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Abstract: The paper presents a neuro-evolutionary method called Assembler Encoding (AE) and proposes its several

modifications. The main goal of the modifications is to ensure AE greater freedom in generating diverse neural architectures.

To compare the modifications with each other and with the original method the particular case of the predator-prey problem

has been discussed.
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I. INTRODUCTION

In recent years, an increasing interest has been noticed in

two domains of the artificial intelligence, i.e. in evolutionary

computation and artificial neural networks (ANN). Evolu-

tionary techniques are usually used as global optimization

methods, while ANNs are applied in such problems as ap-

proximation, identification, feature extraction, and reinforce-

ment learning. Successes in both domains have promoted

a new combined domain called neuro-evolution (NE) which

uses the evolutionary approach to search for effective ANNs.

The evolution of ANNs uses many evolutionary mechanisms

of genetic evolution. This means that every network is rep-

resented in the form of a genotype, i.e. a chromosome or

a set of chromosomes. The chromosomes include all the in-

formation necessary to create an ANN. Chromosomes repre-

senting different ANNs are concentrated in one or more po-

pulations. During evolution, the chromosomes are replaced

with their genetically modified offspring arisen as a result

of executing various genetic operators on parental chromo-

somes. Using the rule whereby the genetic material of bet-

ter chromosomes, i.e. chromosomes encoding better ANNs,

has a greater chance to survive than the genetic material of

worse chromosomes, leads to better and better ANNs ge-

nerated within evolution.

There are numerous NE methods (e.g. [2, 7, 8, 11, 12,

13, 14, 25]). In principle, all the existing methods can be di-

vided into two main classes, i.e. direct and indirect methods.

As for the direct ones, all the information necessary to create

an ANN (e.g. weights, number of neurons, number of layers)

is directly stored in chromosomes. This way, to encode com-

plex networks complex chromosomes are necessary, which

is the main drawback of the direct methods. As regards the

indirect ones, we deal with chromosomes which are recipes

how to create a network. Such methods can encode com-

plex neural architectures by means of relatively short chro-

mosomes.

The paper presents an indirect NE method called Assem-

bler Encoding (AE). AE originates from the cellular [7] and

edge encoding [11], although, it also has features common

with Linear Genetic Programming presented, among other

things, in [9, 15]. In AE, an ANN is represented in the form

of Assembler Encoding Program (AEP) whose structure is

similar to that of the structure of a simple assembler pro-

gram. The AEP is composed of two parts, i.e. a part includ-

ing operations and a part including data. The task of each

AEP is to create a Network Definition Matrix (NDM) which

includes all the information necessary to create a network.

During operation, the AEP runs individual operations which

gradually form NDM. When working, each operation can

use data located at the end of AEP. In AE, the process of
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ANN construction consists of three stages (Fig. 1). First,

a genetic algorithm (GA) is used to form a population of

AEPs, next, each AEP creates and fills up its own NDM, and

finally, the matrices are transformed into ANNs.

AE is a general NE method which can be used

to solve any problem requiring ANNs (or only matrices).

Even though a target application of AE is to form complex

ANNs, the method proved that it can successfully be used

also to problems solvable with simpler networks [20, 23].

To date, AE has been applied to solve three different testing

problems, i.e. the optimization problem [18], the predator–

prey problem [18, 19, 22], and the pole balancing problem

[20, 23]. In all the tests, the method demonstrated fairly good

effectiveness successfully competing with such state-of-the-

art NE and reinforcement learning methods as: Q-learning

[1], Adaptive Heuristic Critic, Genitor [29], Symbiotic

Adaptive Neuro–Evolution (SANE) [13], Connectivity Ma-

trix [12], Neuro Co–Evolution (NCoE) [22], Fuzzy Expert

System [24], Neuro–Evolution of Augmenting Topologies

(NEAT) [25, 26], Enforced Subpopulations (ESP) [5], and

Cooperative Synapses Neuro–Evolution (CoSyNE) [6].

