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Abstract: In this paper we are going to describe the results of the computer experiment, which in principle can rule out
validity of the Riemann Hypothesis (RH). We use the sequence ck appearing in the Báez-Duarte criterion for the RH and
compare two formulas for these numbers. We describe the mechanism of possible violation of the Riemann Hypothesis.
Next we calculate c100000 with a thousand digits of accuracy using two different formulas for ck with the aim to disprove
the Riemann Hypothesis in the case these two numbers will differ. We found the discrepancy only on the 996th decimal
place (accuracy of 10−996). The computer experiment reported herein can be of interest for developers of Mathematica and
PARI/GP.
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I. INTRODUCTION

With the advent of the computer era the computing ma-
chines have been used to prove mathematical theorems.
The most spectacular examples of such a use of computers
were proofs of the four color theorem [1, 2] and of the Ke-
pler conjecture about sphere packing in three-dimensional
Euclidean space [3]. It seems to be not possible to use com-
puters for the proof of the Riemann Hypothesis (RH), but its
refutation by numerical calculations seems to be plausible.

The Riemann Hypothesis says that the series

ζ(s) =

∞∑
n=1

1

ns
, (s = σ + it, <(s) > 1) (1)

analytically continued to the complex plane in addition to
trivial zeros ζ(−2n) = 0 has nontrivial zeros ζ(ρl) = 0 in
the critical strip 0 < <(s) < 1 only on the critical line:
<(ρl) = 1

2 i.e. ρl = 1
2 + iγl, see e.g. the modern guide to the

RH [4]. In the same book there is a review of failed attempts

to prove RH in Chapter 8. Presently the requirement that the
nontrivial zeros are simple ζ ′(ρl) 6= 0 is often added.

The first use of computers in connection with RH was by
Allan Turing checking whether the nontrivial zeros of ζ(s)
have indeed real part 1

2 [5]. Turing suspected that the RH is
not true and the first counterexample is lying relatively low.
Let us quote the sentence from the first page of his paper:
“The calculation were done in an optimistic hope that a zero
would be found off the critical line”, but up to t = 1540 Tur-
ing found that all zeros are on the critical line. The present
record belongs to Xavier Gourdon [6] who has checked that
all 1013 first zeros of the Riemann ζ(s) lie on the critical
line. Andrew Odlyzko checked that RH is true in different
intervals around 1020 [7], 1021 [8], 1022 [9], but his aim was
not verifying the RH but rather provide evidence for con-
jectures that relate nontrivial zeros of ζ(s) to eigenvalues of
random matrices. In fact, Odlyzko expressed the view that
off critical line zeros could be encountered at least at t of the
order 1010

10000

, see [10]. Asked by Derbyshire “What do you
think about this darn Hypothesis? Is it true, or not?” Odlyzko
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replied: “Either it’s true, or else it isn’t”. Also other famous
mathematicians John E. Littlewood and Paul Turán did not
believe RH is true. Aleksandar Ivić gave a few arguments
against the truth of the RH, see [4, ] and on arxiv [11].

There were several attempts to use computers to disprove
some conjectures related to RH in the past. Sometimes it
was sufficient to find a counterexample to the given hypoth-
esis, sometimes the disproof was not direct. For example,
the Haselgrove [12] disproved the Pólya’s Conjecture stat-
ing that the function

L(x) :=
∑
n≤x

λ(n) (2)

satisfies L(x) ≤ 0 for x ≥ 2, where λ(n) is Liouville’s
function defined by

λ(n) = (−1)r(n)

where r(n) is the number of, not necessarily distinct, prime
factors in n = pr11 · · · p

rn
α(n), with multiple factors counted

according to their multiplicities: r = r1 + . . .+rn. From the
truth of the Pólya Conjectures the RH follows, but the con-
verse statement is not true. The Haselgrove proof was indi-
rect, and in 1960 Lehman [13] found on the computer ex-
plicit counter–example: L(906180359) = 1.

