793651 -0.31746 0 0 -0.746032 0
0 -0.777778 0.84127 0 0 -0.777778 0 0 0.444444 0.857143 0
0 -0.238095 0 0 -0.142857 0.444444 0 0 0.015873 0 0

(c) NDM representing 2nd ANN-operation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.93074 -0.877612 -0.198116 0.632555 0.999997 0.62831 -0.207981 -0.89048 -0.914514 -0.26231 0.583859 0.998293 0.67454 -0.148002 -0.861104
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -0.318218 0.622389 -0.851968 0.979442 -0.989532 0.881029 -0.666938
0 0 0 0 0 -0.659367 0.363511 -0.0240899 -0.318218 0.622389 -0.851968 0.979442 -0.989532 0.881029 -0.666938

-0.916548 -0.888167 -0.203031 0.632236 0.999997 -0.659367 0.363511 -0.0240899 -0.318218 0.622389 -0.851968 0.979442 -0.989532 0.881029 -0.666938
0 0 0 0 0 0 0.363511 -0.0240899 -0.318218 0.622389 -0.851968 0.979442 -0.989532 0.881029 -0.666938
0 0 0 0 0 0 0 -0.0240899 -0.318218 0.622389 -0.851968 0.979442 -0.989532 0.881029 -0.666938
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(d) NDM representing final ANN

Fig. 17. Example effective AEEO1-AEP

a designer. In the case of ANNs-operations, we deal with a
different situation. Their behavior mainly depends on deci-
sions made during the evolutionary process and is adjusted
to a problem to be solved. In this case, there are not any
rigid operational schemes imposed from the outside. Obvi-
ously, ANNs-operations are also restricted with the maxi-

mum number of neurons and possible types of neurons, but
these limitations seem to be significantly lighter than the
ones being the result of one fixed operational scheme.

In addition to implementations defined beforehand, also
a limited range of values introduced into NDMs confines
classical operations. Before transfer to NDM, each element
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1st ANN-operation 0010000 1010111 1000101 1001100 0110000 0101010
2nd ANN-operation 0001001 0000101 1111111 1001101 0110100 0110000 0010110 1100111 0111111

0010100 1010010 1101111 1100101 0000110 1001111 1110111 0100100
(a) AEP including two ANNs-operations (binary chromosomes)

0 0 -0.920635 0 0 0 0 0 0 -0.634921 0 0
0 0 0 0 -0.190476 0 0 0 0 0 0 0.047619
0 0 0 0 0 0 0.333333 0 0 0 0 0
0 -0.920635 0 0 0 0 0 0 -0.634921 0 0 0
0 0 0 -0.190476 0 0 0 0 0 0 0.047619 0
0 0 0 0 0 0.333333 0 0 0 0 0 0

-0.920635 0 0 0 0 0 0 -0.634921 0 0 0 0
0 0 -0.190476 0 0 0 0 0 0 0.047619 0 0
0 0 0 0 0.333333 0 0 0 0 0 0 -0.920635

(b) NDM representing 1st ANN-operation

0 0 0 0.634921 0 0 -1 0 0 0 -0.698413 0
0 0.174603 0 0 0 0.047619 0 0 0.412698 0 0 0

-0.904762 0 0 1 0 0 0 0.15873 0 0 -0.285714 0
0 0 -0.968254 0 0 -0.650794 0 0 0 0.380952 0 0

-0.952381 0 0 0 -0.936508 0 0 0.142857 0 0 0 0.634921
0 0 -1 0 0 0 -0.698413 0 0 0.174603 0 0
0 0.047619 0 0 0.412698 0 0 0 -0.904762 0 0 1
0 0 0 0.15873 0 0 -0.285714 0 0 0 -0.968254 0
0 -0.650794 0 0 0 0.380952 0 0 -0.952381 0 0 0

(c) NDM representing 2nd ANN-operation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.978583 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -3.57197 0 0 0 -3.48575 0 0 -3.69786 -3.52408 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.655481 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.263117 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.414901 0 0 0 0

(d) NDM representing final ANN

Fig. 18. Example effective AEEO2-AEP

of data encoded as a binary string is first decoded into an
integer and then scaled into the range < −1, 1 >. In conse-
quence, repertoire of ANNs which can be produced with AE
is restricted only to the ones whose weights of interneuron
connections are from the mentioned range.

