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Abstract: We explore a simple example of a chaotic thermostated harmonic-oscillator system which exhibits qualitatively
different local Lyapunov exponents for simple scale-model constant-volume transformations of its coordinate ¢ and momen-
tum p: {q,p} — {(Q/s), (sP)}. The time-dependent thermostat variable ¢(¢) is unchanged by such scaling. The original
(gp¢) motion and the scale-model (QP() version of the motion are physically identical. But both the local Gram-Schmidt
Lyapunov exponents and the related local “covariant” exponents change with the change of scale. Thus this model fur-
nishes a clearcut chaotic time-reversible example showing how and why both the local Lyapunov exponents and covariant

exponents vary with the scale factor s.
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I. LOCAL AND GLOBAL GRAM-SCHMIDT
COVARIANT VECTORS AND EXPONENTS

The popularity of the time-dependent (or “local”, or “in-
stantaneous”) covariant Lyapunov vectors and their associ-
ated exponents as descriptions of chaotic motion seems to
us to be linked to a (false) impression extracted from the
literature. Some of the literature implies that these descrip-
tors have a special significance independent of such details
as the coordinate system used to describe them. A selected
literature, some of it quite clear, can be found in References
1-7. If the chosen coordinate system were really insignifi-
cant it would be hard to understand a simple, but nonchaotic,
counterexample: the one-dimensional harmonic oscillator,
which exhibits a strong dependence of its largest local Lya-
punov exponent A (t) on the chosen Cartesian coordinate
system [1, 8, 9].

We remind the reader that this local instantaneous Lya-
punov exponent A (t) (the largest of them when time aver-
aged) measures the local rate of divergence of two nearby
trajectories. Think of them as a reference trajectory and

a satellite trajectory, with the satellite constrained to re-
main near the reference. It is unnecessary to consider ex-
ponents beyond the first to understand why it is that the
local Lyapunov exponents, covariant or not, are in fact not
scale-independent and do indeed depend upon the chosen
coordinate system or set of measurement units. The oft-
repeated statement that the local covariant exponents are
“norm-independent” should not be misunderstood (as we
did) to mean that the exponents are independent of a scale
factor, as in a change of units from cgs to MKS.

Here we focus on a simple chaotic continuous-flow
example [10], the thermostated three-dimensional flow of
a harmonic oscillator with coordinate ¢, momentum p, and
friction coefficient ((¢) in the unscaled (g, p, ¢) phase space:

G=p;p=—q-Cp; (=p"-T(q); T(q) = 1+etanh(q).

The variation of temperature with coordinate 7'(q) makes
possible dissipation, and phase-volume shrinkage, ® < 0,
onto a torus, or a strange attractor with fractional dimension-
ality, or a one-dimensional limit cycle. For the evolution of
this model see References 11-14.
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Fig. 1. Chaotic attractor ((g) projection for e = 0.20 with fourth-

order Runge-Kutta timestep dt = 0.001 using 200, 000 equally-

spaced points from the last half of a 40, 000, 000 timestep simula-
tion. The abscissa and ordinate scales range from —4.0 to +4.0

For simplicity’s sake the oscillator mass and force con-
stant, as well as Boltzmann’s constant, are all chosen equal
to unity here. For ¢ = 0.20 and with initial values (¢ =
0, p = 5, ¢ = 0) the motion generates a chaotic strange
attractor, with two time-averaged nonzero Lyapunov expo-
nents \; ~ +0.01; A3 ~ —0.01 and with a time-averaged
rate of phase-volume contraction imposed by the friction co-
efficient (,

(®/@) = ((04/dq) + (9p/dp) + (¢/C) ) =
=0—(C)4+0=A + Az + A3 ~ —0.0003 .

Regular, limit-cycle, and chaotic solutions can all be
found by following the related work carried out in Reference
10. These solutions’ details depend upon the initial condi-
tions as well as the value of the maximum temperature gra-
dient € = (dT/dq)q=o0-

Figures 1 and 2 show both a typical chaotic strange at-
tractor (positive A1, generated with e = 0.20) and an unusu-
ally elaborate limit cycle (zero A, generated with e = 0.37).
The time required for the appearance of such limit cycles
can be hundreds of millions, or even billions, of timesteps.
Although fourth-order Runge-Kutta timesteps ranging from
0.0005 to 0.05 produce such a cycle a careful look at Figure
2 reveals a disconcerting dependence of cycle topology on
the time step(!).