The next example is provided by the Mertens conjecture.
Let M(x) denote the Mertens function defined by

M(x) =
∑
n≤x

µ(n), (3)

where µ(n) is the Möbius function

µ(n) =

 1 n = 1
0 p2|n
(−1)r n = p1p2 . . . pr, pi distinct

From

|M(x)| < x
1
2 (4)

again the RH would follow. However, in 1985 A. Odlyzko
and H. te Riele [14] disproved the Mertens conjecture, again
not directly, but later it was shown by J. Pintz [15] that
the first counterexample appears below exp(3.21 × 1064).
The upper bound has since been lowered to exp(1.59×1040)
[16].

Especially interesting is the value of the de Bruijn-
Newman constant Λ, see e.g. §2.32 (pp. 203-205) in [17].
Unconditionally Λ ≤ 1/2 and the Riemann Hypothesis is
equivalent to the inequality Λ ≤ 0. The fascinating run
for the best lower bound on Λ ended with the value Λ >
−2.7 × 10−9 obtained by Odlyzko [18]. Such a narrow gap
for values of Λ being compatible with RH allowed Odlyzko
to make the remark: “the Riemann Hypothesis, if true, is just
barely true”. However, Don Zagier [19] interpreted it as “the
RH, if false, is only slightly false”.

In 1997 Xian-Jin Li proved [20], that Riemann Hypo-
thesis is true iff the sequence:

λn =
1

(n− 1)!

dn

dsn
(sn−1 ln ξ(s))|s=1

where

ξ(s) =
1

2
s(s− 1)Γ

(s
2

)
ζ(s)

fulfills:

λn ≥ 0 for n = 1, 2, . . . (5)

The explicit expression has the form:

λn =
∑
ρ

(1− (1− 1/ρ)n). (6)

K. Maślanka [21-23] has performed extensive computer cal-
culations of these constants confirming (5) with large sur-
plus.

Let us mention also the elementary Lagarias criterion
[24]: to disprove the RH it suffices to find one n that has
so many divisors, that:∑

d|n

d > Hn + exp(Hn) ln(Hn), (7)

where Hn =
∑n
k=1 1/k is the n-th harmonic number.

The Lagarias criterion is not well suited for computer verifi-
cation and in [25] Keith Briggs has undertook instead the
verification of the Robin [26] criterion for RH:

RH ⇔
∑
d|n

d < eγn ln ln(n) for n > 5040 (8)

For appropriately chosen n Briggs obtained for the differ-
ence between r.h.s. and l.h.s. of the above inequality value as
small as e−13 ≈ 2.2 × 10−6, hence again RH is very close
to being violated.

In this paper we are going to propose a method which in
principle can provide a refutation of the RH. The idea is to
calculate a number with very high accuracy (one thousand
digits) in two ways: one without any knowledge on the zeros
of ζ(s) and second using the explicit formula involving all
ρl. Despite some estimation presented in Sect. 3 indicating
that the discrepancy could be found merely at much higher
than a thousand decimal places we performed the calcula-
tions in an optimistic hope that we will find the discrepancy
between these two numbers, paraphrasing the sentence of
Turing. There is a lot of number theoretic functions often
defined in an elementary way being expressed also by the
“explicit” formulas in terms of zeros of the ζ(s) function.
Let us mention here the Chebyshev function

ψ(x) =
∑
n≤x

Λ(n) (= ln(lcm(2, 3, · · · bxc))),

where the von Mangoldt function Λ(n) is defined as

Λ(n) =

{
ln p for n = pm

0 in other cases

The explicit formula reads, see eg. [27] (the term ln
(
1− 1

x2

)
comes from trivial zeros):

ψ(x) = x−ln(2π)− 1

2
ln

(
1− 1

x2

)
−

∑
nontr. zeros ρl

xρl

ρl
(9)



Some remarks on the Báez-Duarte criterion for the Riemann Hypothesis 41

Also the Mertens’s function has the explicit representa-
tion (the last term is comprising contribution from all trivial
zeros) [27]: ∑

n≤x

µ(n) =
∑
nontr.
zeros ρl

xρl

ρlζ ′(ρl)
− 2

−
∞∑
n=1

(−1)n
(

2π

x

)2n
1

(2n)!nζ(2n+ 1)

(10)

The problem with these series is that they are extremely
slow converging because the partial sums oscillate with
amplitudes diminishing at very slow rates. For example
ψ(1000001) = 999586.597 . . ., while from (9) summing
over 5,549,728 zeros gives 999587.15 . . ., thus relative error
is 0.000055.