In the case of ANNs-operations, such a problem does not
exist. Since they can also contain linear neurons, the range
of values introduced into NDMs is, in this case, in principle
unlimited. This, in turn, means that ANNs constructed with
ANNs-operations are more "plastic" than the ones produced
with the classic operations and in consequence they can be
more easily adjusted to a problem than the latter.

In the generalization phase, results of most ANNs, re-
gardless of the constructing method, corresponded to the
ones achieved in the learning phase. Better preparation to
a task during the evolutionary process resulted in better ef-
fectiveness in the generalization tests. There were a number
of ANNs which were an exception to this rule, particularly
ANNs produced with NEAT. Their complexity was in most
cases very high, which seems to be the main cause of their
problems with overfitting and a poor generalization.

As for the comparison of the various variants of AEEO,
the experiments showed that AEEO3 is the most effective
of them. ANNs produced by AEEO3, both in the learning
and generalization phase, coped with their task best. This is

particularly evident when comparing percent of evolution-
ary runs ended with complete success in the learning phase
of the experiments. In this case, as many as 67% of ANNs
produced by AEEO3 grasped the prey in all the learning sce-
narios, AEEO1 and AEEO2 achieved a slightly worse result,
namely, 60 and 62% of complete successes, respectively.
Since all the AEEO variants use the same ANN-operation
encoding method, the only explanation of the above result is
the difference in the method of cooperation between ANN-
operations applied in individual variants. In AEEO3, only
one ANN-operation can update an NDM item, the opera-
tions do not interfere with each other, none of them can
cover the effects of the work of another operation. AEEO1
and AEEO2 are different in this respect, namely, ANN-
operations located further in AEPs, and in consequence run
later can modify items which were previously modified by
ANN-operations preceding them. It means that in AEEO1
and AEEO2 the effect of work of some operations can be
lost. In extreme cases, it may even be a situation when some
ANN-operations will not have any influence on the shape of
a resultant ANN, all their updates will be covered by other
operations.

The experiments with all variants of AEEO also con-
firmed the previous observations on the importance of the
ability to construct NDMs with a distributed content. As the
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1st ANN-operation 1000001 0010111 0101100 1001011
2nd ANN-operation 0111010 1000101 0011011 1111001 1000100

(a) AEP including two ANNs-operations (binary chromosomes)

0.920635 0 0 0 0 0 0.206349 -0.825397 0 0 0 0
0 0.920635 0.206349 0 0 0 0 0 -0.825397 0.920635 0 0
0 0 0 0.206349 -0.825397 0 0 0 0 0 0.920635 0.206349
0 0 0 0 0 -0.825397 0.920635 0 0 0 0 0

0.206349 -0.825397 0 0 0 0 0 0.920635 0.206349 0 0 0
0 0 -0.825397 0.920635 0 0 0 0 0 0.206349 -0.825397 0
0 0 0 0 0.920635 0.206349 0 0 0 0 0 -0.825397

0.920635 0 0 0 0 0 0.206349 -0.825397 0 0 0 0
0 0.920635 0.206349 0 0 0 0 0 -0.825397 0.920635 0 0

(b) NDM representing 1st ANN-operation

0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143 -0.619048 0
-0.126984 0 0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143
-0.619048 0 -0.126984 0 0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0
-0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143 -0.619048 0 -0.126984

0 0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143 -0.619048
0 -0.126984 0 0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921

0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143 -0.619048 0 -0.126984 0
0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143 -0.619048 0

-0.126984 0 0 -0.634921 0.857143 -0.619048 0 -0.126984 0 0 -0.634921 0.857143
(c) NDM representing 2nd ANN-operation

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -2.46364 0 -2.37357 0 0 0 0 0 0 0 0 -0.922691 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.203134 0.356482 -0.500732 0.632236 -0.747593 0.843854 -0.918559 0.969801 -0.996271 0.997292 -0.972839 0.923535 -0.850642 0.756019 -0.642085
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.203031 0 0 -4.92232 0 0 0 0 0 -3.2685 0 0 0 0 -3.26456
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.203031 0.356433 -0.50073 0.632236 -0.747593 0.843854 -0.918559 0.969801 -0.996271 0.997292 -0.972839 0.923535 -0.850642 0.756019 -0.642085
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.203031 0.356433 -0.50073 0.632236 -0.747593 0.843854 -0.918559 0.969801 -0.996271 0.997292 -0.972839 0.923535 -0.850642 0.756019 -0.642085
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(d) NDM representing final ANN

Fig. 19. Example effective AEEO3-AEP

tuning process of the variants revealed, application inappro-
priate values for parameters that control frequency of NDM
updates by ANN-operations, that is, too small values for
a threshold parameter T (see Figs. 9 and 12) and too high
value for parameter S (see Fig. 10), resulted in densely con-
nected ineffective ANNs. Only values close to the maximum
yielded the expected effect in the form of more efficient
ANNs with fewer connections.

