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Abstract: The paper deals with optimal distribution of the bulk and shear moduli minimizing the compliance of an
inhomogeneous isotropic elastic 3D body transmitting a given surface loading to a given support. The isoperimetric condition
is expressed by the integral of the trace of the Hooke tensor being a linear combination of both moduli. The problem thus
formulated is reduced to an auxiliary 3D problem of minimization of a certain stress functional over the stresses being
statically admissible. The integrand of the auxiliary functional is a linear combination of the absolute value of the trace and
norm of the deviator of the stress field. Thus the integrand is of linear growth. The auxiliary problem is solved numerically by
introducing element-wise polynomial approximations of the components of the trial stress fields and imposing satisfaction of
the variational equilibrium equations. The under-determinate system of these equations is solved numerically thus reducing
the auxiliary problem to an unconstrained problem of nonlinear programming.
Key words: isotropic elasticity, topology optimization, free material design, compliance minimization

I. INTRODUCTION

The problem of optimal designing of structural topology en-
compasses two main problems: a) optimum layout of two
or several materials (e.g. homogeneous isotropic materials)
within a given design domain, or: b) optimum distribution of
selected characteristics of the material properties. In linear
elasticity problems the central functional undergoing mini-
mization in structural optimization is the compliance of the
whole structure, or the work of given loading done on the
displacements caused by the same loading. In problem (a) the
amount of one of the materials can be chosen as the isoperi-
metric condition. In problem (b) the elastic moduli Cijkl
are design variables; the isoperimetric condition should be
expressed in terms of these moduli. A rational choice is to
assume that an integral of a scalar and invariant function of
the moduli is fixed. This scalar function is usually chosen as
the trace of the Hooke tensor.

Problems (a) and (b) are the core of the monographs [1–3].
Problem (a) includes also the shape forming, if one of two
materials is a void. In each case problem (a) needs relaxation.
The relaxed formulation concerning the two material case
has been thoroughly discussed in the mentioned references.
The relaxation of the three material problem (or two materi-
als surrounded by voids) is the subject of the contemporary
research, see [4].

Problem (b) is called Free Material Design (FMD) (or
Free Material Optimization), see [1], if the sought Hooke ten-
sor is subject only to usual symmetry conditions and condi-
tions of semi-positive definiteness. Thus the free material ap-
proach does not introduce constraints on the anisotropy. Some
authors require positive definiteness to prevent from possi-
ble instabilities, which introduces a new parameter into the
design. In case of a single load condition the FMD problem
has been solved by Bendsøe et al. [5]. The optimal tensor C
has only one non-zero eigenvalue. The anisotropy directions
are collinear with principal directions of the stress state, the
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principal directions of strain coincide with the latter. In spite
of the mentioned degeneracy the static problem is solvable
for the given loading, as proved in Werner’s thesis [6] and in
Haslinger et al. [7]. The stress based approach by Czarnecki
and Lewiński [8–10] shows that the FMD problem reduces
to a seemingly simple, but mathematically subtle problem:
minimize a functional of an integrand of linear growth. This
formulation explains why the FMD problem solves simulta-
neously the shape optimization problem: the minimizer of
the mentioned variational problem has a bounded effective
domain whose boundary determines the shape of the optimal
structure, see Fig. 3 in [9]. Thus the solution cuts out the
optimal structure from the given design domain, this solution
being made from the optimal anisotropic and inhomogeneous
material.

To prevent from degeneracy of the optimal Hooke tensor
one can take into account more than one load condition. To
construct the Pareto front one should minimize the convex
combination of the compliances corresponding to the load
conditions, see [10], Secs. 2, 3, 6. It turns out that only six
independent load conditions result in nonzero values of all
eigenvalues of the optimal elasticity tensor in 3D. In 2D case
three load conditions suffice to assure the same property.

Alternatively, one can assume a priori that the design
should be characterized at each point by some material sym-
metries. The strongest assumption of this kind: isotropy is
the subject of the present paper. Thus the aim of the study is
to pose and solve the problem of minimization of the com-
pliance of an inhomogeneous and isotropic body subject to
a single load condition; the design variables are Kelvin and
Kirchhoff moduli, also named bulk and shear moduli and
denoted by k (x) and µ (x), x being a point in a domain Ω.
The tractions on a part of the boundary are prescribed. The
tractions should be transmitted to the other given part of the
boundary, called a support. By analogy with the free material
design proposed in [5] we impose the isoperimetric condition:∫

Ω

tr C dx = Λ (I.1)

where, due to isotropy tr C = 3k + 10µ. A proof will be
delivered that the solution to the problem above is rationally
posed, thus leading to explicit formulae for the optimal mod-
uli k∗, µ∗. The problem above will be referred to as the
Isotropic Material Design (IMD).

The problem above is free of any additional conditions;
the moduli are not viewed as bounded; the integrability condi-
tion due to (I.1) is the only assumed regularity condition. Due
to this setting the moduli of the optimal material can attain
extreme admissible values.

The isotropic characterization of the solutions of the FMD
problem in its original setting [5] can be imposed by recon-
struction of an isotropic tensorH which at each point of the
body lies as close as possible to the optimal tensor C∗ of
anisotropic structure, in the metric defined by the Frobenius

norm or other norms, e.g. the logarithmic norm discussed
in [11]. The Frobenius norm is justified by the condition of
preserving the value of the trace of both tensors. It turns out
that the isotropic moduli k and µ constructed in this manner
have much in common with their counterparts constructed by
the IMD method. Although we have no mathematical proof
that they coincide, the computations suggests that this is the
case.

II. FORMULATION OF AN OPTIMAL DESIGN

II. 1. Isotropic material design
The aim of this section is to propose an algorithm of designing
optimal distribution of isotropic characteristics to minimize
the compliance. The method will be called Isotropic Material
Design (IMD) and is put forward here as a modification of
the Free Material Design (FMD).

Consider a 3D elastic body Ω with |Ω|denoting its volume.
The body is fixed at the boundary surface Γ2. The Γ1 seg-
ment of the boundary is subject to the tractions of intensity
T . The domain Ω is parameterized by the Cartesian coor-
dinates x1, x2, x3 with the orthonormal basis {e1, e2, e3};
x = (x1, x2, x3) is a point in Ω. The unknown displacement
field u = (u1, u2, u3) and the virtual displacement field
v = (v1, v2, v3) are kinematically admissible if they vanish
on Γ2; the regularity conditions, implicitly present in the def-
inition of the space V (Ω) of the kinematically admissible
displacement fields, will not be discussed. Let S3 be the set
of symmetric tensors of the 2nd rank in 3D Euclidean space
(equivalently, symmetric matrices of order 3). The strains
constitute a tensor ε = (εij) ∈ S3 of components εij (u)
determined by the displacement vector:

εij (u) = (ui, j + uj, i) /2 (II.1)

where (·), i = ∂/∂xi, i, j = 1, 2, 3. The stresses σ =

(σij) ∈ S3 are linked with strains by the Hooke law

σ (u) = C ε (u) (II.2)

where C = (Cijkl) is the 4th rank Hooke’s tensor of
known symmetries in 3D Euclidean space. Let S6 be the
set of symmetric matrices of order 6. If the stress and
strain tensors are replaced by vectors according to the
rules: σ̂ =

[
σ11 σ22 σ33

√
2 σ23

√
2 σ13

√
2 σ12

]T
, ε̂ =[

ε11 ε22 ε33

√
2 ε23

√
2 ε13

√
2 ε12

]T ∈ R6 respectively,
then the Hooke law (II.2) can be re-written in the matrix
form

σ̂ = Ĉ ε̂ (II.3)

where the matrix of elastic moduli Ĉ =
(
Ĉij

)
∈ S6 reads



Isotropic Material Design 51

Ĉ =


C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3333

√
2C3323

√
2C3313

√
2C3312

2C2323 2C2313 2C2312

sym 2C1313 2C1312

2C1212

 . (II.4)

