
CMST 21(1) 11-19 (2015) DOI:10.12921/cmst.2015.21.01.001

Middleware for Managing QoS Adaptation of SOA Applications

Jacek Psiuk, Krzysztof Zielinski

AGH University of Science and Technology
Faculty of Computer Science, Electronics and Telecommunications

Department of Computer Science
E-mail: {jacek.psiuk, kz}@agh.edu.pl

Received: 29 May 2014; revised: 01 October 2014; accepted: 14 November 2014; published online: 18 January 2015

Abstract: The paper describes an improvement over our previous work: the concept of an Adaptive SOA Solution Stack
(based on the IBM S3 model) which applies an AS3 element pattern to S3 layers where the need for adaptation arises. The
presented improvement, called the adaptation strategy management process, represents a solution that enables an Adaptation
Architect to model Quality of Service (QoS) adaptation in a declarative manner, automatically deploy it into a running
system and then monitor its execution. Its main objective is to allow the Adaptation Architects to view the adaptation
process on a higher level of abstraction and employ adaptivity mechanisms in working applications in an easy way. This is
accomplished by incorporating the adaptive application metamodel developed in the DiVA EU project and adjusting it to
the SOA context. This paper explains the challenges involved in adaptation strategy management and proposes extensions
to the DiVA metamodel. Subsequently, it presents a method by which the Adaptive Manager (a component of the AS3
adaptation loop responsible for making decisions about adaptation) can execute adaptation strategies in accordance with the
adaptation model. The presented approach is evaluated in a case study, creating an adaptation strategy and monitoring its
impact on an application prototype.
Key words: adaptation management, adaptation strategy, SOA, adaptive manager

I. INTRODUCTION

The Service Oriented Architecture (SOA) paradigm rep-
resents an innovative approach to application integration, con-
veying numerous benefits [1]. An SOA application is com-
posed of autonomous and loosely-coupled services communi-
cating with one another and exposing well-defined interfaces.
Applications developed in accordance with SOA principles
can be executed in highly dynamic environments.

It is desirable to enrich applications with mechanisms
allowing them to monitor their working environment [2] and
react to perceived changes. An application which is the object
of adaptation must expose elements which facilitate adap-
tation enforcement: sensors providing information on the
current context state and effectors exposing the application’s
variability (adaptation decisions are applied by means of ef-

fectors). A configuration is a set of specific decisions that
can be applied for each available effector. The adaptation
process is enforced by adaptation strategies. An adaptation
strategy is a description of actions which, when executed, im-
prove the QoS of a running system, i.e. improve the system’s
fulfillment of selected non-functional requirements without
influencing compliance of its functional requirements. This
is done by evaluating possible configurations and applying
the one which guarantees the best QoS given the current con-
text state. The concept of adaptation management includes
support for the following three aspects: 1) describing and
publishing monitorability and variability of designated parts
of the application, which will play an active role in the adap-
tation process, 2) creating and validating ready-to-execute
adaptation strategies which make use of the exposed vari-
ability, 3) executing and analyzing the available adaptation

12 J. Psiuk, K. Zielinski

strategies. Applications supported by adaptation management
middleware are referred to as adaptive SOA applications.

Designing large-scale enterprise applications which need
to efficiently operate in a changing environment is not a tri-
vial task.

Several challenges are associated with the adaptation man-
agement process [1, 3, 4]. The first problem we focused on
is the C1) complexity of the managed application. The more
points of variability adaptation processes need to account for,
the harder they are to manage. Adaptation strategy manage-
ment should handle a large number of possible configurations
in a user-transparent manner. Furthermore, a robust method
for C2) validation of adaptation strategies must be provided,
which is even more crucial for complex applications. Addi-
tionally, we would like to ensure C3) dynamic adaptation
strategy installation as well as C4) automation of its execu-
tion. This should be performed without disturbing availability
of the running application. Modification of strategies and
dynamic reinstallation of the running system should also be
supported. Moreover, we need to focus on C5) consistency:
adaptation strategy execution must ensure proper causality
between the application configuration selected for the current
circumstances and the application’s QoS. Finally, the Adapta-
tion Architect should be able to manage adaptation strategies
with C6) ease: strategies should be created in a declarative
way, hiding technical details from the Adaptation Architect.
The problem of C7) scalability should also be addressed here:
the adaptation strategy definition should retain its simplicity
in more complicated scenarios, including many variability
points.