In the computer experiment reported here we were able
to get discrepancy less than 10−996 between the quantity
calculated from the generic formula and from an explicit
one summed over only 2600 nontrivial zeros computed with
1000 significant digits. This paper can be regarded as a con-
tinuation of our investigation reported in [28].

II. THE BÁEZ-DUARTE CRITERION FOR THE
RIEMANN HYPOTHESIS

We begin by recalling the following representation of
the ζ(s) function valid on the whole complex plane without
s = 1 found by Krzysztof Maślanka [29, 30]:

ζ(s) =
1

s− 1

∞∑
k=0

Γ
(
k + 1− s

2

)
Γ
(
1− s

2

) Ak
k!

(11)

where Γ(z) is the Euler gamma function and

Ak :=

k∑
j=0

(−1)j
(
k

j

)
(2j + 1)ζ(2j + 2) ≡

≡
k∑
j=0

(
k

j

)
(−1)j+122j+1B2j+2π

2j+2

(4j + 4)!
.

(12)

Above we have used the fact that ζ(2n) =
(−1)n−122n−1B2nπ

2n/(2n)! where B2n are Bernoulli
numbers.

The expansion (11) provides an example of the analyt-
ical continuation of (1) to the whole complex plane except
s = 1. Since Ak tend to zero sufficiently fast as k → ∞
the expansion (11) converges uniformly on the whole com-
plex plane [31]. Based on the representation (11) Luis Báez-
Duarte in [32] proved that RH is equivalent to the statement
that

ck = O
(
k−3/4+ε

)
, ∀ε > 0, (13)

where

ck =

k∑
j=0

(−1)j
(
k

j

)
1

ζ(2j + 2)
≡

≡
k∑
j=0

(−1)j+1

(
k

j

)
(4j + 4)!

22j+1B2j+2π2j+2
.

(14)

If additionally

ck = O
(
k−3/4

)
(15)

then all zeros of ζ(s) are simple. Báez-Duarte showed
unconditionally (regardless of validity of the RH) slower
decrease ck = O(k−1/2). The plot of ck for k =
1, 2, . . . , 1000000 is presented in Fig. 1. We anticipate here
that the formula (14) contains contribution from all zeros of
ζ(s).

Fig. 1. The plot of the Báez-Duarte sequence ck for k ∈ (1, 106).
The equation for the envelope was obtained from the explicit equa-
tion (27): for large k the oscillating part c̃k is dominant and for
k > 100000 ck fits well between the red lines, for details see [28]

In [32] Báez-Duarte was able to express ck as a sum over
zeros of ζ(s). The explicit formula for the sequence ck can
be written as a sum of two parts: quickly decreasing with k
trend c̄k arising from trivial zeros of ζ(s) and oscillations c̃k
involving complex nontrivial zeros:

ck = c̄k + c̃k (16)

Because the derivatives ζ ′(−2n) at trivial zeros are
known analytically:

ζ ′(−2n) =
(−1)nζ(2n+ 1)(2n)!

22n+1π2n
(17)
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Maślanka in [33] was able to give the closed expression for
trend stemming from zeros ρn = −2n:

c̄k = − 1

(2π)2

×
∞∑
m=2

Γ(k + 1)Γ(m)

Γ(k +m+ 1)Γ(2m− 1)

(−1)m(2π)2m

ζ(2m− 1)
.

(18)

Báez-Duarte is skipping the trend c̄k remarking only that it
is of the order o(1) (Remark 1.6 in [32]). It is an easy calcu-
lation to show (see [28]) that for large k

c̄k = − (2π)2

2ζ(3)

1

k2
+O(k−3), (19)

thus the dependence ck = O(k−3/4) in (13) is linked to the
oscillating part c̃k.