The unique algebraic properties of the representation (II.3),
(II.4) are cleared up in e.g. [11]. Almost everywhere in Ω
the components of tensor C satisfy the positivity condition
Cijkl εij εkl ≥ c εij εij for some c > 0, the summation
convention over indices i, j, k, l being adopted. Moreover, we
assume that Cijkl ∈ L∞ (Ω). Tensor fields C satisfying the
conditions above constitute a set H (Ω) of admissible fields
of Hooke’s tensors. The test stress field τ = (τij) ∈ S3 at
each point x ∈ Ω is said to be statically admissible if the
following variational equation holds

∀v ∈ V (Ω)

∫
Ω

τ · δε dx =

∫
Γ1

T · v da (II.5)

where τ · δε = τ · ε (v) = τij εij and T · v = Ti vi;
the dots mean the scalar products in S3 and R3, respectively.
The linear form on V (Ω), f = f (v) =

∫
Γ1
T · v da is

called the virtual work of the given loading. The norm de-
fined by the scalar product ” · ” in S3 is denoted by ‖·‖, i.e.
‖τ‖ = (τ · τ )

1/2. The set of fields τ ∈ S3 satisfying (II.5)
is denoted by Σ (Ω). If u ∈ V (Ω), while σ is linked with u
by (II.2), satisfies (II.5), then such a field u is a solution of
the given equilibrium problem. Let us write u = u (C) to
stress that u is determined by tensor field C. The functional

℘ : H (Ω)→ R, ℘ (C) = f (u (C)) (II.6)

is called the compliance. The Castigliano theorem provides
the formula

∀C ∈ H (Ω) ℘ (C) = min
τ∈Σ(Ω)

∫
Ω

τ ·C−1τ dx (II.7)

see e.g. [12]. The assumption C ∈ H (Ω) is sufficient for
(II.7) to hold. Assume that all components of tensor fields
C ∈ H (Ω) are design variables. Let us define functional

< : H (Ω)→ R, < (C) =

∫
Ω

tr C dx− Λ, (II.8)

where

tr C = Cijij = Ĉii= tr Ĉ, Λ = E0 |Ω| (II.9)

andE0 is a given elastic modulus. We assume that< (C) = 0
which means that the design variables C ∈ H (Ω) are ad-
ditionally subject to the resource constraints that could be
interpreted e.g. as the cost of the design, the integrand (II.9)1

being viewed as a unit cost of the material and Λ being viewed
as the entire cost of the design proportional to the value of E0.
The problem: find a tensor field C∗ ∈ H (Ω) such that

℘∗ = ℘ (C∗) = min
C∈H(Ω)

℘ (C) ,< (C∗) = 0 (II.10)

is usually called the Free Material Design (FMD) or Free
Material Optimization (FMO) problem. Let us define the set

H< (Ω) = {C ∈ H (Ω) |< (C) = 0} (II.11)

and insert the formula (II.7) into (II.10)1. Then, interchang-
ing the sequence of operators min (let us note that the set
Σ (Ω) of the statically admissible stresses does not depend
on the design variables C ∈ H< (Ω)) , we can replace the
problem (II.10) with the following one

℘∗ = ℘ (C∗) = min
τ∈Σ(Ω)

min
C∈H<(Ω)

∫
Ω

τ ·C−1τ dx. (II.12)

To have in view finding the solution of the “inner” minimiza-
tion problem min

C∈H<(Ω)

∫
Ω
τ ·C−1τ dx for arbitrary but fixed

admissible stress field τ ∈ Σ (Ω), we define the functional

Jτ : H (Ω)→ R, Jτ (C) =

∫
Ω

τ ·C−1τ dx (II.13)

and formulate the following (auxiliary) problem: find a tensor
field C∗τ ∈ H (Ω) such that

J∗τ = Jτ (C∗τ ) = min
C∈H(Ω)

Jτ (C) ,< (C∗τ ) = 0. (II.14)

To shorten notation, the above problem can be equivalently
written as

J<∗τ = J<τ (C∗τ ) = min
C∈H<(Ω)

J<τ (C) , (II.15)

where J<τ is a truncation of the functional Jτ to the domain
H< (Ω).

Our aim is to construct optimal isotropy of varying char-
acteristics. Thus we impose now the isotropy constraints on
the Hooke tensorsC in (II.12). Let us write down the spectral
decomposition of the arbitrary non-homogeneous, isotropic
Hooke tensorH , see [11]

H = 3k Λ1 + 2µ Λ2 (II.16)
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where Λ1 = 1
3δijδklei ⊗ ej ⊗ ek ⊗ el, Λ2 =

1
2 (δikδjl + δilδjk) ei⊗ ej ⊗ ek ⊗ el−Λ1. The quantities k
and µ are bulk and shear moduli linked with Young’s modulus
E and Poisson’s ratio ν by

k =
E

3 (1− 2ν)
> 0, µ =

E

2 (1 + ν)
> 0,

E =
9kµ

3k + µ
> 0, −1 < ν=

3k − 2µ

2 (3k + µ)
<

1

2
.

(II.17)

The bulk and shear moduli will be the design variables. The
fourth order tensors Λ1,Λ2 are mutually orthogonal projec-
tors having the well known properties

Λ1Λ1 = Λ1 , Λ1Λ2 = Λ2Λ1 = 0 , Λ2Λ2 = Λ2.
(II.18)

Let us compute the integrand in (II.13) by using representa-
tion (II.16)

τ ·H−1τ =
1

3k
τ ·Λ1τ +

1

2µ
τ ·Λ2τ (II.19)

and introduce a counterpart of the (II.13)

Jτ : L (Ω)× L (Ω)→ R,

Jτ (k, µ) =

∫
Ω

(
1

3k
τ ·Λ1τ +

1

2µ
τ ·Λ2τ

)
dx ,

(II.20)

whereL (Ω) represents the space of integrable functions (with
integrable inverses) defined on the domain Ω and assuming
positive real values. Similarly, we redefine the functional
(II.8) as

< : L (Ω)×L (Ω)→ R, < (k, µ) =

∫
Ω

(3k + 10µ) dx−Λ.

(II.21)
The definition (II.21) results immediately from the formula

tr C =

6∑
K=1

λK (II.22)

for anisotropic Hooke tensorC, where its eigenvalues (Kelvin
moduli) λK , K = 1, 2, . . . , 6 for the isotropic bodies are:

λ1 = 3k, λ2 = . . . = λ6 = 2µ (II.23)

(see e.g. (3.28), (3.29) in [9]). The problem (II.14) is now
replaced by: find (k∗τ , µ

∗
τ ) ∈ L (Ω)× L (Ω) such that

J∗τ = Jτ (k∗τ , µ
∗
τ ) =

= min
(k,µ)∈L(Ω)×L(Ω)

∫
Ω

(
1

3k
τ ·Λ1τ +

1

2µ
τ ·Λ2τ

)
dx,∫

Ω

(3k∗τ + 10µ∗τ ) dx− Λ = 0.

(II.24)

One of possible ways of dealing with the constrained problem
(II.24) is the method of Lagrange multipliers. Let us introduce
the Lagrangian variable η and the Lagrange functional

=τ : L (Ω)× L (Ω)× R∗ → R,

=τ (k, µ, η) =

∫
Ω

(
V τ1
k

+
V τ2
µ

)
dx

+η

(∫
Ω

(3k + 10µ) dx− Λ

)
.

(II.25)

The three necessary local optimality conditions read:

∂=τ
∂k

(k, µ, η) = 0,
∂=τ
∂µ

(k, µ, η) = 0,
∂=τ
∂η

(k, µ, η) = 0,

(II.26)
where

V τ1 =
1

3
τ ·Λ1τ =

1

9
(tr τ )

2
,

V τ2 =
1

2
τ ·Λ2τ =

1

2

(
τ · τ − 1

3
(tr τ )

2

)
.

(II.27)

Upon computing the first partial derivatives and applying the
lemma of Du Bois-Reymond we get the three equations with
two unknown scalar fields k, µ and a Lagrange multiplier η:

−V
τ
1

k2
+3 η = 0, −V

τ
2

µ2
+10 η = 0,

∫
Ω

(3k + 10µ) dx = Λ.