To be able to solve different problems, AE has to be

a complete method, i.e. it should be capable of producing

each possible ANN. Since, in AE, ANNs are represented in

the form of NDMs, the ability to produce any ANN can also

be viewed as the potential to form any matrix. In AE, the

easiest method to produce any matrix of an assumed size

is to apply an AEP with a single operation whose task is

to cover all the elements from NDM with data. Since in the

case of such a program the content of NDM only depends on

the data, by changing them in a variety of ways any matrix

can be produced (any matrix for which there exists a coun-

terpart in a genotype space). However the global range of

the program above, i.e. access to all elements in NDM, has

one serious consequence. Since the zero value encoded in

the data is only one out of many possibilities, copying them

directly to all elements of NDM predominantly leads to ma-

trices with no zeros. Further, since individual elements of

NDM, in most cases, define weights of interneuron connec-

tions, the program above mainly produces fully–connected

ANNs with a maximum number of neurons.

To increase the ability of AE to form other architectures

than the one mentioned above, the current version of AE uses

operations whose operational range depends on their param-

eters. The operations can work both on larger and smaller

areas of NDM. A single operation may update one, two, or

three elements of the matrix but also all of them. Such so-

lution enables AEPs to form NDMs with many untouched

fields, which is a necessary condition for ANNs with di-

verse topologies to evolve (all unmodified elements of NDM

are equal to zero). The ability to produce different network

topologies allows AE to adjust both parameters and topolo-

gies of ANNs to a problem. It is a very important feature of

AE which has been confirmed experimentally.

However, the tests which on the one hand showed that

AE has a great ease in generating various effective net-

work architectures, on the other hand also revealed that most

NDMs in spite of differences in construction share some

common features. Generally, it appeared that most NDMs

are zero matrices with oblong (horizontal or vertical) contin-

uous clusters including values different from zero. Matrices

with loosely scattered content turned out to be very rare.

As before, the cause is construction of operations used in

AE. Since each of them modifies elements of NDM which

create one cohesive cluster (e.g. a fragment of a column),

matrices with many isolated values different from zero have

generally a very little chance to be generated. Since difficul-

ties with creating such matrices may limit applicability of

AE or reduce its effectiveness in solving some problems, in

the paper, a number of modifications to the method are pro-

posed.

To increase diversity of NDMs and ANNs, the mentioned

modifications apply two different solutions. The first solu-

tion is an operation with the potential to operate in separated

areas of NDM scattered over all the matrix. As in the case of

operations used so far, a new operation copies selected data

into NDM. The second solution introduces a new class of

operations responsible exclusively for defining topology of

ANNs. In this case, the information how to connect individ-

ual neurons is included in one operation whereas connection

weights between neurons are fixed by other operations con-

tained in AEP.

To prove that the ability to produce matrices with loosely

scattered content is a key element in AE and to estimate

completeness of the modifications to AE whose main fea-

ture which differentiates them from the original method

is greater ease in evolving such matrices, two types of

experiments were carried out. First, all the modifications

were used to evolve neuro-controllers (NCs) for a team of

Autonomous Underwater Vehicles (AUVs) whose common

goal was to capture an escaping AUV behaving by a sim-

ple deterministic strategy (predator–prey problem). The first

attempts to combine AE with AUVs are reported in [22].

The experiments reported in the current paper were per-

formed in almost the same conditions as those described

in [22]. The only difference was application of an AUV–

prey with a more advanced escaping strategy and shortening

time which the AUVs–predators had to capture the AUV–

prey. The additional elements increased the complexity of

the problem solved by ANNs comparing to the previous re-

search.

In the second phase of the experiments, the ability of the

methods to form diverse neural architectures were estimated.

However, since AE represents ANNs in the form of matri-

ces, the task of each method in this phase was not to produce

ANNs but matrices of varied construction.

In all the experiments, the original variant of AE was

used as the only point of reference for all the modifica-
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tions, and there was not any comparison with other methods.