The “local” time-dependent value of the largest Lya-
punov exponent A () describes the rate at which two nearby
(g, p, ) trajectories tend to separate:

M(t) = (dlnr/dt) ; r = \/6¢2 4 6p% + 6¢2 ~ TNt

In the simple Gram-Schmidt picture (and unlike the
covariant picture with its nonorthogonal, but still normal-
ized vectors) adding in the second Lyapunov exponent Ao
gives the rate of divergence of the area defined by three
nearby trajectories (the reference and two satellites), o
exp [ +A1t + Aot |. The third Gram-Schmidt exponent is
needed to describe the divergence (or shrinkage) rate associ-
ated with the volume associated with four nearby trajectories,
o exp [ +A1t + Aot + Ast |. In these three Gram-Schmidt
definitions the time ¢ is understood to be sufficiently long for
convergence of the exponents.

dt=0.05 dt = 0.0005

Fig. 2. Limit cycles’ {(q) projections for e = 0.37 using timesteps
of 0.05 and 0.0005. The abscissa and ordinate range from —4.0
to +4.0. For a particularly dramatic illustration of timestep-
dependent trajectory topology the brave reader is encouraged to
compare the limit cycles for timesteps of 0.0199, 0.0200, and
0.0201 using the classic fourth-order Runge-Kutta integrator. Be-
gin with (¢,p,{) = (0,5,0) and discard the first 500,000,000
timesteps to follow this suggestion up.

Typically, these time-averaged exponents do not depend
on the coordinate system used to describe the system because
the divergence is exponential, and so depends only on the
units of time, not those of space or momentum. Two identi-
cal chaotic systems, one described with MKS units and the
other with cgs units exhibit the same (time-averaged) rates
of divergence even though the mass and length scales dif-
fer. It is also possible, usual, and useful to define “local”
or “instantaneous” Lyapunov exponents by following two or
more constrained trajectories and measuring their tendencies
to separate or approach each other as a function of the time
of measurement [1-9, 15]. The MKS and cgs values of these
local exponents differ. The Gram-Schmidt Lyapunov expo-
nents are simply the time averages of these instantaneous
values:

M= (A(B)); Aa=(A(t)); As=(A3(8)) ... .

In typical situations, time-reversible and phase-volume-
conserving Hamiltonian systems have “paired” Gram-
Schmidt exponents, with the instantaneous identities:

M)+ AN () = Xo(t) + An_i(t) = -+ =0.
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But in exceptional cases (like the collision of two many-body
chunks of solid) [15] this pairing can be violated. Because
the pairing reflects the time-reversibility of the Hamiltonian
equations of motion this lost symmetry is simply a symp-
tom that the “past” can be sufficiently different to the future.
But because the time-averaged Hamiltonian exponents of-
ten exist in +=\(¢) pairs, the largest exponent in either time
direction is typically equal to (the negative of) the smallest
exponent in that same time direction. We reiterate that this
symmetry can be violated, for short times, in response to in-
homogeneities or to “external perturbations”. [15]

By now many groups [1-6] have illustrated the algebraic
steps necessary to map the “covariant” exponents from one
coordinate system to another. A careless reader of some of
this work might well conclude (as we did) that “covariant”
vectors and exponents are somehow coordinate-frame inde-
pendent. A careful reader will instead note that because ref-
erence trajectories and nearby satellite trajectories in one co-
ordinate system can always be related to those in another,
that the offset vectors linking pairs of trajectories are like-
wise simply related so that the (different) exponents in both
frames can be computed.