(II.28)
The solution of the three above equations leads to the explicit
formulae of the optimal fields k∗τ , µ

∗
τ ∈ L (Ω)

k∗τ =
√

10 Λ

√
V τ1∫

Ω

(
3
√

10
√
V τ1 + 10

√
3
√
V τ2
)

dx
,

µ∗τ =
√

3 Λ

√
V τ2∫

Ω

(
3
√

10
√
V τ1 + 10

√
3
√
V τ2
)

dx

(II.29)

and provides the optimal value J∗τ of the functional (II.20)

J∗τ =
1

30 Λ

(∫
Ω

(
3
√

10
√
V τ1 + 10

√
3
√
V τ2

)
dx

)2

.

(II.30)
Let us remind that the minimizers k∗τ , µ

∗
τ together with the

optimal value J∗τ of the functional (II.20) depend on still
unknown statically admissible stress field τ ∈ Σ (Ω), i.e.
k∗τ = k∗τ (τ ) , µ∗τ = µ∗τ (τ ), J∗τ = J∗τ (τ ). In other words,
we have found at this stage of the analysis only the solution
of the “inner” minimization problem (II.14). In the last step,
we show how to numerically find the solution of the original
problem (II.12), i.e. we show how to numerically find the
statically admissible minimizer τ ∗ ∈ Σ (Ω). Let us note that
the optimal compliance (II.10) is expressed by

℘∗ =
1

30Λ
(S∗)

2
, (II.31a)
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S∗ = min
τ∈Σ(Ω)

∫
Ω

Π (τ(x)) dx (II.31b)

where the integrand Π : S3 → R is defined as

Π (τ ) = t |tr τ |+ d

√
τ · τ − 1

3
(tr τ )

2
=

=t |tr τ |+ d ‖dev τ‖
(II.32)

where dev τ = τ − 1
3 (tr τ ) I ∈ S3 is the deviator

of the stress tensor τ , I being the unit tensor in S3 and
t =
√

10 , d = 5
√

6. Let τ ∗ ∈ Σ (Ω) represents the mini-
mizer of (II.31b). Having τ ∗ one can compute the optimal
bulk and shear moduli by (II.29). The optimal elastic isotropic
Hooke tensor assumes the form

H∗ = 3k∗ Λ1 + 2µ∗ Λ2 (II.33)

and one can calculate the optimal compliance (II.31a) as

℘∗ = ℘ (H∗) = J∗, (II.34)

where

J∗ = J∗τ∗ , k∗ = k∗τ∗ , µ∗ = µ∗τ∗ . (II.35)

According to (II.1), the optimal solutions (II.35)2,3 , (II.33)
determine the optimal stress components via the strain tensor
ε = ε (u)

σ∗ = σ∗ (u) = H∗ ε (u) =

=
Λ
(√

10 V τ
∗

1 (tr ε (u)) I + 2
√

3 V τ
∗

2 dev ε (u)
)

∫
Ω

(
3
√

10
√
V τ
∗

1 + 10
√

3
√
V τ
∗

2

)
dx

(II.36)
and the unknown vector field of the displacements u = u (x),
x ∈ Ω can be found from the variational equilibrium equation
(II.5) , i.e.

∀v ∈ V (Ω) aH∗ (u,v) = f (v) (II.37)

where

aH∗ (u,v) =

∫
Ω

H∗ε (u) · ε (v) dx. (II.38)

Remark II.1. It can be shown that the problem (II.37) is well
posed and has unique solution u ∈ V (Ω) always if k∗ > 0
or µ∗ > 0. In other cases, a much more mathematically rig-
orous analysis has to be discussed, which is out of the scope
of the paper (in the case of the non-homogeneous, optimal
anisotropic design, see discussion on pp. 227-229 in [9]).

II. 2. Design of optimal anisotropy
Let us briefly recapitulate the main results of the FMD

problem in its stress-based setting, cf. [9, 10]. Let τ ∗ be the
minimizer of the problem:

min
τ∈Σ(Ω)

∫
Ω

‖τ‖ dx.

The optimal anisotropic tensor is expressed by

C∗ =
λ∗1

‖τ ∗‖2
τ ∗ ⊗ τ ∗ (II.39)

where the optimal values of Kelvin moduli are

λ∗1 = Λ
‖τ ∗‖∫

Ω
‖τ ∗‖ dx

, λ∗2 = λ∗3 = λ∗4 = λ∗5 = λ∗6 = 0

(II.40)
and the optimal compliance of the body is then equal

℘∗ = ℘ (C∗) = J∗ (II.41)

with J∗ expressed by

J∗ = J∗τ∗ =
1

Λ

(∫
Ω

‖τ ∗‖ dx

)2

. (II.42)

Similarly as in (II.36) the optimal stress components could
be calculated via the formulae

σ∗ = σ∗ (u) =
λ∗1 (τ ∗ · ε (u))

‖τ ∗‖2
τ ∗ (II.43)

where the unknown vector field of the displacements u =
u (x), x ∈ Ω can be found from the variational equilibrium
equation (II.5), i.e.

∀v ∈ V (Ω) aC∗ (u,v) = f (v) ,

aC∗ (u,v) =

∫
Ω

σ∗ (u) · ε (v) dx.
(II.44)

Remark II.2. A similar discussion as in Remark II.1 is neces-
sary to motivate the correctness of the mathematical definition
of the displacement based problem (II.44) (see discussion on
pp. 227-229 in [9] and [10]).

III. THE STRESS-BASED NUMERICAL APPROACH
TO SOLVING THE IMD PROBLEM

We will present the newly developed scheme of construction
of statically admissible stress fields defined element-wise,
along with the optimizer solving the minimization problem.
The numerical approach starts from division of the design do-
main Ω into 8-node, cubic, conforming, isoparametric finite
elements with shape functions

Ni (ξ) =
1

8

(
1± ξ1 ± ξ2 ± ξ3 ± ξ1ξ2

± ξ2ξ3 ± ξ1ξ3 ± ξ1ξ2ξ3
) (i = 1, 2, ..., 8)

(III.1)
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defined on the master element interpolating the nine stress
fields

τ11 (x) = N1 (ξ) τ1 +N2 (ξ) τ7 + ...+N8 (ξ) τ43

τ22 (x) = N1 (ξ) τ2 +N2 (ξ) τ8 + ...+N8 (ξ) τ44

...
τ13 (x) = N1 (ξ) τ6 +N2 (ξ) τ12 + ...+N8 (ξ) τ48

τ21 = τ12 , τ31 = τ13 , τ32 = τ23

(III.2)
within an e-th element Ωe ⊂ Ω ⊂ R3, where ξ =
(ξ1, ξ2, ξ3) ∈ ω parameterize the master element ω =
[−1, 1]× [−1, 1]× [−1, 1], x = (x1, x2, x3) = xe (ξ) ∈ Ωe
parameterize real elements Ωe being the images of the master
element ω under the geometric mappings xe : ω → Ωe and
τ6i−5, τ6i−4, τ6i−3, τ6i−2, τ6i−1, τ6i are the unknown nodal
stresses τ11, τ22, τ33, τ23, τ12, τ13 at nodes 1, 2, . . . , 8, re-
spectively (we simplify notation and omit upper index writ-
ing e.g. τj instead of writing more correctly τej ). The virtual
displacement field v = (v1, v2, v3) in variational equation
(II.5) is interpolated within an e-th element Ωe similarly as
the stress field

v1 (x) = N1 (ξ)w1 +N2 (ξ)w4 + . . .+N8 (ξ)w22

v2 (x) = N1 (ξ)w2 +N2 (ξ)w5 + . . .+N8 (ξ)w23

v3 (x) = N1 (ξ)w3 +N2 (ξ)w6 + . . .+N8 (ξ)w24

(III.3)
where w3i−2, w3i−1, w3i are the unknown nodal virtual dis-
placements v1, v2, v3 at the nodes 1,2,3, respectively. The
components of the derivative (δε)ij are computed by the
following formulae (δε)i1 (x)