As mentioned above, AE has already been compared numer-

ous times with many different methods, hence it seems to be

currently a well tested, sensible point of reference, particu-

larly in the predator–prey problem which has been widely

used so far as a test bed for AE. Moreover, the main pur-

pose of the first phase of the experiments was not to test

how effective ANNs can be produced by means of the mod-

ifications proposed in the paper but to prove that matrices

with loosely scattered content and the capacity to evolve

them is a key factor in AE. To this end, the modifications

were compared with their mother method which, as men-

tioned above, has difficulties with evolving such matrices,

so comparisons with other methods were unnecessary in this

instance. In turn, in the second phase, the goal was only to es-

timate completeness of the modifications. The test problem

applied in this case was adjusted to the purpose of the exper-

iments and matrix–representation of all the compared meth-

ods. Because all the tests were carried out on matrices, the

problem to be solved was relatively simple and, in conse-

quence, highly inappropriate for any comparisons with other

methods.

The paper is organized as follows: section 2 is a presen-

tation of compared methods, section 3 and 4 are reports on

the experiments, and section 5 is a summary.

II. ASSEMBLER ENCODING AND ITS

MODIFICATIONS

This section presents Assembler Encoding and its six

modifications. The modifications as well as the original vari-

ant of AE share three common features. First, they represent

ANNs in the form of NDMs. Second, to produce NDMs,

each method uses AEPs which evolve according to Cooper-

ative Co–Evolutionary GA (CCEGA) [16, 17]. Third, all the

methods can build regular neural architectures with replica-

tion of different units. To this end, each method makes it

possible to use the same fragments of AEPs many times.

Fig. 1. Using AE to create ANN [21]

NDM is, in principle, a real valued Connectivity Ma-

trix defined in [12]. It stores all the information necessary

to construct a network. This information is included both

in the size and individual elements of the matrix scaled al-

ways to the range 〈−1, 1〉. The size of NDM determines the

maximum number of neurons in ANN whereas individual

elements of the matrix define weights of interneuron con-

nections, i.e. componenti,j determines a link from neuron

i to neuron j. Apart from the basic part, NDM also contains

additional columns that describe parameters of neurons, e.g.

type of neuron (e.g. sigmoid, radial, linear), and bias (Fig. 2).

Fig. 2. NDM as Connectivity Matrix [20]

AEP is an ordered set of predefined operations and op-

tionally data. The task of each AEP is to create NDM and

fill in it with values. To this end, the operations are executed

in turn, one after another. Each operation modifies some

fragment of NDM dependent on type and parameters of the

operation (initially, all elements in NDM are set to 0; this

means that there are not any connections between neurons).

Each AEP is shaped in the evolutionary way. The evolution

decides about order of the operations (and optionally data)

and about values of their parameters. Implementations of the

operations do not evolve, they are defined beforehand.

The evolution of AEPs proceeds according to CCEGA

proposed by Potter and De Jong [16, 17]. In CCEGA, each

part of a solution evolves in a separate population. To form

a complete solution, selected representatives of each popu-

lation are combined together (usually, each individual from

one population is combined with the best individuals from

the remaining populations).
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Application of this evolutionary scheme in relation

to AEPs consists in separate evolution of operations lo-

cated at various positions in the programs. The same applies

to data which also evolve in their own population. For ex-

ample, AEP consisting of n operations and a sequence of

data evolves in n populations with operations and one popu-

lation with data (Fig. 3). During the evolution, AEPs expand

gradually. Initially, all AEPs include some initial number of

operations and optionally a sequence of data. When the evo-

lution stagnates, i.e. lack of progress in fitness is observed

over some period, a set of populations containing the opera-

tions is enlarged by one population. It extends all AEPs by

one operation [19].

In each single population, the evolution proceeds accord-

ing to Canonical GA [4]. Individuals from each population

(either the operations or the data) are encoded in the form of

binary strings. Each chromosome-operation includes binary

encoded parameters and optionally code of the operation

(e.g. 01000|11000|01000|00000|00100 represents the follow-

ing operation: CHGC0|-1|1|0|2, see Fig. 4). The code is only

used when more than one type of operation can evolve in

a single population. Chromosomes–data are strings includ-

ing binary encoded data.
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Fig. 3. Evolution in AE for n = 3 [21]

II. 1. Assembler Encoding

In the original variant of AE, AEPs are executed accord-

ing to the order fixed by the evolution, there are no prede-

fined loops or jumps. All operations have maximally four

parameters and when working they can use shared data lo-

cated at the end of each AEP. Generally, in AE, there are

three groups of operations. The main task of operations be-

longing to the first group is to modify the content of NDM.