The SOA Solution Stack (S3) [5] proposed by IBM is
one of the possible approaches to modeling SOA systems. S3
provides a detailed architectural definition of an SOA system
split into nine layers. The Adaptive S3 (AS3) model [3] has
been constructed by uniformly applying the AS3 element
pattern to each layer of the S3 Model. The Adaptive Manager
is a component of the AS3 adaptation loop which makes deci-
sions on configurations that should be applied to the running
application in order to improve QoS in the current context
state. As explained in [3], the Rule Engine is a good choice
for Adaptive Manager implementation. However, the issue of
creating rules which would execute a desirable strategy has
not heretofore been addressed. This issue is considered in this
paper.

This work includes the following scientific contributions:
• An adaptation strategy management methodology for

QoS adaptation in SOA applications which addresses
non-functional requirements compliance;

• A method for creating rules for the Adaptive Manager
to enable it to execute the defined adaptation strategy;

• A middleware framework implementing the proposed
solution, focusing on the Service layer of the S3 model.

The paper is organized as follows. Section II covers

adaptation management aspects: a metamodel that has been
adopted and extended to meet new requirements, an adap-
tation execution method by means of a Rule Engine, and a
proposed methodology of adaptation enforcement. Section III
presents a case study and evaluates the proposed solution.
Work related to adaptation is recounted in Section IV. The
paper concludes with a description of to-date achievements,
outlined in Section V.

II. ADAPTATION MANAGEMENT

In this section we describe in detail the entire process
of adaptation management: 1) what information needs to be
gathered in order to prepare a specific adaptation strategy,
2) how to extract an executable strategy from the gathered
information, 3) what steps the Adaptation Architect should
take to create an adaptive application.

II. 1. Adaptation metamodel
In order to manage adaptation, a certain way of defining

it has to be specified. On the one hand, it must allow the
Adaptation Architect to easily create adaptation strategies; on
the other hand, it has to be transformable to a form which can
be executed by the Adaptive Manager. Substantial research
has been done in the field of modeling variability and there
are different approaches to achieving adaptivity. Some of
them exploit “utility functions” as the main tool for specify-
ing adaptation strategies, decision rules, model-driven and
feature-driven approaches. We have decided to incorporate
the solution developed in the EU DiVA project [6] because,
unlike other examined approaches [4, 6, 7, 8, 9, 10], it substan-
tially addresses challenges C1, C2, C5, C6. The adaptation
metamodel1 specifies elements of the adaptation model. The
adaptation model is a description of elements participating
in the process of adaptation: the context by which changes
in the environment are captured, the variability (means of
introducing changes into the application) and the causal link
between the two (i.e. how to configure variability elements
according to the context).

Composite service Atomic service

Atomic service’s

variability

Composed variability
Composite service’s

variability

Fig. 1. Atomic and composite service variability

The DiVA adaptation metamodel needs to be extended
in order to meet the requirements emerging in the context