(δε)i2 (x)
(δε)i3 (x)

 =

 j11 j12 j13

j21 j22 j23

j31 j32 j33

 vi,ξ1
vi,ξ2
vi,ξ3


(i = 1, 2, 3) ,

(III.4)

where jkl = jkl (ξ) are the components of the 3×3 matrices
je = je (ξ) being the inverse and transposed Jacobian matri-
ces defined by the partial derivatives ∂xei

∂ξj
(i, j = 1, 2, 3) of

the transformation xe = (xe1, x
e
2, x

e
3) defining the shape of

the body Ω (we have omitted the upper index e in jekl). Sub-
stitution of (III.1)-(III.4) into the variational equation (II.5)
results in the set of linear equations representing the equilib-
rium conditions

Bt = Q (III.5)

where B ∈ RM×n is the rectangular M × n statics matrix,
Q ∈ RM , t ∈ Rn are vectors of nodal forces (only partially
known) and unknown nodal parameters τj defining the stress
fields, respectively. Number M of rows and number n of
columns (unknown nodal parameters τj , j = 1, ..., n in
global notation) in the matrixB are equal 3×N and 6×N ,
respectively, where N denotes the number of all nodes in
the global finite element mesh. Similarly as in the Simplex

Method we perform the partition of the rectangular matrix B
and vector Q into two matrices: upper Bu ∈ Rm×n, lower
Bl ∈ R(M−m)×n and two vectors, upper Qu ∈ Rm and
lowerQl ∈ R(M−m), respectively. The first m indices of the
rows in upper matrixBu correspond to the indices defining
the global, unknown, free degrees of freedom and the remain-
ing M -m indices of the rows in lower matrixBl correspond
to the indices of the global, known, constrained degrees of
freedom (boundary conditions). All components of the vector
Qu are known and the vector of the unknown boundary re-
actions can be calculated from the relationQl = Bl t upon
finding the vector t from the system of rectangular linear
equations Bu t = Qu. In the Force Method, the number
M -m defines the degree of statical indeterminacy of the bar
structure and could obviously be equal to 0. In the considered
problem the number M -m is always positive. The set of all
solutions of the equations

Bu t = Qu (III.6)

can be expressed as

Θ =

{
t = t (α1, ..., αs)

∣∣∣∣∣t = t◦ +

s∑
k=1

αk hk , αk ∈ R

}
,

where hk =
[
h1k h2k ... hnk

]T ∈ Rn, k =
1, 2, . . . , s are the vectors that span the s-dimensional ker-
nel of the matrix Bu and t◦ =

[
t◦1 t◦2 ... t◦n

]T ∈ Rn
is the arbitrary, fundamental solution of the set of linear
equations Bu t = Qu. In each e-th finite element Ωe,
the stress components (III.2) depend not only on ξ ∈ ω
and local nodal parameters τej (j = 1, ..., 48) but addi-
tionally on global parameters αk (k = 1, ..., s) defining
the linear combinations of the particular local components
hjk (j = 1, ..., n, k = 1, ..., s). In other words, upon con-
structing the solution (found only once) of linear, rectangular
algebraic system Bu t = Qu, one obtains a very simple
approximation Σα (Ω) of the statically admissible set of the
stress fields Σ (Ω) determined by s global parameters αk ∈ R

Σα (Ω) =
{
τ = τ (α) ∈ S3 |α = (α1, ..., αs) ∈ Rs

}
(III.7)

where

τ11 =N1 t
◦
1 + . . .+N8 t

◦
43 +

s∑
k=1

αk N1 hI1k + . . .

+

s∑
k=1

αk N8 hI43k

τ22 =N1 t
◦
2 + . . .+N8 t

◦
44 +

s∑
k=1

αk N1 hI2k + . . .

+

s∑
k=1

αk N8 hI44k

...
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τ13 =N1 t
◦
6 + . . .+N8 t

◦
48 +

s∑
k=1

αk N1 hI6k + . . .

+

s∑
k=1

αk N8 hI48k

τ21 = τ12 , τ31 = τ13 , τ32 = τ23.
(III.8)

Note that j in t◦j runs over {1, 2, ..., 48}, while j in hjk runs
over {1, 2, ..., n}.

The constrained variational problem (II.31a) is approxi-
mated by the family of discretized problems which assume
the form of the unconstrained algebraic problems

S∗α = min
τ∈Σα(Ω)

∫
Ω

Π (τ ) dx.

They can be equivalently written as (see (III.7)): findα∗ ∈ Rs
such that

S∗α∗ = min
α∈Rs

∫
Ω

Πτ (α) dx (III.9)

where the integrand is defined as follows

Πτ : Rs → R , Πτ = Π ◦ τ (III.10)

(we have omitted in the notation the obvious dependence on
x ∈ Ω in Π (x, τ ) and Πτ (x,α)). Integration in (III.9) is
performed numerically, i.e.∫

Ω

Πτ (α) dx ∼=
∑
e

∑
ζ∈ω

w (ζ) Πτ (ζ,α) |det je (ζ)| ,

(III.11)
where ζ = (ζ1, ζ2, ζ3) ∈ ω and w = w (ζ) are Gauss integra-
tion points and weights, respectively. At each arbitrary, but
fixed point ζ ∈ ω, the gradient

grad Πτ = grad Πτ (ζ,α) =

=
[

∂Πτ

∂α1
(ζ,α) ∂Πτ

∂α2
(ζ,α) ... ∂Πτ

∂αs
(ζ,α)

]T
∈ Rs

(III.12)
of the functional (III.10) can be easily computed. The for-
mula is the following (as in (III.9) we omit the dependence
on ζ ∈ ω):

grad Πτ (α) =


...

t
tr τ tr ∂ τ

∂ αi√
(tr τ )2

+ d

(
τ · ∂ τ
∂ αi
− 1

3 tr τ tr ∂ τ
∂ αi

)
√
τ ·τ− 1

3 (tr τ )2

...


∈ Rs (i = 1, . . . , s)

(III.13)(
t =
√

10 , d = 5
√

6
)
, where (see (III.8))

∂τ11

∂αk
= N1 hI1k +N2 hI7k + ...+N8 hI43k

∂τ22

∂αk
= N1 hI2k +N2 hI8k + ...+N8 hI44k

...

∂τ13

∂αk
= N1 hI6k +N2 hI12k + ...+N8 hI48k.

(III.14)

The formulae (III.11) and (III.13)-(III.14) make it possible to
calculate the values of the function

Ξ : Rs → R, Ξ (α) =
∑
e

∑
ζ∈ω

w (ζ) Πτ (ζ,α) |det je (ζ)|

(III.15)
and s components of its gradient

grad Ξ (α) =
∑
e

∑
ζ∈ω

w (ζ) grad Πτ (ζ,α) |det je (ζ)| ∈ Rs

(III.16)
in problem (III.9) re-written now as: find α∗ ∈ Rs such that

S∗α∗ = min
α∈Rs

Ξ (α) . (III.17)

IV. THE ISOTROPIC MATERIAL DESIGN
ALGORITHM (IMD ALGORITHM)

The computational procedure implementing the IMD algo-
rithm consists of the following main steps
Step 1. Set the rectangular system of linear algebraic equa-
tions (III.5) orB t = Q, in accordance with FEM.
Step 2. Separate upper sub-matrixBu and upper sub-vector
Qu corresponding to the unknown degrees of freedom of the
FEM.
Step 3. Find the solutions t = t◦ +

∑s
k=1 αk hk of the

rectangular system of linear algebraic equationsBu t = Qu.
Step 4. Apply any algorithm of the nonlinear mathematical
programming to find the solution α∗ ∈ Rs of the minimiza-
tion problem S∗α∗ = min

α∈Rs
Ξ (α), where the function Ξ (α)

and its gradient grad Ξ (α) are defined by (III.15), (III.16),
respectively.
Step 5. In accordance with the formulae (III.8), find all com-
ponents

τ∗11 = τ11 (α∗) , τ∗22 = τ22 (α∗) ,

τ∗33 = τ33 (α∗) , τ∗23 = τ23 (α∗) ,

τ∗12 = τ12 (α∗) , τ∗13 = τ13 (α∗) ,

τ∗21 = τ∗12, τ
∗
31 = τ∗13, τ

∗
32 = τ∗23

(IV.1)

defined by the optimal solution α∗ ∈ Rs found in step 4.
Step 6. In accordance with the formulae (II.29) find the
distribution of the optimal bulk and shear moduli k∗ =
k∗τ (τ ∗) , µ∗ = µ∗τ (τ ∗), respectively.
Step 7. In accordance with the formula (II.33) find the distri-
bution of the components of the optimal Hooke tensorH∗.