For c̃k Báez-Duarte gives the formula [32]:

c̃k−1 =
1

2k

∑
ρl

Res

(
1

ζ ′(s)Pk(s/2)
; s = ρl

)
, (20)

where

Pk(s) :=

k∏
r=1

(
1− s

r

)
(21)

is the Pochhammer symbol. Assuming zeros of ζ(s) are sim-
ple we can write:

c̃k−1 =
1

2k

∑
ρl

1

ζ ′(ρl)Pk(ρl/2)
. (22)

An appropriate order of summation over nontrivial zeros is
assumed in (20) and (22), see [32, Theorem 1.5]. Because

Pk(s) =
(−1)kΓ(s)

Γ(k + 1)Γ(s− k)
(23)

collecting in pairs ρl and ρl we can convert (22) to the form:

c̃k = (−1)k+1<

 ∑
ρl, =(ρl)>0

Γ(k + 1)Γ(ρl2 − k − 1)

Γ(ρl2 )ζ ′(ρl)

 .

(24)
We have found that the numerical calculation of Pk(ρl/2)
in PARI/GP directly from the above product (21) is much
slower than the use of the Γ(z) functions (23).

Báez-Duarte proves in [32, Lemma 2.2] that

lim
k→∞

Pk(s)ks =
1

Γ(1− s)
(25)

thus for large k we can replace k+1 by k and transform (22)
in the following way:

c̃k =
1

2k

∑
ρl

kρl/2

ζ ′(ρl)Pk(ρl/2)kρl/2
=

=<

 ∑
ρl, =(ρl)>0

kρl/2−1Γ(1− ρl
2 )

ζ ′(ρl)

 .

(26)

Now we assume the RH: ρl = 1
2 + iγl. Then we get for

c̃k the overall factor k−3/4 – the dependence following from
RH, see (13) – multiplied by oscillating terms:

c̃k =
1

k3/4
<

(∑
γl>0

kiγl/2Γ( 3
4 −

i
2γl)

ζ ′( 1
2 + iγl)

)
. (27)

Using the formula (6.1.45) from [34]:

lim
|y|→∞

1√
2π
|Γ(x+ iy)|e 1

2π|y||y| 12−x = 1 (28)

assuming RH we obtain for large γl > 0:∣∣∣∣Γ(3

4
∓ i

2
γl

)∣∣∣∣ ≈ √2πe−πγl/4
(γl

2

) 1
4

, (29)

hence we get exponential decrease of summands in the sum
(27) over nontrivial zeros giving c̃k and (27) is very fast con-
vergent. Because of that if RH is true the sum (27) will be
dominated by first zero γ1 = 14.13472514 . . ., which leads
to the approximate expression (for details see [28]):

c̃k =
A

k
3
4

sin

(
φ− 1

2
γ1 ln(k)

)
A = 7.775062 . . .× 10−5, φ = 2.592433 . . . .

(30)

For large k the above formula (30) gives a very fast method
for calculating quite accurate values of ck, orders faster
than (14).

In the following we will denote by cgk the values of
the Báez-Duarte sequence obtained from the generic for-
mula (14)

cgk =

k∑
j=0

(−1)j
(
k

j

)
1

ζ(2j + 2)

and by cek the values obtained from explicit formula (16), i.e.
in fact from (18) and (27) as no one zero off critical line is
known:

cek = − 1

(2π)2

∞∑
m=2

Γ(k + 1)Γ(m)

Γ(k +m+ 1)Γ(2m− 1)

× (−1)m(2π)2m

ζ(2m− 1)
+

1

k3/4
<

(∑
γl>0

kiγl/2Γ( 3
4 −

i
2γl)

ζ ′( 1
2 + iγl)

)
.