Analysis of the phenotypic-genotypic compression
showed that both AE and AEEO demonstrate the ability
to effectively construct ANNs whose NDMs include more
units of information than the corresponding AEPs and their
genotypes. Such a situation took place in almost all analyzed
ANNs. As it turned out, however, AEEO represented resul-
tant ANNs in a more compact form than the classic variant
of AE. The chromosomes representing AEPs were in this
case even ten times smaller in size than the corresponding
ANNs. It seems that such an effect was possible for two
reasons. First, in AEEO, the compression can be two-level.
ANNs can be compressed in two different points, i.e. when
transforming chromosomes into ANNs-operations (repeated
use of information included in chromosomes) and ANNs-
operations into NDMs (simple ANNs-operations can pro-
duce large NDMs and ANNs). Meanwhile, in AE the com-
pression is only possible when converting AEPs into NDMs
(repeated use of information included in chromosomes). The
total size of chromosomes-operations and chromosomes-

data representing AEPs is always the same as the size of the
programs. Second, effective ANNs-operations can usually
be represented in the form of shorter genotypes than their
counterparts from the pure AE. To obtain an effective ANN,
the latter operations need typically many different data. This
is because they simply copy data into matrices. NDMs in this
case can only contain values which occur in the data part of
AEP. The more data is included in the program, the greater is
the repertoire of ANNs which can be produced. Meanwhile
in AEEO, operations are simple ANNs whose output signals
do not depend on the length of their chromosomes and values
memorized therein. In consequence, even simple ANNs en-
coded in short chromosomes can demonstrate very complex
behaviour.

A deeper analysis of the architecture of ANNs produced
by AE and AEEO also revealed that they, in most cases,
contain regularities, that is, repetitions of architectural ele-
ments such as neurons and weights (see Figs. 17, 18 and
19). The differences between individual methods relate to
grounds of regularity and its frequency. Whereas regular-
ity in ANNs evolved according to AE is strictly connected
with the compression and repeated use of the same data by
AEPs, in AEEO, regularity is achieved by using sinusoid,
cosinusoid and radial neurons in ANN-operations. Compar-
ing roughly the frequency of repetitions in ANNs it is nec-
essary to state that it was greater in ANNs produced in the
traditional way. To generate complex ANNs, short classical
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paths of predators

path of prey

starting positions of predators and prey

final positions of predators and prey
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(a)

(b)

Fig. 20. Example strategies of predators to capture prey

AEPs had to repeatedly use the same data, whereas their
counterparts equipped with ANN-operations could achieve
the same effect without resorting to repetitions.

As for strategies of the chase implemented in ANNs, it
turned out that they are in most cases very similar, regardless
of the applied NE method. To capture the prey, the predators
successfully cooperated together, their moves were well or-
ganized and synchronized. All the compared methods mana-
ged to evolve ANNs whose predators performed their task
quickly and efficiently, without unnecessary moves and wan-

dering. When chasing the prey the predators were usually, di-
vided into two separate groups. The first two-member group
was responsible for pushing the prey towards the second
group consisting of one predator. The task of this predator
was to ultimately capture the prey.An example of a typical
behaviour of the predators is depicted in Fig. 20.

It seems that restrictive conditions of a chase were the
main cause of resemblance between strategies evolved by
different NE methods. In order for an ANN to obtain maxi-
mum fitness it had to perform all the learning tasks. A part
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of the tasks required quick decisions and actions from the
predators. There was no room for delays and unnecessary
operations. Since the predators had to capture the prey as
quickly as possible, they in most cases used very similar
strategy close to the optimal one.