1 The original metamodel is briefly described in the Appendix: Section V.

Middleware for Managing QoS Adaptation of SOA Applications 13

The best configuration calculation

Valid configurations

identification

Context

state

. Context update

Goal adaptation

Goal of

adaptation

Valid

configurations

Monitoring

results

1

1a 1b

3

Execution phase: monitor

context state and QoS

Updated

parameters

. Impact adjustment2

Context

data
QoS data

The best configuration

installation

The best

configuration

Move to the

next iteration

Fig. 2. Reasoning stages

of SOA. Originally the adaptation model was assumed to be
created at design time and never change at runtime [11]. How-
ever, in light of challenge C3, highly dynamic environments
must be taken into account, therefore it should be possible to
alter the adaptation strategy at runtime. Secondly, we have
upgraded the variability metamodel with regard to challenge
C7. In most cases an SOA application consists of a number
of services. In contrast to atomic services, composite services
require cooperation with other services (whether atomic or
composite), leading to a call graph. An SOA application’s
variability is a sum of the variability of all of its operating
services. Variability of a composite service is influenced by
its own variability and the variability of directly and indirectly
referenced services [12]. Such a composite service should
expose the variability altogether as composed variability (see
Figure 1). This issue was not addressed in the DiVA meta-
model since it was designed for Dynamic Software Product
Lines [11]. Therefore the metamodel had to be extended with
exposition of aggregated variability: adaptation parameters
can enclose other adaptation parameters so that the Adapta-
tion Architect can separate different areas of adaptation and
group the overlaying ones. Finally, the goal metamodel needs
to be revised in the context of SOA, where different QoS
techniques exist [13]. We have therefore added the aspect
of monitorability to the adaptation goals. The presented con-
cept merges the context metamodel with the goal metamodel:
context variables can be simultaneously treated as adaptation
goals.

II. 2. Executing the adaptation
The reasoning process which results in new management

decisions is performed by the Adaptive Manager. Therefore,
with regard to challenge C4, the adaptation model has to
be transformed into a specific adaptation strategy: a set of
rules that are to be executed by a Rule Engine. During execu-
tion monitoring data from the context and QoS is gathered.
Reasoning is triggered as soon as a change in the application
environment occurs. The reasoning process is divided into
steps (the algorithm is depicted in Figure 2) which are related
to different rule sets:

1. The monitoring results are consumed by the rules and
an updated context state is returned.

1a. The goals’ importance is determined according
to the current context state.

1b. Possible system configurations are evaluated and
valid ones are identified.

2. According to the monitored values of QoS, the im-
pact of installed variants is refined in order to better
correspond to real influence on goals,

3. Given the current context state and a set of valid con-
figurations together with the updated impact of the
parameters of adaptation, the rules specify the best
configuration.

Following the reasoning process the best configuration
is installed in the running application and monitoring can
continue.

14 J. Psiuk, K. Zielinski

Distributed SOA Execution Environment

Application

Middleware

Adaptive Manager

Strategy Creator

Monitoring

Management

GUI

Adaptation

Strategy

Adaptation Model

VariabilityGoalContext

Repository

1. register in

3. creates

9. provides

configurations for

7. collects

monitoring data from

10. installs

configurations via

4. is input for

6. provides rules for

conforms to

5. creates

2. discovers

adaptation

artifacts from

8. provides

facts for

conforms to

Middleware

components

Created artifacts

designs model

and

monitors

adaptation using

Sensors Effectors

Artifacts provided

by the Application

Fig. 3. Adaptation management process enforced by the middleware

II. 3. Methodology
This subsection presents the adaptation management pro-

cess supported by the developed middleware whose archi-
tecture is depicted in Figure 3. Numbers in parentheses cor-
respond to those marked in the figure showing the process.
The middleware is deployed together with the application in
an SOA environment which can be distributed over remote
nodes.

Phase 1 – Adaptation artifacts deployment
The Adaptation Architect starts with designating which

parts of the running application will actively participate in
the adaptation process. Three adaptation artifact types are dis-
tinguished here: context sensors, QoS monitors and effectors.
Context sensors and QoS monitors are types of sensors. The
difference between them lies in their role in the adaptation
model: context sensors become context variables, while QoS
monitors are the goals of adaptation (unlike context sensors,
their values are naturally ordered from the most to the least de-
sired). The Adaptation Architect has to implement respective
interfaces for every adaptation artifact. The implementation
process is out of the scope of this paper (e.g. regarding sen-
sors, methods presented in [13] can be exploited; regarding
effectors, internal structure, configuration or collaboration
with different services can provide different variants). Every
active element must be registered in the Repository provided
by the middleware framework (1).