It is not always emphasized that the exponents (even the
largest, which is “covariant”) themselves vary from frame
to frame. For instance, in a useful and clarifying work,
Posch [2, 9] selected a spring-pendulum for his demonstra-
tion. His two chosen frames were Cartesian and polar co-
ordinates. The constant-energy spring-pendulum dynamics
can be described in either one of the three-dimensional sub-
spaces of the four-dimensional spaces in which the motion
is described, (z, Y, ps, py) OF (7, 8, Dr, po). Expressions link-
ing the covariant exponents in these two frames (which are
different) are given in his paper.

Here we consider again the (g, p, () oscillator, a one-
dimensional rather than a two-dimensional system, and de-
scribed in a three-dimensional phase space. The description
can be carried out with { ¢, p, (, ¢, p,  } or with “scaled vari-
ables” { Q, P, ¢, Q,P,¢ }, where the two sets of variables
are related by the scaling Q@ = 2¢, P = (p/2):

G=p;p=—q—Cp; ¢ =p*~T(q); T(g) = Ll+etanh(q).

Q=4P; P=—(Q/4) —(P; ( =4P* - T(Q);
T(Q) =1+ etanh(Q/2) .

Because the temperature depends upon the coordinate [ so
that 7" varies from ( 1 — ¢ ) to ( 1 4 € ) ], this model [10]
is a generalized version of the Nosé-Hoover oscillator de-
scribed in Reference 12. The two sets of equations generate
trajectories which are identical if the coordinate and momen-
tum axes are scaled because [ @ = sq ]and [ P = (p/s) ].
Here we compare s = 1 and s = 2. The friction coefficient
(, which directs the squared momentum toward the local ki-
netic temperature 7'(q), is exactly the same function of time
in both the original unscaled and the scaled coordinate sys-
tems. Thus the basic trajectories in (gp¢) space and (QP¢)

space are identical scale models of each other apart from
factors of two in the directions associated with the length and
momentum. Figure 3 shows the variation of the largest Lya-
punov exponent with time along the relatively-simple limit
cycle obtained when e = 0.50. Notice that the local Lya-
punov exponents A (¢, ¢, p, ¢, ) and A1 (¢, Q, P, (, s) are in-
deed sensitive to the scale factor s.

A(time)

S ]

-3.0<q=(Q/s)<0.5 0 < time < 8.65

Fig. 3. Local values of the largest Lyapunov exponents (right) for
the limit cycle with ¢ = 0.50 (left). The time-averaged exponents
are equal to 0.0

This computation shows that the local exponents are
quite different. Why 1is that? Here it is because the stretch
rates depend on the scale factor s. The rates of stretching of
pairs of (infinitesimal) tangent-space “unit vectors” parallel
to ¢ = (s71Q) or parallel to p = (s71 P) are different:

bg=s5"1%Q; bp=sT'6P

so that the corresponding local Lyapunov exponents in these
two hypothetical cases would also vary with s. We exhibit
this example here to emphasize the point that even the local
values of the Lyapunov exponents depend on the chosen co-
ordinate system. The global exponents for Hamiltonian sys-
tems do not show this dependence. In an email of 18 Septem-
ber 2013 Harald Posch showed that the global exponents for
a doubly-thermostated oscillator do depend on the scale fac-
tor s but not on the norm. Posch compared the exponents
using both the usual n = 2 norm and the unusual n = 3 one:

= |dg|" + |dp[" + |dC|"™ + |dg[" .

II. CONCLUSION

Enthusiastic fans of the MKS system of units cannot
agree with the ardent fans of the cgs system when it comes
to the local exponents, either covariant or Gram-Schmidt.
Disinterested observers will note that one set of results can
be converted to the other, with the whole spectrum as well
as its fluctuations dependent on the chosen coordinate sys-
tem. The impression that “covariant” exponents are some-
how uniquely special still seems to us specious despite their
norm-independence.



8 Wm.G. Hoover, C.G. Hoover

III. ACKNOWLEDGMENTS

We thank Roger Samelson for the stimulating emails
which led us careless readers to our current understanding
and reinvestigation of the dependence of the local covariant
exponents on the chosen coordinate system. Likewise emails
from Harald Posch were very useful. They pointed out that
scaling transformations, such as the MKS-cgs distinction
and the s*! and s~! combination, are not usually thought of
as acceptable norms, although no calculation at all is possi-
ble without first choosing some phase space. We also appre-
ciate our longstanding correspondences on this subject with
Pavel Kuptsov (see also his arXiv contributions) and Franz
Waldner as well as a useful remark by Glinter Radons and
are happy to confess that at last we “understand”.