VI. SUMMARY

The paper presents a new NE method called Assembler
Encoding with Evolvable Operations. The method was com-
pared with its prototype method, i.e. AE, and with NEAT, on
a variant of the predator-prey problem in which underwater
vehicles played the role of the predators and the prey. Dur-
ing experiments, the task of all the compared methods was
to evolve ANNs responsible for controlling a team of AUVs-
predators whose common goal was to capture AUV-prey
behaving by a simple deterministic strategy. The compari-
son tests showed that AEEO outperforms both rival methods
in terms of the learning ability and phenotypic and geno-
typic complexity. As it turned out, ANNs evolved according
to AEEO were both more effective and phenotypically and
genotypically simpler.

The experiments also revealed that AEEO3 is the most
effective AEEO variant. The method for cooperation be-
tween ANN-operations applied in this variant led to the most
successful ANNs.

Future research will be focused on the application of
AEPs with ANNs-operations as final solutions to a problem.
In this case, the task of ANNs-operations will not be to con-
struct NDM representing a single ANN, but to fill in a simple
vector which will constitute the output of the whole system.
ANNs-operations will collectively decide about the content
of the vector based on input information provided from the
outside. The above-mentioned solution can be viewed as
a modular ANN whose separated modules will not be stiffly
associated with specific outputs or inputs. In the considered
solution, ANNs-operations will cooperate to perform a task.
However, in contrast to many other modular systems, the
way of cooperation between the modules will not be imposed
by a designer. In this case, it will be the role of the evolution.

APPENDIX – PARAMETER SETTING IN THE
EXPERIMENTS

AE and AEEO
number of evolutionary generations = 60 000
probability of crossover = 0.7 in all populations
probability of cut-splice = 0.1 in all populations with vari-
able length chromosomes
size of tournament = 1 in all populations
number of elite individuals = 1 in all populations

hidden neurons in ANNs = maximally 4
type of neurons in ANNs = sigmoid
hidden neurons in ANNs-operations = 4
type of neurons in ANNs-operations = sigmoid, radial, lin-
ear, sinusoid,cosinusoid
no. of subpopulations = 2÷10 (AE), 1÷10 (AEEO)
size of subpopulations = data:100, operations:50 (AE),
50 (AEEO)
no. of integer or binary genes in chromosomes = data:
20 ÷ 40, operations:5 (AE), 7 ÷ 30 (AEEO)
probability of mutation = data:0.01, operations:0.15 (AE),
0.05 (AEEO)

NEAT
number of evolutionary generations=60 000
trait_param_mut_prob=0.5
trait_mutation_power=1.0
linktrait_mut_sig 1.0
nodetrait_mut_sig 0.5
weight_mut_power 1.0
recur_prob 0.0
disjoint_coeff 1.0
excess_coeff 1.0
mutdiff_coeff 7.0
compat_thresh 9.0
age_significance 1.0
survival_thresh 0.4
mutate_only_prob 0.05
mutate_random_trait_prob 0.1
mutate_link_trait_prob 0.01
mutate_node_trait_prob 0.01
mutate_link_weights_prob 0.2
mutate_toggle_enable_prob 0.0
mutate_gene_reenable_prob 0.00
mutate_add_node_prob 0.005
mutate_add_link_prob 0.005
interspecies_mate_rate 0.01
mate_multipoint_prob 0.4
mate_multipoint_avg_prob 0.4
mate_singlepoint_prob 0.0
mate_only_prob 0.2
recur_only_prob 0.0
pop_size 200
dropoff_age 15
newlink_tries 20
print_every 60
babies_stolen 0
num_runs 1

References

[1] T. Aaltonen, et al., Measurement of the top quark mass with
dilepton events selected using neuroevolution at CDF, Phys-
ical Review Letters (2009).



Assembler Encoding with Evolvable Operations 139

[2] B. Allen, P. Faloutsos, Complex networks of simple neurons
for bipedal locomotion, In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (2009).

[3] A. Cangelosi, D. Parisi, S. Nolfi, Cell division and migration
in a genotype for neural networks, Network: computation in
neural systems 5(4), 497-515, (1994).

[4] J. Gauci, K. Stanley, Generating large-scale neural networks
through discovering geometric regularities, In Proceedings of
the Genetic and Evolutionary Computation Conference, pp.
997-1004 (2007).

[5] D. E. Goldberg, Genetic algorithms in search, optimiza-
tion and machine learning, Addison Wesley, Reading, Mas-
sachusetts, 1989.

[6] F. Gruau, Neural network Synthesis Using Cellular Encod-
ing And The Genetic Algorithm, PhD Thesis, Ecole Normale
Superieure de Lyon 1994.