Phase 2 – Adaptation modeling and simulation
The Adaptation Architect revises the adaptation require-

ments of the application and constructs an adaptation model

that will fulfill these requirements during execution. Two
GUI components were prepared for this phase: Modeling
View where the Adaptation Architect can prepare adaptation
strategies and Simulation View where he/she can simulate
the prepared strategies. The Adaptation Architect discovers
available sensors by means of GUI (2) and adds a subset re-
lated to this particular adaptation strategy to the model (these
stand for context variables). QoS monitors as well as effec-
tors are also discovered and added to the model (as goals
and parameters, respectively). Following this step the Adapta-
tion Architect completes the model by adding the remaining
elements: goal management policies, constraints and impact.

Afterwards, the Adaptation Architect simulates adapta-
tion to see what the results of running the adaptation accord-
ing to that model would be. Prior to being transformed into
an executable form, the model is validated by the middleware:
its structural correctness is verified (information about any
missing elements is displayed to the Adaptation Architect);
simulation of every possible context state may expose defects
(existence of context states for which none of the goal man-
agement policies apply; variants which are always (or never)
chosen in the system configuration; context states for which
there is no valid configuration to choose due to, for exam-
ple, overly restrictive constraints). This completes creation of
the model (3). It is then received by the Strategy Creator (4)
which automatically derives an Adaptation Strategy (5) and
installs it in the Adaptive Manager as rules (6).

Phase 3 – Execution
The Monitoring component collects data from sensors (7)

and transforms it to facts (8). The Adaptive Manager chooses

Middleware for Managing QoS Adaptation of SOA Applications 15

Distributed SOA execution environment

External Search

Engine

search

Search Engine

#2 search

variants:
use external

no external

Session Engine

getInfo

#5 create

#16 destroy

variants:
memory

hard disk

Bookings Manager

#13 checkout

#11 modify

#8 lock

variants:
memory

hard disk

Ad Server

getAd

variants:
none

images

videos

Database

#6 authorizeUser

#9 retrieveFlight

#14 registerPayment

#3 searchFlights

variants:

1 node

2 nodes

3 nodes

variants:

Presentation Server

#12 buy

#15 logout

#7 book

#10 customize

#1 search

#4 login

full content

limited content

Consumer

Fig. 4. Abstract view of the case study application showing the request flow and service variants

configurations accordingly (9) and they are installed in the
Applications via the Management component (10). The Adap-
tation Architect can observe the execution progress via the
Execution View where strategy execution results are shown
(showing the context state, chosen configurations and QoS).
If necessary, he/she can go back to Phase 2, modify the model
and reinstall the strategy at runtime.

III. EVALUATION

Our work included the creation of middleware supporting
the presented methodology2. This section presents an evalua-
tion of the presented solution which demonstrates a prototype
SOA application facing some issues related to performance
and resources usage. We show how this particular case study
can be enriched with an adaptation strategy that helps the ap-
plication adapt to changing environment conditions in order
to achieve better QoS. The testbed on which the approach was
evaluated consisted of three OSGi containers: one with the
middleware services; the application services were distributed
over two remaining OSGi containers. The communication

between separated OSGi containers was implemented using
the mechanisms presented in our earlier work [14].

III. 1. Creating the adaptation strategy
The target application is designed to manage flight book-

ings, allowing clients to log in, search for available flights,
book, customize and finally purchase tickets. The system is
designed in accordance with the SOA principles and thus it
consists of several services installed in an SOA environment
and providing various features. Each service comes in several
variants, differing with respect to QoS. It is assumed that only
one variant can be chosen at any time for each service. Figure
4 shows an abstract view of the application. The request flow
was highlighted to indicate typical service usage and cooper-
ation. Business operations as well as service variants are also
shown.