III. THE SCENARIO OF VIOLATION
OF THE RIEMANN HYPOTHESIS

The condition (15) means that the combination k
3
4 ck

should be contained between two paralel lines ±C for all
k, where C is the constant hidden in big-O in (15). The vio-
lation of the RH would manifest as an increase of the ampli-
tude of the combination k

3
4 ck and for sufficiently large k (de-

pending on C) the product k
3
4 ck will escape outside the strip

±C (if RH is true we can take C = A = 7.7751 . . .×10−5).
We will discuss below the possible mechanism of violation
of the inequality ck < C/k3/4 for the case of simple zeros
of zeta function: ζ ′(s) 6= 0.
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The derivatives ζ ′(ρl) in the denominator of (26) does
not pose any threat to RH. First of all it does not depend
on k, thus hypothetical extremely small values of ζ ′(ρl) will
only change the constant hidden in big-O in (15). Second,
this derivative is taking moderate values for zeros used by
us: the smallest ζ ′( 1

2 + γl) was 0.032050162 . . . at γ1310 =
1771.212945 . . . and the largest was 7.7852581838 . . . at
γ1773 = 2275.06866478 . . .. We remark that R.S. Lehman
in [13] makes the conjecture:

1

ζ ′(ρl)
= O(ρνl ), where 0 < ν < 1. (31)

Some rigorous theorems about the possible large and small
values of ζ ′(ρl) proved under the assumption of RH can be
found in [35]. We checked that for first 5549728 nontriv-
ial zeros of ζ ′(ρl) the largest derivative was 9.38127677 at
γ5376610 and the smallest was 0.001028760514 at γ4161179.

Let us suppose there are some zeros of ζ(s) off critical
line. Next let us assume that we can split the sum over ze-
ros ρl in (26) in two parts: one over zeros on the critical
line and second over zeros off the critical line. This second
sum should violate the overall term k−3/4 present in the first
sum. Let ρ(o)l denote the zeros lying off the critical line (“o”
stands for “off”): ρ(o)l = 1

2 ± δl + iγ
(o)
l , 0 < δl < 1/2

(as it is well known the nontrivial zeros are symmetric with
respect to the critical line zero hence the combination ±δl
plus there are appropriate complex conjugate zeros below
real axis). In the factor |Γ(1 − ρl

2 )| the off-critical line ze-

ros will lead only to the change of γ
1
4

l → γ
1
4∓δl/2
l in (29)

and in view of exponential decrease present in (29) the pos-
sible violation of RH in (26) will manifest through the terms
kρl/2−1 = k−

3
4±δl/2+iγ

(o)
l /2. The combination 1/k

3
4+δl/2

poses no problem as it leads to faster than required in (15)
decrease of some terms in the sum for c̃k. But the combi-
nation 1/k

3
4−δl/2 leads to violation of (15) and we want to

elucidate how it can be detected. Say we want to compare cgk
with cek with accuracy ε, where we are interested in values of
ε of the order ε = 10−10...0. The expression for cgk is a finite
sum and we can in principle calculate its value in PARI with
practically arbitrary exactness (however, for really large k it
can take years of CPU time). Although cgk contains informa-
tion coming from all zeros, to see influence of the first off
the critical line zero the value of sufficiently large k has to
be examined. The sum for cek is infinite and we expect that to
get accuracy ε we have to sum in (27) up to l = L given by
(as we skip |γl|1/4 we will skip also π/4 as our consideration
are not rigorous in general):

ε ≈ e−γL , hence γL ≈ − ln(ε). (32)

Because values of the imaginary parts γ(o)l of the hypothet-
ical zeros off critical line should be extremely large, per-
haps even as large as 1010

10000

, see [10], we suppose that
γL < γ

(o)
l . The contribution of γ(o)l is present in cgk, but will

not be present in the explicit sum for cek cut at L. To detect

discrepancy between cgk and cek larger than assumed accuracy
ε sufficiently large value of k = K is needed. The point is
that k3/4cgk will escape outside the strip ±C for sufficiently
large k = K and the value of such K we can estimate ana-
lyzing the explicit formula for c̃k.