[7] H. Kitano, Designing neural networks using genetic algo-
rithms with graph generation system, Complex Systems 4,
461-476, (1990).

[8] K. Krawiec, B. Bhanu, Visual Learning by Coevolutionary
Feature Synthesis, IEEE Trans. on Systems, Man, and Cy-
bernetics, Part B: Cybernetics 35, 409-425 (2005).

[9] T. Kubaty, L. Rowinski, Mine counter vehicles for Baltic
Navy, Internet,
http://www.underwater.pg.gda.pl.

[10] J. Lehman, K. O. Stanley, Abandoning Objectives: Evolution
through the Search for Novelty Alone, Evolutionary Compu-
tation 19, 189-223 (2011).

[11] S. Luke and L. Spector, Evolving Graphs and Networks with
Edge Encoding: Preliminary Report, In John R. Koza, ed.,
Late Breaking Papers at the Genetic Programming 1996 Con-
ference, (Stanford University, CA, USA, Stanford Bookstore,
1996) 117-124.

[12] G.F. Miller, P.M. Todd, S.U. Hegde, Designing Neural Net-
works Using Genetic Algorithms, Proceedings of the Third
International Conference on Genetic Algorithms. 379-384. of
Schaffer J.D. (1989).

[13] D. E. Moriarty, Symbiotic Evolution of Neural Networks in
Sequential Decision Tasks, PhD thesis, The University of
Texas at Austin, TR UT-AI97-257, (1997).

[14] S. Nolfi, D. Parisi, Growing neural networks, In C. G. Lang-
ton, ed., Artificial Life III, Addison-Wesley, (1992).

[15] P. Nordin, W. Banzhaf, F. Francone, Efficient Evolution of
Machine Code for CISC Architectures using Blocks and Ho-
mologous Crossover, Advances in Genetic Programming III,
MIT Press, L. Spector and W. Langdon and U. O’Reilly and
P. Angeline, pages. 275-299 (1999).

[16] M. Potter, The Design and Analysis of a Computational
Model of Cooperative Coevolution, PhD thesis, George Ma-
son University, Fairfax, Virginia (1997).

[17] M. A. Potter, K. A. De Jong, Cooperative coevolution: An
architecture for evolving coadapted subcomponents, Evolu-
tionary Computation 8(1), 1-29 (2000).

[18] T. Praczyk, Modular networks in Assembler Encoding, Com-
putational Methods in Science and Technology 14(1), 27-38
(2008).

[19] T. Praczyk, Using assembler encoding to solve inverted pen-
dulum problem, Computing and Informatics 28, 895-912
(2009).

[20] T. Praczyk, Forming Neural Networks by Means of Assem-
bler Encoding, Intelligent Automation and Soft Computing
17(3), 319-331 (2011).

[21] T. Praczyk, P. Szymak, Decision System for a Team of Au-
tonomous Underwater Vehicles - Preliminary Report, Neuro-
computing, doi:10.1016/j.neucom.2011.05.013.

[22] T. Praczyk, Solving the pole balancing problem by means of
Assembler Encoding, Journal of Intelligent and Fuzzy Sys-
tems 26, 857-868 (2014).

[23] T. Praczyk, Diverse neural architectures in Assembler En-
coding, Computational Methods in Science and Technology
20(1), 21-34, (2014).

[24] K. O. Stanley, R. Miikkulainen, Evolving neural networks
through augmenting topologies,Evolutionary Computation
10, 99-127, (2002).

[25] K. O. Stanley, R. Miikkulainen, Competitive coevolution
through evolutionary complexification, Journal of Artificial
Intelligence Research 21, 63–100 (2004).

Tomasz Praczyk graduated from the Cybernetics Faculty at the Warsaw Military Uni-
versity of Technology in 1996. In 2002, he defends his doctoral thesis on using neural
networks to identify ship radio stations. In 2002-2006, he still deals with the iden-
tification of the ships and using immune systems for that purpose, moreover, he is
also interested in maritime automatic spare positioning systems. The subsequent years
were working on a new neuro-evolutionary method called Assembler Encoding and
its improvements. The method and previous scientific achievements were the basis
for obtaining in 2013 postdoctoral degree at the Cybernetics Faculty of the Military
University of Technology.

CMST 21(3) 123-139 (2015) DOI:10.12921/cmst.2015.21.03.004