Consumers of the application send requests directly to
the Presentation Server which later passes control to other
services. As the name suggests, the Presentation Server is
responsible for interpreting consumers’ input and providing
them with results. We assume that it can operate in two differ-
ent variants: full content when the application serves requests
providing its full feature set at the cost of higher resource

2 Technologies used include OSGi-Equinox, Eclipse RCP and the JBoss Drools Engine.

16 J. Psiuk, K. Zielinski

usage, and limited content where resource usage is reduced.
Search Engine is used to coordinate the process of search-
ing for flights. It provides two variants: use external, using
other searching services from outside of the application to
achieve better offers, and no external when it uses only the
local database to save time and bandwidth. Both services:
Session Engine (managing client sessions) and Booking Man-
ager (reserving flights from the moment they are looked up
to the point of a booking request) may operate in one of
two variants: memory and hard disk. These variants differ
with respect to data storage mechanisms: memory storage (as
opposed to hard disk) makes the service fast but consumes
more operating memory which might be in short supply. The
Database service provides persistence features. Since it may
represent a performance bottleneck, it can be delegated to
one, two or three nodes, depending on the average response
time and the number of requests to handle (for the purposes
of the prototype nodes were implemented as threads serving
incoming requests). The last service, Ad Server, is responsible
for serving advertisement to clients. It is invoked during every
request to the Presentation Server. The Ad Server has three
variants: video, images and none, providing various types of
advertisements (or the lack thereof).

The adaptation requirements (ordered by importance) are:
1) to be able to adapt to the application’s current response time
and request count in order to maintain a sufficient level of re-
sponsiveness without wasting resources, 2) to maximize profit
resulting from ticket sales and advertisements, 3) to release
resources whenever they are not needed in order to minimize
costs, including memory and bandwidth. Consequently, the
application’s response time and the number of currently active
clients will be monitored by sensors, which are at the same
time context sensors and QoS monitors. In addition, other
sensors will provide context information: 1) high memory
usage and 2) high bandwidth usage indicating if the memory
or bandwidth usage is too high and should be reduced; and
3) marketing time indicating that advertisement profit is more
important (for example, due to holiday discounts).

In order to achieve desirable adaptation, we follow the
adaptation management process described in Subsection II. 3.
In phase 1 we ensure that all sensors and effectors are prop-
erly deployed and registered in the Repository (1). In phase
2, using the Modeling View, we discover installed context
sensors, QoS monitors and effectors (2) and add them to the
model as context variables, goals of adaptation and adapta-
tion parameters3. We complete the model with constraints,
parameters’ impact on goals and goal management policies4.
Subsequently, using the Simulation View, we validate and

simulate the adaptation and modify the model if necessary.
Once the model meets adaptation requirements (3), the mid-
dleware converts it to an executable set of rules (4, 5) and
installs it in the running system (6). In phase 3, we can follow
adaptation execution using the Execution View (7-10). After
a new strategy is installed, we can go back to phase 2, read-
just and reinstall the strategy without stopping the running
application.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80

re
s
p

o
n

s
e
 t

im
e
 [

m
s
]

time [s]

without changes random changes strategy activated

Fig. 5. Response time measured during the experiments

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70 80

re
q

u
e
s
ts

 p
e
r

h
o

u
r

time [s]

without changes random changes strategy activated

Fig. 6. Request count measured during the experiments

III. 2. Experiments
In order to verify that the strategy meets its requirements,

several experiments were performed. The application was
installed in an OSGi environment ready to serve requests.
Each request followed the numbered sequence highlighted in
Figure 4. Three different scenarios were executed:

S1 without changes – no interference with the running
application5;

3 The modeling process, pursuant to the original metamodel, is described in [11] and will not be further elaborated upon here.
4 in the prototype implementation, the variants’ impact and importance of goals are each expressed as a number between 1 and 9 (or no

influence). Given the variants’ impact and current importance of goals it is possible to compare different configurations (if there is more
than one possible best configuration, a random one is chosen).