References

[1] H. Bosetti, H.A. Posch, Ch. Dellago and Wm.G. Hoover,
Time-Reversal Symmetry and Covariant Lyapunov Vectors
for Simple Particle Models in and out of Thermal Equilib-
rium, arXiv:1004.4473, Version 1 (2010); Physical Review E
82, 046218 (2010).

[2] H.A. Posch, Symmetry Properties of Orthogonal and Covari-
ant Lyapunov Vectors and Their Exponents, arXiv:1107.4032
(2012); Journal of Physics A: Mathematical and Theoretical
46, 254006 (2013).

[3] H-L. Yang and G. Radons, Comparison between Covariant
and Orthogonal Lyapunov Vectors, Physical Review E 82,
046204 (2010).

CMST 20(1) 5-8 (2014)

[4] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A.
Politi, Characterizing Dynamics with Covariant Lyapunov
Vectors Physical Review Letters 99, 130601 (2007).

[5] M. Romero-Bastida, D. Paz6, J.M. Lépez, and M.A. Ro-
driguez, Structure of Characteristic Lyapunov Vectors in
Anharmonic Hamiltonian Lattices, Physical Review E 82,
036205 (2010).

[6] C.L. Wolfe and R.M. Samelson. An Efficient Method for
Recovering Lyapunov Vectors from Singular Vectors, Tellus
59A, 355-366 (2007).

[7] W.G. Hoover and H.A. Posch, Direct Measurement of Lya-
punov Exponents, Physics Letters A 113, 82-84 (1985).

[8] Wm.G. Hoover and C.G. Hoover, Local Gram-Schmidt and
Covariant Lyapunov Vectors and Exponents for Three Har-
monic Oscillator Problems, Communications in Nonlinear
Science and Numerical Simulation 17, 1043-1054 (2012).

[9] Wm.G. Hoover, C.G. Hoover, and H.A. Posch, Lyapunov In-
stability of Pendulums, Chains, and Strings, Physical Review
A 41, 2999-3004 (1990).

[10] H.A.Posch and Wm.G. Hoover, Time-Reversible Dissipative
Attractors in Three and Four Phase-Space Dimensions, Phys-
ical Review E 55, 6803-6810 (1997).

[11] Wm.G. Hoover, Canonical Dynamics: Equilibrium Phase-
Space Distributions, Physical Review A 31, 1695-97 (1985).

[12] H.A. Posch, Wm.G. Hoover, and F.J. Vesely, Canonical Dy-
namics of the Nosé Oscillator: Stability, Order, and Chaos,
Physical Review A 33, 4253-4265 (1986).

[13] Wm.G. Hoover, Remark on ‘Some Simple Chaotic Flows’,
Physical Review E 51, 759-760 (1995).

[14] J.C. Sprott, Some Simple Chaotic Flows, Physical Review E
50, R647-R650 (1994).

[15] Wm.G. Hoover and C.G. Hoover, Time-Symmetry Breaking
in Hamiltonian Mechanics, arXiv 1302.2533 (2013); Com-
putational Methods in Science and Technology 19, 77-87
(2013).

Bill and Carol Hoover met at the Lawrence Radiation Laboratory in Livermore California
in 1972. Bill, with a PhD from the University of Michigan, was teaching graduate courses in
numerical methods, statistical mechanics, and kinetic theory at the University of California’s
Livermore campus. Carol was an “A” student in plasma physics and received her PhD there
in 1977. About ten years later the Hoovers got reacquainted and married before setting out
on a joint Sabbatical at Keio University (Yokohama) 1989-1990. They are now retired in
sparsely-settled Ruby Valley, Nevada, working on a sixth physics monograph emphasizing
computational methods for controlling microscopic simulations of macroscopic behavior.

DOI:10.12921/cmst.2014.20.01.5-8