For the optimal, non-homogeneous, anisotropic Hooke
tensorC∗ (see (II.39)), it is possible to find the closest nonho-
mogeneous, isotropic Hooke tensorD characterized by bulk
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and shear moduli k, µ or Young modulus E and Poisson
ratio ν. “Closest” means that the shear moduli k, µ defining
the isotropic matrix

D̂ =


k + 4

3µ k − 2
3µ k − 2

3µ 0 0 0
k − 2

3µ k + 4
3µ k − 2

3µ 0 0 0
k − 2

3µ k − 2
3µ k + 4

3µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ


∈ R6×6

(IV.2)
are minimizers found from the condition min

k,µ

∥∥∥Ĉ∗ − D̂∥∥∥,

expressed by the Frobenius norm; matrix Ĉ∗ has the same
components as in (II.4) after replacing Cijkl by C∗ijkl. It is
not difficult to show that the minimizers k, µ of this problem
read (see [11]):

k =
1

9

(
C∗1111 + C∗2222 + C∗3333

+2 (C∗2233 + C∗1122 + C∗1133)
)
,

µ =
1

15

(
C∗1111 + C∗2222 + C∗3333

− (C∗2233 + C∗1122 + C∗1133)
)

+
1

5
(C∗2323 + C∗1313 + C∗1212) .

(IV.3)

It should be noted that in this case the value of the trace
of the elastic moduli tensor is preserved at each point of the
Ω domain, i.e.

∀x ∈ Ω tr D(x) = 3k(x) + 10µ(x) = tr C∗(x), (IV.4)

which can be immediately verified after simple calculations.
Young modulus E and Poisson ratio ν for such closest, non-
homogeneous, isotropic material could then be easily calcu-
lated by (II.17).

Now, we define the non-optimal, homogeneous, isotropic
Hooke tensorH , satisfying only the isoperimetric condition

< (H) =

∫
Ω

tr H dx− Λ = 0 (IV.5)

to compare the optimal and non-optimal compliances of the
body Ω. For this purpose, let us assume that the Poisson ratio
ν = ν is known and constant in Ω. We also assume that the
fields k = k and µ = µ (and thus the field E = E ) defining
the tensorH are constant in Ω. For a given elastic modulus
E0 we can always calculate Λ = E0 |Ω| (see (II.9)2). Thus,
on the basis of condition (IV.5) and (II.21) we conclude that∫

Ω

(
3k + 10µ

)
dx =

(
3k + 10µ

)
|Ω| = E0 |Ω| = Λ

(IV.6)

and after replacing k and µ by E/3 (1− 2 ν)and
E/2 (1 + ν), respectively (see (II.17)1,2), we can easily cal-
culate (constant in Ω) Young modulus E = E (E0, ν) from
the relation (IV.6) as

E =
(2 ν − 1) (ν + 1)

3 (3 ν − 2)
E0. (IV.7)

The property (IV.4) together with the formulae (IV.3),
(II.17) and condition (IV.5) together with the formula (IV.7)
for known constant Poisson ratio ν allows to compare the
four compliances:

1. ℘∗ = ℘C∗ for the optimal, non-homogeneous,
anisotropic tensor C∗

2. ℘∗ = ℘H∗ for the optimal, non-homogeneous, iso-
tropic tensorH∗

3. ℘D for the non-homogeneous, isotropic tensorD clos-
est in the sense of Frobenius metric to the optimal,
non-homogeneous, anisotropic tensor C∗

4. ℘H for the homogeneous, isotropic tensorH
while fulfilling all four isoperimetric conditions for all of the
above cases, i.e.

< (C∗) = < (H∗) = < (D) = < (H) = 0. (IV.8)

V. CASE STUDY

The aim of this section is to show the optimal layouts
of the optimal moduli λ∗1, k

∗, µ∗, E∗, ν∗ within short cubic
cantilever (supported on bottom side) of length Lx = 1.0 [m],
width Ly = 1.0 [m] and height Lz = 1.0 [m] (see Fig. 1).
The finite element mesh is defined by 10× 10× 10 = 1000
cubic modules. The horizontal, constant and uniformly ap-
plied loading T1 = 1.0

[
N/m2

]
on upper side is applied.

The 8- and 4-points rules of the Gauss integration for the
three-dimensional cube and two-dimensional upper square
are adopted, respectively. The unity value of elastic modulus
E0 in (II.9)2 was assumed, i.e. E0 = 1.0 [N/m2]. The opti-
mal values of the design moduli and optimal compliances are
proportional to E0 or to its inverse (see (II.40), (II.29), (II.42)
and (II.30)) so to get the results for the practical materials,
it is sufficient to multiply the obtained numerical values by
E0 >> 1.0 or its inverse. The non-optimal, homogeneous,
isotropic tensorH is defined by (constant in Ω) Young mod-
ulus E = E (E0, ν) calculated from the formula (IV.7) for
(constant in Ω) Poisson ratio ν = 0.3.

The number of the main iteration loops for the assumed
tolerance 1.0 · 10−5 was equal 32 and 42 for anisotropic and
isotropic body, respectively. Layouts have been found with
using the graphical program: Voxler Ver 1.1.1716, Golden
Software, Inc.

The optimal compliances are: ℘C∗ = 4.87161, ℘H∗ =
27.5471 , ℘D = 27.1577 and ℘H = 42.7515 [Nm] for opti-
mal anisotropic, optimal isotropic, isotropic closest to optimal
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Fig. 1. The body Ω – cube Lx × Ly × Lz = 1 × 1 × 1 [m] with uniformly applied constant loading T1 = 1
[
N/m2

]
(left upper figure).

In remaining figures: the scatter plots of the optimal Kelvin modulus λ∗
1 (by FMD method), optimal bulk and shear moduli k∗, µ∗, optimal

Young modulus E∗ and optimal Poisson ration ν∗ (by IMD method), respectively
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anisotropic and non-optimal, homogeneous isotropic body, re-
spectively. It occurs that the optimal Poisson ratio ν∗ assumes
the values from the whole admissible range: (−1 , 1/2) in
a large part of the design domain Ω. Thus the IMD method
confirms the importance of the auxetic materials, see e.g. [13].
For more examples of optimal distributions of elastic moduli
k∗, µ∗ and E∗, ν∗ revealing the auxetic characteristic of the
stiffest bodies, see the paper [14].

The optimal layouts k∗ and µ∗ or E∗ and ν∗ are charac-
terized by extremely abrupt changes of their values on very
small subdomains in Ω. Furthermore, its values for fairly
large subdomains reach zero value. These features allow to
classify these optimal materials as Functionally Graded Mate-
rials (FGM) characterized by the variation in composition and
structure over volume, resulting in corresponding changes
in its properties – see e.g. [15] where an interesting tech-
nique based on the assignment of material attributes to the
quantized volume was presented making the IMD designs
FGM-manufacturable.

The numerical approach of step 3 is based upon two
well-known theorems of linear algebra for any m × n ma-
trix B , where m ≤ n. Let us assume that the dimension
s of the kernel of the matrix B is equal to n − m, i.e.
s = dim kerB = n−m. Then

Theorem I (SVD decompositions). Any matrixB ∈ Rm×n
can be written as the product B = U W V T of an m× n
orthogonal matrix U ∈ Rm×n, an n × n diagonal matrix
W ∈ Rn×n with positive or zero elements and the transpose
of an n× n orthogonal matrix V ∈ Rn×n.