We can estimate value of the index K from the re-
quirement that the term Kδl/2 (K−3/4 is present in front
of the sum for c̃k) will defeat the smallness of the term
Γ(3/4−γ(o)l /2) and together their product will overcome the
first summand in (26) corresponding to γ1. In other words in
the series (26) all terms up to γ(o)l monotonically and fast
decrease but the terms corresponding to zeros off the criti-
cal line can be made arbitrary large for sufficiently large k.
Instead of (29) now will have:∣∣∣Γ(3

4
∓ δl

2
c− iγ(o)l

) ∣∣∣ ≈
≈
√

2πe−πγ
(o)
l /4

(γ(o)l

2

)−1/4±δl/2
.

The condition for such a K is roughly:

Kδl/2e−γ
(o)
l > C thus K > C ′e2γ

(o)
l /δl . (33)

Because δl can be arbitrarily close to zero and, as we ex-
pect, γ(o)l is very large the value of K will be extremely
huge – larger than the famous Skewes number and will look
something like 1010

..
.

. Thus it is practically impossible to
disprove RH by comparing cgk and cek. Maślanka presented
in [33] a discussion of possible violation of (15) and he also
came to the pessimistic conclusion that disproving RH by
comparing cgk and cek is “far beyond any numerical capabil-
ities”, see pp. 7-8. We wanted to find agreement between
cg100000 and ce100000 within one thousand digits and to our
surprise the first attempt to calculate ce100000 resulted in the
difference already on the 87th place. We started to struggle
with numerical problems to improve the accuracy and finally
we got 996 digits of cg100000 and ce100000 the same.

IV. THE COMPUTER EXPERIMENT

The idea of the experiment is to calculate to high preci-
sion the values of cg100000 and ce100000 and try to find a dis-
crepancy between them. We calculated one value cg100000
from the generic formula (14) which contains contribu-
tion from all zeros of ζ(s), even hypothetical zeros with
<(ρl) 6= 1

2 . Because ζ(2n) very quickly tend 1 to get the
firm value of ck it is necessary to perform calculations with
many digits accuracy. An additional problem is fast growing
of binomial symbols. We performed a calculation of cg100000
using the free package PARI/GP [36]. This package allows to
perform very fast computations practically of arbitrary pre-
cision. We set precision to 100000 decimals and below in
Table I are the partial sums of (14) recorded after summation



44 M. Wolf

of 10000, 20000, ... 100001 terms. In the middle of compu-
tations the partial sums for cg100000 were of the order 1030100

to drop finally to 1.609757993 . . .× 10−9 after summing up
all 100001 terms. Separately we repeated these calculations
with precision set to 150000 places and we found the differ-
ence only from the 69900th place. Because the sum (14) is
finite we got accurate say 50000 digits from this generic for-
mula for cg100000. This was an easy part which took approxi-
mately 14 hours for precision 100000 decimals and over 20
hours for precision 150000 digits on the AMD Opteron 2.6
GHz 64 bits processor.

Now we turn to the calculation of ce100000 from the ex-
plicit formulas (18) and (27), which are infinite sums. It is
important not to make the replacement k + 1 → k even for
k = 100000 if we want to get accuracy of the order of 1000
digits. The series in (18) decreases very fast to zero and it
is very easy to get arbitrary number of digits of c̄k using the
PARI/GP procedure sumalt.

Next we want to calculate c̃k from (27) with 1000 digits
accuracy. From e−πγl/4 = 10−1000 we get γl ≈ 2931.7 and
a glance at the list of zeros of ζ(s) (e.g. [37]) gives l = 2402
because γ2402 = 2931.0691 . . .. First 100 zeros of ζ(s) ac-
curate to over 1000 decimal places we took from [37]. Next
2500 zeros of ζ(s) and derivatives ζ ′(ρl) with precision 1000
digits we decided to calculate using the built in Mathematica
v.7 procedures ZetaZero[m] and numerical differentia-
tion ND[...]. After a few days we got the values of γl and
ζ ′(ρl). We checked using PARI/GP that these zeros were ac-
curate within at least 996 places in the sense that in the worst
case |ζ(ρl)| < 10−996, l = 1, 2, . . . , 2600. The formulas
(27) and (18) were implemented in PARI with precision set
to 1000 digits and to our surprise we found that the values of
cg100000 and ce100000 coincide only up to 87th place:

10−86 >

∣∣∣∣cg100000ce100000
− 1

∣∣∣∣ > 10−87. (34)

Tab. 1. The partial sums of (14) recorded after summation of
10000, 20000, . . . 100001 terms

n
∑n
j=0 (−1)

j
(
100000
j

)
1

ζ(2j+2)

10000 5.65168726144550× 1014115

20000 4.00927204946289× 1021729

30000 6.08771775660005× 1026526

40000 5.17938759373151× 1029225

50000 1.26030418446100× 1030100

60000 3.45292506248767× 1029225

70000 2.60902189568574× 1026526

80000 1.00231801236572× 1021729

90000 6.27965251271723× 1014114

100000 1.60975799392038× 10−9

The arguments given earlier in Sect. 3 suggested that no
discrepancy should be found between cgk and cek for k =
100000 hence we paid attention to the numerical inaccura-
cies in the computation of the derivative ζ ′(ρl) as a pos-
sible explanation. We stress here that cgk contains informa-
tion on all zeros of ζ(s), even off the critical line, while
the sum for cek is truncated, thus ruling out numerical rea-
sons or mistakes of the program should disprove the Rie-
mann Hypothesis. We played with different options 20, 30,
40 terms and WorkingPrecision in ND[...], but fi-
nally we got only the moderate improvement: the difference
between cg100000 and ce100000 shifted to 105th place:

10−105 <

∣∣∣∣cg100000ce100000
− 1

∣∣∣∣ < 10−104. (35)

Because in (27) gamma functions can be calculated in
PARI with practically arbitrary digits of accuracy, the only
way to improve accuracy of calculation of ce100000 is to find
a reliable method for calculating ζ ′(s) with certainty that say
all 1000 digits are correct. From (1) it is easy to obtain the
modified expression for zeta:

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
. (36)

By the Leibniz test for alternating series the above sum con-
verges for <(s) = σ > 0. Then it uniformly converges on
every compact subset lying interior to the half–plane of con-
vergence (see eg. [38, Th. 11.11 and Th. 11.12]) and thus can
be differentiated term by term:

ζ ′(s) = − ln(2)21−s

(1− 21−s)2

∞∑
n=1

(−1)n−1

ns

+
1

1− 21−s

∞∑
n=1

(−1)n ln(n)

ns
.

(37)

PARI contains the numerical routine sumalt for sum-
ming infinite alternating series in which an extremely effi-
cient algorithm of Cohen, Villegas and Zagier [39] is imple-
mented. As these authors point out on p. 6, their algorithm
works even for series like (36) with s complex – (36) is al-
ternating only when s ∈ R. We used this routine sumalt
outside scope of its applicability with success to calculate
ζ ′(ρl) from (37) with precision set to 1000 digits and then
calculated ce100000 from (27) and (18). The result was aston-
ishing: the difference between ce100000 and cg100000 appeared
on the 625th place:

10−625 <

∣∣∣∣cg100000ce100000
− 1

∣∣∣∣ < 10−624. (38)

Because we expected that a possible violation of RH should
manifest at much larger k we were looking for a way to still
improve the accuracy of ζ ′(ρl). We decided to make a frenzy
think: we calculated again ζ ′(ρl) using sumalt with ze-
ros having 1000 digits but this time with precision set to
2000 (however, values of ζ ′(ρl) were stored only with 1000
digits). Thus the aim was to enlarge the number of terms
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summed in (37), or in fact the number of iteration performed
inside sumalt until the prescribed accuracy was attained.
After 18 hours on AMD Opteron 2.6 GHz we got the results.
And now bingo! The first 996 digits of cg100000 and ce100000
were the same:

10−996 <

∣∣∣∣cg100000ce100000
− 1

∣∣∣∣ < 10−995. (39)