5 During this scenario the following variants were used: Presentation Server: full content, Search Engine: external, Session Engine: hard
disk, Bookings Manager: hard disk, Database: 2 nodes, Ad Server: videos.

Middleware for Managing QoS Adaptation of SOA Applications 17

S2 random changes – with randomization of chosen var-
iants for every service;

S3 strategy activated – where the variants were chosen in
accordance with the adaptation strategy.

1

2

3

0 10 20 30 40 50 60 70 80

n
u

m
b

e
r

o
f

n
o

d
e

s

time [s]

strategy activated random changes

Fig. 7. Chosen variant of the Database service in scenario 2 and 3;
in scenario 1 the variant of “2 nodes” was always chosen

During every scenario the same number of clients fol-
lowed the request flow and requests were dispatched with
identical frequency. The request count gradually increased as
the experiment progressed, finally reaching a peak and then
gradually decreasing all the way down to zero. The response
time and the number of requests served per time slot were
measured and are shown in Figures 5 and 6. Additionally, the
selected Database service variant was monitored, as shown
in Figure 7. Since such an experiment includes randomness,
it was repeated several times and, as the results were similar,
one execution was chosen arbitrarily and is presented in the
paper.

III. 3. Discussion
Basing on observations made during the experimentation,

we can come to the following conclusions:
1. Figure 6 and 7 together show how the application ad-

justed to the rising frequency of incoming requests.
Once the frequency dropped, the adaptation process
switched to using variant 2 nodes and then 1 node, thus
releasing unneeded resources. Figure 7 shows fluctua-
tion of resources usage in scenarios 2 and 3. Choosing
1 node and 2 nodes, especially in period when the
request frequency was the highest, caused very long
duration of processing all the requests in scenario 2.

2. Following activation of the adaptation strategy the ap-
plication was able to serve all the clients in a shorter
time compared to both remaining scenarios. Scenario
S1 was also able to serve all clients but incurred a sig-
nificantly higher response time.

3. The request count in S3 is lower than in S1 for the first

20 seconds but both scenarios show a similar response
time for that period. After 20 seconds the request count
in S3 was significantly higher than in S1 and S2.

4. The response time remained short which ensures satis-
factory Quality of Experience.

In summary, the results show that when the strategy en-
sured adequate resource usage. Adaptation brings about two
major advantages: 1) response time is kept on a sufficiently
low level, and 2) resources are used when necessary and
released when no longer needed.

The process shown in this section proved that the pre-
sented middleware successfully meets the stated challenges:
according to the results, QoS remained high and the applica-
tion could adapt to the changing context (C5); the declarative
way of modeling adaptation (C6) and handling a large num-
ber of configurations (C1) as well as validation of configu-
rations prior to installation (C2) remained hidden from the
Adaptation Architect; separation of concern was provided by
introducing a hierarchical variability model instead of a flat
one (C7); the strategy was automatically derived from the
adaptation model (C4) and created, modified and (re)installed
dynamically at runtime(C3).

IV. RELATED WORK

Adaptivity in SOA systems has been the focus of many
research initiatives over the past few years. We have inves-
tigated other approaches in order to examine their strong
points and conceivably incorporate them into our solution.
The authors of [6] present results of their work in the DiVA
project which aims at dynamic variability in complex adap-
tive systems. DiVA proposes a tool-supported methodology
for adaptive system design, development and execution. We
find its adaptivity description metamodel very convenient and
sufficient for our requirements. However, in order to incorpo-
rate it into SOA environment we had to extend it as explained
in previous sections.