Theorem II (QR decompositions). Transposition BT ∈
Rn×m of any matrix B ∈ Rm×n can be written as
the product BT = Q R of an unitary n × n matrix
Q = [Q1 Q2] ∈ Rn × n, with both matrices Q1 ∈ Rn × m,
Q2 ∈ Rn × (n−m) having the orthogonal columns and upper

triangular n × m matrix R =

[
R1

0

]
∈ Rn × m, where

∀i = 1, ...,m Rii > 0.

It can be shown that s columns V j ∈ Rn (j = jk,
k = 1, . . . , s) of the matrix V that correspond to Wjkjk = 0
and s columns Q1

2,Q
2
2, ...,Q

s
2 ∈ Rn of the matrix Q2 span

the kernel kerB of the matrix B in SVD and QR decom-
position, respectively. This fact enables to find numerically
the set of all solutions of the equation (III.6) taking matrix
B above asBu in (III.6). The routine svdcmp(. . . ) in C lan-
guage from [16], p. 67 in the case of SVD algorithm was
implemented. In finding the numerical solution in step 4,
three various, gradient-oriented numerical routines in C++
language: frprmn(. . . ) or dfpmin(. . . ) (see [16], p. 423 and
428) and own routine implementing the steepest descent algo-
rithmαk+1 = αk−ρk grad Ξ (αk) with the simple learning
rule determining the learning rate ρk for obtaining the opti-

mal solution α∗ = (α∗1, α
∗
2, ..., α

∗
s) ∈ Rs were implemented.

The first two routines implement the Fletcher-Reeves (FR),
Polak-Ribiere (PR) or Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithms of non-linear mathematical programming.
The routines frprmn(. . . ) or dfpmin(. . . ) was always called for
the zero initial values of αi, i = 1, ..., s (randomly generated
values of αi gave almost the same numerical solution).

VI. FINAL REMARKS

The stress-based FMD proposed in [9, 10] and its
isotropic version IMD put forward in the present paper differ
considerably from the displacement-based FMD, cf. [1, 5, 7],
due to the following features:

a) The original optimization problem (II.10) with an
isoperimetric conditions is reduced to the auxiliary optimiza-
tion problem (II.31b) free of such a condition.

b) The auxiliary problem (II.31b) is replaced by the dis-
cretized problem (III.17) free of any bounds on the design
variables, including box-like constraints.

c) A clear decomposition of the algorithm into two inde-
pendent problems concerning statics and optimization.

In the first problem the statically admissible approxima-
tion of stresses, determined by the coefficients of the linear
combinations of vectors of the kernel of the equilibrium ma-
trix of the body, is constructed, which constitutes the steps 1-3.
It should be stressed that this problem is solved once, in con-
trast to the displacement based FMD algorithms in which the
equilibrium problem must be solved in each main loop of the
algorithm.

In the optimization problem the coefficients at the basis
vectors of the kernel of matrixBu are found by the condition
of the minimum of the function (III.15), i.e. step 4. Since the
formulae for the gradient of this function are available, one
can implement arbitrary gradient-based algorithm aimed at
solving the unconstrained minimization problems.

d) Both the displacement and strain fields are eliminated
from the algorithm. The only fields involved at each step of
the FMD and IMD algorithms are the trial stress fields. The
stress approximant minimizing the auxiliary function (III.15)
(see also (II.31), (II.32)) determines all the unknown optimal
material characteristics at each point of the design domain,
which is done in steps 5-7

e) Necessity of implementing numerical algorithms for
solving algebraic under-determinate systems of algebraic
equations. Moreover, in 3D problems the number of stress
unknowns is essentially bigger than the number of un-
knowns involved in any displacement-based method (step 3).
For instance, approximation of the trial stress fields in 3D
(Eqs. (III.2)) necessitates at least six nodal parameters, while
in the conventional FEM three nodal parameters suffice for
displacements approximation (see Eq. (III.3)). Let us empha-
size here that there are no available, efficient and numerically
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stable procedures of constructing the kernel of the matrix
of an under-determinate algebraic system. While compar-
ing with the extremely rich and easy available libraries (like
LAPACK and PETSc) of numerical procedures to solve the
Cramer’s systems (i.e. the algebraic systems with square
matrices) we note the lack of similar programs for the under-
determinate systems, which is the main obstacle in increasing
the FEM mesh density in the stress-based FMD. This may be,
however, alleviated by the basic property of the stress-based
approach: to find stresses we do not need differentiation of the
displacement fields. Yet this needs an additional discussion,
which lies beyond the scope of the present paper.

The present paper has not dealt with the problem of con-
vergence of the family of approximate solutions t ∈ Rn
approximating the stress fields, being parameterized by, de-
pending on the mesh density, dimension of the kernel of the
matrixBu ∈ Rm×n. The hitherto performed tests published
in [8] concerned the 2D FMD problems (in the anisotropic
setting); the process of making the uniform meshes of the con-
forming C2D4 element denser and denser contributed to a vis-
ible stabilization of the isolines of distribution of the optimal
values of the Kelvin modulus λ∗1 and of the target functional
(II.41). In the 3D case such a tendency has also been noted,
yet similarly dense meshes could not be applied due to limited
equipment parameters (Laptop Intel(R) Core(TM)2 Duo CPU
T9400 @ 2.53GHz). Dimensions of the rectangular matrix
Bu used in the examples presented above were close to the
maximal dimensions admissible by the 4 GB RAM. The run
time was conditioned by the computational complexity of
order O(m2 × n+ n3), implemented in the SVD algorithm.
To overcome the mentioned difficulties the developed C++
program is being adjusted to the supercomputers available
at the Interdisciplinary Centre for Mathematical and Compu-
tational Modelling of the University of Warsaw (ICM); the
program is based on the QR decomposition, available within
the LAPACK library having a much smaller computational
complexity of order O(2×m× n2) than the SVD method.

The first tests have confirmed that much denser meshes
can be used, but along with the increase of the number of
unknowns new problems linked with the computational com-
plexity of the optimizers arise. The computation time used to
solve the QR problems has now become much smaller than
the time necessary to perform the optimization algorithms.

The performed numerical tests have shown some impor-
tant features of the optimal solutions and make it possible
to compare the optimal anisotropic designs (solutions to the
FMD problem) with the optimal isotropic ones (or solutions
to the IMD problems). It turns out that the FMD designs are 5
or even 6 times stiffer than their IMD counterparts, the latter
being about 2 times stiffer than the homogeneous isotropic
designs (case of ν = 0.3). On the other hand, however, the
anisotropic FM designs are appropriate only for the given
load, since the Hooke tensor becomes degenerated; only one
of Kelvin moduli λK is positive. This degeneracy is com-

patible with the loading, hence does not theoretically hinder
from finding the stress fields and selected components of
the displacement field. Nevertheless, appropriate tools are
necessary to deal with the conditionally stable numerical
scheme of the FMD method; the global stiffness matrix of
FEM becomes singular or numerically very close to singular,
see Press et al [16]. To overcome the difficulties we have to
replace the conventional LU decomposition by the numeri-
cally stable SVD method for the square stiffness matrix of
the FEM to achieve reliable values of nodal displacements.
We have to reckon with non-uniqueness of the solution. It has
the properties known from the analysis of geometrically vari-
able trusses. The implementation of the LU decomposition
(like ludcmp(. . . ) in [16]) results in the uncontrolled, random
values of selected components of the displacement vector;
these components are directed orthogonally to the trajectories
of the stress field (coinciding with optimal anisotropy lines).
The displacements measured along the non-zero stress tra-
jectories could be computed with sufficient accuracy. Having
them, one could compute the compliance by (II.6) and, in all
cases, this value turned out to be almost equal to the value of
the compliance computed by (II.42), which was found as a re-
sult of solving the stress based auxiliary problem. The above
problems are not present in the IMD method. This method
does not lead to any degeneracy of the stiffness matrix. Also
within this approach the compliance has been computed by
two manners: having the displacements-then by (II.6), and
having solved the stress based problem- by (II.30). It is worth
noting that the discussed numerical mismatch noted in the
IMD is in all cases bigger than in the FMD method.