Fig. 2. The plot of y(n) for ce100000 obtained by three meth-
ods. The plot (a) is the best result obtained with Mathemat-
ica with the procedure ND[...] with the option terms=30
and WorkingPrecision=1000. The accuracy was 105 dig-
its and the curve (a) departs from the red line at the zero
γ149 = 317.73480594237 . . . for which exp(−πγ149/4) =
4.193107483×10−109. The plot (b) was obtained with PARI from
the formula (37) using the procedure sumalt with precision set to
1000 digits. The y(n) reaches plateau 0.0006856926750 . . . at zero
γ1412 = 1884.00577834967 . . ., for which exp(−πγ1412/4) =
2.391868726 × 10−643. The curve (c) is the same as (b)
but derivatives ζ′( 1

2
+ iγl) were calculated with sumalt and

precision set to 2000 digits. Curve (c) reaches the plateau
0.00043191361 . . . at the zero γ2430 = 2960.033617812 . . . for

which exp(−πγ2430/4) = 2.298783954× 10−1010

Because we got the precision (39) it is a posteriori proof
that 1000 digits of derivatives ζ ′(ρl) were calculated cor-
rectly from (37) by the PARI procedure sumalt with pre-
cision set to 2000 digits.

In Fig. 2 we present a summary of these computer calcu-
lations. Since it is not possible to plot using standard plotting
software as small values as 10−600 on the y-axis we present
in Fig. 2 the following quantity measuring the distance from
cg100000 to the partial sums over zeros γl in (27) and decreas-
ing with a number of zeros included in the sum:

y(n) =

=

(
ln

(∣∣∣∣∣ 1

k3/4
<

(
n∑
l=1

kiγl/2Γ( 3
4 −

i
2γl)

ζ ′( 1
2 + iγl)

)
− cgk

∣∣∣∣∣
))−1

(40)
where k = 100000 and the absolute value is necessary as the
differences between successive approximants to ce100000 and
cg100000 change sign erratically. The consecutive terms in the
series (27) behave like e−πγl/4 hence we expect that y(n),
by analogy with well known property of alternating series
with decreasing terms, should behave like the first discarded
term:

y(n) ∼ 4

πγn+1
. (41)

Fig. 2 confirms these considerations: initially y(n) for all
curves follows the prediction (41) and starting with n for
which the values of the ζ ′(ρn) are incorrect adding further
terms does not improve accuracy. Because of the exponen-
tial decrease of Γ( 3

4 −
γl
2 ) the contribution of further terms

is suppressed and horizontal lines in Fig.2 are determined by
the first γn corresponding to the bad value of the derivative
ζ ′(ρn).

V. FINAL REMARKS

Although we have reached the agreement between
cg100000 and ce100000 up to 996 places:

cg100000 = 1.60975799 . . . ←− 980 digits −→ . . . 291369630140× 10−9

ce100000 = 1.60975799 . . . ←− 980 digits −→ . . . 291369629833× 10−9

it means nothing about the validity of the RH. Refutation of
the RH by computer methods seems to be as difficult as the
analytical proof of its validity. We need to find an example of
the quantity which can be expressed in two ways: one with-
out the zeta zeros and the second formula containing contri-
butions from all zeta zeros so that there is strong sensitivity
on the location of high zeros. Then perhaps it can be possible
to overthrow RH using a computer. As a possible precaution
let us mention the paper “Strange Series and High Precision
Fraud” written by Borwein brothers [40]. In this paper we

found a few striking examples of the approximate equalities
correct to numerous digits which finally are not identities.
The most fraudulent is the following

∞∑
n=1

⌊
neπ
√

163/9
⌋

2n
.
= 1280632, (42)

which is valid up to accuracy at least 10−450,000,000 but is
not an identity.
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In the end let us remark that the most accurate experi-
ment in physics is the measurement of the ratio of the elec-
tric charge of the electron e− to the charge of the proton e+

which is known to be something like e−/e+ = −1± 10−20,
see [41]. Physicists believe that e− = −e+ exactly.
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