An architecture model called MADAM is presented in
[10]. MADAM includes specification of the application struc-
ture, its variability and distribution aspects, the properties of
each variant, and the utility functions for comparing variants.
We describe points of variability using their interfaces. Know-
ing the interfaces we can dynamically discover components
which implement them (considered to represent variants).
These components realize parametric adaptation – QoS is
tweaked by adjusting certain parameters. For each type of
component its ports are distinguished as connection points to
other components. Properties of the variants can be expressed
as utility functions defined by the Adaptation Architect. Defin-
ing such functions can be troublesome with more complex
systems. Furthermore, variants are required to possess certain
interfaces which cannot change easily at runtime. The DiVA
model is free of this drawback.

18 J. Psiuk, K. Zielinski

In [7] self-management of adaptive applications driven by
utility functions is presented. The authors claim that utility
functions and goal-policies are a good way to describe adap-
tation because they concentrate on the desired state and not
the present state, and they are easy to define. A case study
of a resource manager exploiting their concepts is presented.
Decisions on how to split the managed resources are made in
accordance with declarative utility functions, enabling effec-
tive resource distribution. Many such functions are evaluated
and their results are compared. However, this approach does
not scale well with usage complexity and moreover it lacks
a solution that would consolidate many utility functions into
an integrated adaptation strategy.

The authors of [8, 15] present a rule-based adaptation
framework where adaptation strategies are implemented by
certain sets of rules executed by Rule Engines. This approach
is sufficient for simple adaptation scenarios; however, when
the adaptive application’s structure grows, problems with rule
complexity and validation emerge.

V. CONCLUSIONS

This paper presents a middleware-supported methodology
which addresses QoS adaptation management in the context
of SOA systems. The AS3 element pattern was enhanced
with a method which creates rules for the Adaptive Manager
to execute adaptation strategies built by the Adaptation Ar-
chitect. Adopting and further extending the DiVA adaptation
metamodel enabled the authors to solve many arising prob-
lems. Evaluation of the proposed solution demonstrated that
the challenges listed at the beginning of the paper are suc-
cessfully addressed by the created middleware. We therefore
believe that our achievement represents a useful and self-
contained approach to managing adaptivity of non-functional
requirements of SOA applications.

References

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology,
and Design, Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005.

[2] M. Psiuk, T. Bujok, and K. Zielinski, Enterprise Service Bus
Monitoring Framework for SOA Systems, IEEE Transactions
on Service Computing 5(3) (2012).

[3] K. Zielinski, T. Szydlo, R. Szymacha, J. Kosinski, J. Kosin-
ska, and M. Jarzab, Adaptive SOA Solution Stack, IEEE
Transactions on Service Computing 5(2) (2012).

[4] C. ai Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello,
Modeling and Managing the Variability of Web Service-based
Systems, Journal of Systems and Software 83(3), 502-516
(2010).

[5] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and
K. Channabasavaiah, S3: A Service-Oriented Reference Ar-
chitecture, IT Professional 9, 10-17 (2007).

[6] F. Fleurey, V. Dehlen, N. Bencomo, B. Morin, and J.-
M. Jézéquel, Models in Software Engineering, chapter
Modeling and Validating Dynamic Adaptation, pages 97-108
Springer-Verlag, Berlin, Heidelberg, 2009.

[7] J.O. Kephart and R. Das, Achieving Self-Management via
Utility Functions, IEEE Internet Computing 11(1), 40-48
(2007).

[8] J. Adamczyk, R. Chojnacki, M. Jarzab, and K. Zielinski, Rule
Engine Based Lightweight Framework for Adaptive and Au-
tonomic Computing, [In:] Marian Bubak, Geert van Albada,
Jack Dongarra, and Peter Sloot, editors, Computational Sci-
ence – ICCS 2008, volume 5101 of Lecture Notes in Computer
Science, pages 355-364 Springer Berlin/Heidelberg, 2008.

[9] T. Nguyen and A. Colman, A Feature-Oriented Approach for
Web Service Customization, IEEE International Conference
on Web Services, 393-400, (2010).

[10] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjorven, Using Architecture Models for Runtime Adapt-
ability, IEEE Softw. 23(2), 62-70 (2006).