The results of the IMD have been confronted with the
isotropic design (see (IV.2), (IV.4)) constructed as the closest,
in the sense of the distance measured by the Frobenius norm,
to the anisotropic FM design. The compliance of the isotropic
non-homogeneous structure thus found could be computed
by solving the FEM problem. It turns out that this value is
in all cases very close to the IMD result and always slightly
bigger. Moreover, the layouts of the optimal moduli E∗ and
E as well as the Poisson ratios ν∗ and ν for the corresponding
methods are almost identical, which suggests they could be
identical. This conjecture has not been proved yet.

Closing the discussion presented herein the paper, let us
comment on the links of the IMD method with other method
used in topology optimization. Comments will be limited to
one of the most popular method called SIMP (Solid Isotropic
Material with Penalization, see e.g. [1, 17–23]). Using the
notation adopted in [18] and changing it slightly to fit to
the notation adopted in this work, let us consider a body
occupying a domain Ωmat ⊂ Ω which is part of a larger
reference domain Ω, being equivalent to the domain occu-
pied by the three-dimensional elastic body Ω designed in
this paper. In the original formulation of SIMP for isotropic
bodies, the optimal design problem consists (similar as in
FMD) in searching for optimal fields Ω 3 x→ Hijkl(x) rep-
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resenting the components of isotropic Hooke tensor, which
are the design variables over the domain Ω. More specifically,
the minimum compliance (maximum global stiffness) prob-
lem takes the following form: find kinematically admissible
displacement field u∗ ∈ V (Ω) along with the admissible
isotropic Hooke tensor H∗ ∈ Ead minimizing the work of
the load expressed by the linear form on V (Ω)

f = f (u) =

∫
Γ1

T · u da (VI.1)

and subject to the equilibrium equation in the weak form

∀v ∈ V (Ω)

∫
Ω

H∗ ε(u∗) · ε(v) dx =

∫
Γ1

T · v da

(VI.2)
(see text below equation (2.5), p.3 in [18] and (II.37), (II.38),
respectively). In problem (VI.1)-(VI.2), Ead represents the
set of admissible Hooke elasticity tensors and various possi-
ble definitions of Ead are adopted in various variants of the
above optimal design problem. Let

H0 = H0
ijklei ⊗ ej ⊗ ek ⊗ el (VI.3)

be the Hooke tensor of a given isotropic material and let
|Ωmat| denote the volume of the unknown, optimal subset
Ωmat. The set Ead of admissible Hooke elasticity tensors is
usually assumed as below:

Hijkl (x) = IΩmat (x)H0
ijkl, x ∈ Ω, (VI.4)

where

IΩmat : Ω→ {0, 1} ; IΩmat (x) =

=

{
1 if x ∈ Ωmat material point

0 if x ∈ Ω\Ωmat void (no material point

(VI.5)∫
Ω

IΩmatdx =
∣∣Ωmat∣∣ ≤ V. (VI.6)

The choice (VI.4)-(VI.6) of admissible materials means
generalized shape optimization. The problem is to place one
isotropic material optimally within a given domain, keeping
its volume as fixed. This problem is ill-posed and needs relax-
ation, as thoroughly discussed in Ref. [3]. Upon relaxation
by homogenization the problem reduces to finding a porous
material of very specific properties of varying density ρ (x).
The optimal material is a non-homogeneous composite of
moduli corresponding to 3rd rank layered microstructures (in
3D) or to 2nd rank microstructures (in 2D). The optimal com-
posite is characterized by elasticity potentialW depending on
ρ (x). Three methods of simplifying the relation W = W (ρ)
have been proposed: a) SIMP, see [1, 17–22], RAMP, see
e.g. [18] and c) GRAMP, see [17] (which independently is
also a comprehensive source of knowledge about the RAMP

method), among which only the latter refers to the exact re-
laxation by homogenization result, hence deserves special
attention. All the mentioned methods have the same aim: to
achieve suboptimal solutions to the generalized shape opti-
mization problem, free of composite subdomains, inevitably
emerging in the exact solutions to the relaxed problem.

Remark VI.1. The inequality (VI.6) expresses the im-
posed limit V on the amount of material at our disposal and
considerably differs from the isoperimetric condition (II.10)2
(see also (II.11), (II.21), (II.22), (II.23), (II.24)2) which can
in no way be related with the condition (VI.6) limiting the
volume |Ωmat| of the material. This property is the first se-
rious obstacle when trying to compare this formulation of
topology optimization with the formulation presented earlier
and called IMD method.

Moreover, note that the objective function f = f (u)
is non-smooth with respect to the design variables Hijkl =
Hijkl (x), which excludes the possibility of calculating e.g.
its gradient. Also, many other numerical problems appear,
inter alia, from the disappearance of the material in increasing
(during the optimization process) subdomains. This suggests
replacing the integer design parameters in problem (VI.4)-
(VI.6) with continuous design variables along with introduc-
ing some form of penalty that steers the continuous solution
to discrete 0 – 1 values. The most popular and efficient is the
aforementioned SIMP method which replaces representation
(VI.4) and condition (VI.6) with the following ones:

Hijkl (x) = ρ (x)
p
H0
ijkl, x ∈ Ω (p > 1) (VI.7)

∫
Ω

ρ (x) dx ≤ V, 0 ≤ ρ (x) ≤ 1, x ∈ Ω, (VI.8)

where ρ = ρ (x) is the unknown design function called mate-
rial density. Function ρ interpolates continuously the material
properties between 0 and 1 (i.e. between the void and the
material of moduli H0

ijkl) and at the same time evaluates the
volume of the body in (VI.8). It turns out that under certain
assumptions concerning the condition (VI.8) and for suffi-
ciently large values of the parameter p > 1, the solution
to the SIMP problem tends to stable suboptimal solution to
the original 0-1 problem (see e.g. the discussion on pp. 6-7
in [18]). The question of whether it is always possible to
construct the microstructure of the material, which would
have the same (or almost the same) properties as the prop-
erties of the optimal material found by the SIMP method
has, inter alia, a close relationship with the Hashin-Shtrikman
bounds for two-phase materials and enforces some inequality
restrictions on the power p given e.g. in formulae (1.5) on
p.7 in [18]. For example, it is suggested to use parameter
p ≥ 3 in 3D problems for assumed value of Poisson ratio
ν0 = 1/3 of the given base materialH0. On the other hand,
the typical use of parameter p with values p = 3 or p = 5 in
SIMP method results in the designs that “. . . often converge
to local minima, except if some tricky filtering technique is
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used . . . ”, see Remark 5.2.10 on p. 393 in [3]. In the case of
the interpolation applied in the SIMP method, the additional
lower bound ρmin > 0 on the density ρ in (VI.8) has to be
introduced

∫
Ω

ρ (x) dx ≤ V, 0 < ρmin ≤ ρ (x) ≤ 1, x ∈ Ω

(VI.9)
in order to prevent from possible singularity of the equilib-
rium equation (VI.2) ; in typical applications its value is
assumed to be ρmin ≈ 10−3.