[11] S. Dustdar, F. Li, P. Greenwood, R. Chitchyan, D. Ayed,
V. Girard-Reydet, F. Fleurey, V. Dehlen, and A. Solberg, Mod-
elling Service Requirements Variability: The DiVA Way, [In:]
Service Engineering, 55-84 Springer, Vienna, 2011.

[12] T. Nguyen, A. Colman, M.A. Talib, and J. Han, Managing
Service Variability: State of the Art and Open Issues, [In:]
Proceedings of the 5th Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS ’11, pages 165-173, New
York, NY, USA, 2011 ACM.

[13] D. Zmuda, M. Psiuk, and K. Zielinski, Dynamic Monitoring
Framework for the SOA Execution Environment, Procedia
CS1(1), 125-133, (2010).

[14] M. Psiuk, D. Żmuda, and K. Zieliński, Distributed OSGi Built
Over Message-Oriented Middleware, Software: Practice and
Experience, (2011).

[15] J. Keeney and V. Cahill, Chisel: A Policy-Driven, Context-
Aware, Dynamic Adaptation Framework, IEEE International
Workshop on Policies for Distributed Systems and Networks
3, (2003).

Appendix – OUTLINE OF THE DIVA METAMODEL
ELEMENTS

To keep the paper self-contained, we briefly outline the
original metamodel presented in [6, 11]. The metamodel itself
consists of the following elements:

1. Context metamodel – context variables describe the en-
vironment around the system in terms of values which
should be constantly monitored.

2. Goal metamodel – goals of adaptation (renamed from
properties) stand for quality marks (reflecting QoS)
which should be optimized during adaptation (exam-
ples: power consumption, response time, performance).
The adaptation goal can be fulfilled by choosing proper
variants.

3. Variability metamodel – parameters of adaptation (re-
named from variability dimensions) and their variants
describe adaptation points, i.e. parts of the system
which can be managed.The variants are chosen accord-
ing to their impact on the goals of adaptation and the
current context state.

Middleware for Managing QoS Adaptation of SOA Applications 19

Additional relations bind these three metamodels:
• (1 and 2) Goal management policies (renamed from

property rules) – used to specify the importance of
each goal of adaptation depending on the current con-
text state.

• (1 and 3) Constraints – relationships (dependency, ex-
clusion) between variants and context variables or other
variants.

• (2 and 3) Parameters’ impact on goals – the way the
variants contribute to fulfilling each goal. Impact speci-
fies how each parameter influences each goal of adap-
tation.

Jacek Psiuk is a PhD candidate at AGH University of Science and Technology in Krakow in a faculty
of Computer Science where he receives a doctoral scholarship for his achievements. His research focuses on
adaptation of enterprise SOA applications. He conducted research activities in the IT-SOA project. He also
participated in the “UniversAAL” project aiming at building an open platform and reference specification for
ambient assisted living. As a result he co-authored a paper titled “Seamless Semantic Enrichment of Services
in Assistive Environments”. Jacek is also a professional software engineer holding a full-time position in the
industry. He leads a constantly growing development team employed by Luxoft Poland working for UBS,
a Swiss bank. They develop a distributed batch application analyzing and producing finance report data.

Krzysztof Zielinski is a full professor and head of Department of Computer Science at AGH-UST. His interests
focus on networking, mobile and wireless systems, service-oriented distributed systems engineering and cloud
computing. He is an author of over 200 papers in this area. He served as an expert with Ministry of Science
and Education. Now he is leading SOA-oriented research performed by IT-SOA Consortium in Poland. In this
area his research interest concerns: Adaptive SOA Solution Stack, Services Composition, Service Delivery
Platforms and Methodology. He is a member of IEEE, ACM and Committee on Informatics of Polish Academy
of Sciences. He served as a program committee member, chairman and organizer of several international
conferences including MobiSys, ICCS, ICWS, IEEE SCC and many others.

CMST 21(1) 11-19 (2015) DOI:10.12921/cmst.2015.21.01.001