Remark VI.2. The positive lower bound ρmin guarantees
the existence of the unique displacement field u at each it-
eration of the SIMP method, because it protects against the
ill-conditioning of the square, stiffness matrixK in numerical
implementation of the displacement based FEM (algorithm
of the SIMP method together with the description of the up-
dating of the density field ρ = ρ (x) is presented on pages
13 and 10 in [18], respectively). On the other hand, in the
numerical implementation of the stress based IMD method,
the approximation of the stress field τ is used in variational
equilibrium equation (II.5) thus omitting equation (VI.2). The
consequence is that the rectangular equilibrium (statics) ma-
trix B, does not depend on any design variables unlike the
stiffness matrix K in SIMP method, which explicitly de-
pends on the design variable – density ρ. The approximation
of the statically admissible minimizer τ ∗ of the approximate
functional (III.11) determines explicitly the optimal, non-
homogeneous, isotropic tensor H∗ = H (τ ∗) (see (II.29),
(II.33)). At all points x ∈ Ω where the two optimal fields
k∗ = k∗ (x), µ∗ = µ∗ (x) reach simultaneously values close
or equal to 0, it is assumed that the optimal material disap-
pears while in the SIMP method we assume that the material
disappears if the optimal density field ρ∗ = ρ∗ (x) defining
the optimal tensor H∗ = H (ρ∗) reaches values close or
equal to the lower permissible value ρmin > 0. In the case
when the density field ρ∗ = ρ∗ (x) reaches values close or
equal to the upper permissible value 1, the material at such
points x ∈ Ωmat ⊂ Ω exists and its properties are defined by
the given base tensorH0, see (VI.7). It follows that at points
x ∈ Ω where the optimal material exists, the compared meth-
ods lead to completely different elastic properties because
in the IMD method they are defined by both optimal fields
k∗ (x) and µ∗ (x) in contrast to the method SIMP in which
they are defined by a predetermined base elasticity tensorH0.
It should be emphasized that at any point x ∈ Ω the compo-
nents of the optimal tensor H∗ in the IMD method are not
upper-bounded in contrast to the SIMP method, in which they
can achieve the maximum value resulting from the given base
tensorH0. The global isoperimetric condition (see (II.10)2
and (II.21)) of the IMD method implies only integrability
of the optimal moduli, which does not mean imposing any
upper bounds, which once again highlights the fundamental
differences in the interpretation of the conditions (II.10)2 and

(VI.9) in IMD and SIMP method, respectively. Numerical
simulations performed by the IMD method (see [14]) confirm
the characteristic property of optimal solutions k∗and µ∗ that
almost always vary drastically within the design domain Ω.
This behavior of the final results reflects the lack of any con-
ditions in IMD preventing the optimal moduli from achieving
certain levels. This is a feature similar to that observed in
elasticity problems in which no stress limits are imposed,
thus leading to stress singularities around e.g. the re-entrant
corners of the domains. To prevent from such solutions and
to cut the extremes of the stress plots one should e.g. set
the problem as elasto-plastic. By analogy, one can add some
extra constraints on the IMD design to arrive at new designs
of smaller variations of the optimal moduli. Such conditions
have not been imposed in order to show the optimum design
free of any additional, technological constraints: the latter
can always be assumed, while the pure optimization results
seem to be of certain value, like exact elasticity solutions with
all their picks of stress concentrations are no less informa-
tive than elasto-plastic solutions affected by extra parameters
defining the stress limit. Taking advantage of the method
presented in [15], more realistic IMD designs could be con-
structed making them Functionally Graded manufacturable.

On the other hand, another serious problem in the SIMP
method is a vague physical interpretation of the solution
H∗ = H (ρ∗) for intermediate values ρmin � ρ∗ (x) � 1
of optimal field ρ∗ (called grey solution), see a comprehensive
and thorough discussion from p. 22 in monograph [18].

Fig. 2. The body Ω – cantileverLx×Ly×Lz = 0.4×0.1×0.1 [m]
loaded with vertical force P [N ]

The comments in Remarks VI.1 and VI.2 indicate signifi-
cant differences in the interpretation of the IMD and SIMP
methods. Despite these differences, a visual comparison of
the numerical results of the topology optimization for both of
these methods is worth showing. For comparison, the two nu-
merical solutions are presented below. In the first example, the
3D cantilever, supported on the left vertical surface, of length
Lx = 0.4[m], width Ly = 0.1[m] and height Lz = 0.1[m] is
loaded by the vertical force P applied centrally at the right
vertical surface (see Fig. 2). The design domain was subdi-
vided with 64 × 16 × 16 = 16384 SOLID95 type elements.
The structure was loaded with a single force of magnitude
P = 100 [N]. The SIMP solution is implemented by the opti-
mality criteria (OC) method. Volume of the structure is used
as a topological constraint, while structural compliance is the
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objective. Tolerance for convergence was set to 0.001. The
final optimal topology found by the ANSYS system (see [23])
is shown in Fig. 3. Not all elements are plotted. These with
low pseudo-density (below 0.75 or sometimes more) are hid-
den, in order to show the most consistent topology. Results
are plotted as a contour plot (element solution). The solution
is converged after 47 iterations.

Fig. 3. The optimal topology found by OC method (see [23]) in
ANSYS system

The solution is then compared with the FMD and IMD solu-
tions. In Fig. 4, the final topologies represented by the optimal
Kelvin modulus λ∗1 found by FMD method (first figure) and
final topology represented by the bulk k∗ and shear µ∗ mod-
uli (second and third figure) or equivalently by the Young
modulus E∗ and Poisson ratio ν∗ (fourth and fifth figure)
found by the IMD method are shown. As in Fig. 3, not all
“material points” are plotted. The effect of the “removed mate-
rial” represented by the very low values of the optimal fields
k∗, µ∗ was shown by the selection of appropriate parameters
in Opacity Mapping window available in Voxler graphical
system.

In the second example, the 2D cantilever, supported
on left vertical side, of length Lx = 0.4 [m] and height
Ly = 0.1 [m] is loaded with the vertical force P = 1.0 [N]
applied centrally at the right vertical side (see Fig. 5). The
GRAMP interpolation scheme [17] is applied to find the sub-
optimal layout of basic isotropic material. Results obtained in
this way (Fig. 6a) are compared to the distribution of materi-
als ensuing from the homogenization theory (Fig. 6b) as well
as those related to the original SIMP (Fig. 6c) and RAMP
(Fig. 6d) approach. Young’s modulus of an isotropic solid
and Poisson’s ratio are assumed to be equal E0 = 1 and
ν0 = 1/3, respectively. All calculations are coded in MAT-
LAB by G. Dzierżanowski (see [17]) and performed by FEM
using the mesh of 400×100 square, four-node, isoparametric

Fig. 4. a) The optimal FMD topology found on the basis of the optimal Kelvin modulus λ∗
1, b) optimal topologies due to IMD: the optimal

bulk and shear moduli k∗, µ∗, optimal Young modulus E∗ and optimal Poisson ration ν∗ (first to fifth figure, respectively)
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elements C2D4. It should be emphasized that the optimal
layout found by GRAMP method (for p = 1) is in very
good agreement with the optimal layout found on the base
of homogenization theory and both optimal compliances are
almost the same.

Fig. 5. The body Ω – cantilever Lx × Ly = 0.4 × 0.1 [m] loaded
with vertical force P = 1.0 [N ]

Slightly higher values of optimal compliances calculated on
the base of RAMP (for p = 2) and SIMP (p = 3) method,
respectively, show that the optimal layouts found by these
two methods represent only suboptimal solutions.

Fig. 6. The optimal topologies found by GRAMP (p = 1) method
(a), by the homogenization method (b), by SIMP (p = 3) method
(c) and RAMP (p = 2) method (d) by G. Dzierżanowski program

written in MATLAB (see [17])

In Fig. 7, the final topologies represented by the bulk k∗ and
shear µ∗ moduli (first and second figure) or equivalently by
the Young modulus E∗ and Poisson ratio ν∗ (third and fourth
figure) found by IMD method for 2D case are shown. As in
Fig. 4, not all “material points” are plotted.

Fig. 7. The final topologies represented by the optimal bulk k∗ and
shear µ∗ modulus (first and second figure) or equivalently by the
Young modulus E∗ and Poisson ratio ν∗ (third and fourth) found by

IMD method for 2D case

A visual evaluation of optimal topologies found on the
basis of the SIMP and IMD method can lead to a conclu-
sion that both types of solutions are very similar. Yet one
should remember that a) the layout delivered by SIMP is

the generalized shape, while the IMD produces the layout
of isotropic moduli; b) the IMD method involves shape opti-
mization, since this method indicates the domain where the
material should be removed.
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