In principle, the operations from this group can work in any

manner. AE does not impose the way of constructing the op-

erations and their modus operandi. The operations can be

adjusted to a problem, e.g. they can form exclusively ANNs

with a layered architecture, or they can be completely gen-

eral. An example operation used in AE is CHGC0 presented

in Fig. 4.

The second group of operations contains only a jump op-

eration denoted as JMP. The jump makes it possible to re-

peatedly use the same code of AEP in different places of

NDM. This way, the same neural structures may appear

many times in a resultant ANN. However, since many ex-

periments with AE showed a little effectiveness of AEPs in-

cluding JMP, the operation is currently used very rarely.

The last group of operations used in AE are operations

whose task is to change the size of NDM. In AE, an initial

size of the matrix is encoded in a chromosome with data,

then, each AEP has the potential to modify the size by us-

ing operations ADDN and DELN. ADDN adds new rows and

columns to NDM which corresponds to adding new neurons

to ANN, neurons unconnected with the rest of the network.

Addition of new neurons does not destroy connections estab-

lished earlier. The task of DELN is to remove a single neuron

from ANN which practically takes place through removing

the corresponding row and column from NDM [19].

CHGC0::run(p0,p1,p2,p3)

{
column=abs(p0)mod NDM.height;

rowInit=abs(p1)mod NDM.width;

numberOfIterations=abs(p2)mod (NDM.width-rowInit);

for(i=0;i<=numberOfIterations;i++)
{
row=rowInit+i;

NDM[row,column]=D[(abs(p3)+i)mod D.length]/MaxValue;
}

}

Fig. 4. CHGC0 operation – it modifies elements of NDM located
in a column indicated by p0. Index of the first element to be
updated is located in p1 whereas the number of elements to be
updated is stored in p2. To modify elements of NDM, CHGC0
uses data from AEP. Index to the first element of data used by
CHGC0 is stored in p3 (NDM[i,j] is an element of NDM, where
i=1..NDM.width, j=1..NDM.height, MaxValue is a scal-
ing value which scales all elements in NDM to the range <

−1, 1 >, D[i] is ith element of data, D.length is the length
of data)

During experiments reported further, a general variant of

A0 with operations specified in Table 1 were used. Since, in

the experiments, the maximum number of neurons in ANNs

was assumed to be constant, operations ADDN and DELN

were unnecessary and thereby they were omitted.

In AE, different types of operations can evolve in a sin-

gle population. Since all the operations have maximally four

parameters, to represent them, constant length chromosomes

including five segments with binary genes are used. The first

segment determines a code of operation while the remaining

segments contain a binary representation of its parameters.

Chromosomes encoding data are vectors including binary

encoded integers, each of which encodes a single element

of data. The chromosomes-data can change the length dur-

ing the evolutionary process. Example AEP produced with

AE and its encoded form are presented in Fig. 5.
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Tab. 1. List of operations used in experiments

Operation Description

CHGC0 update of certain number of elements in column (row),

(CHGR0) new values for column (row) elements are in data part of AEP

CHGC1 like CHGC0, but new value for column (row) elements,

(CHGR1) same for all elements, is located in parameter of operation

CHGM0
update of certain number of elements in continuous rectangle-shaped fragment of NDM,

new values for elements are in data part of AEP

CHGM1
like CHGM0, but new value for each element

is sum of its current value and parameter of operation

CHGFF
update of all elements above diagonal of NDM,

new values for elements are in data part of AEP

CHGM0|59|-11|53|37

CHGM1|48|15|30|-3
CHGM1|-32|-20|29|7

Data:-34|-8|-46|46|58|-57|-4|-48|-1|52|-12|

-54|-7|40|35|23|-47|1|47|38|32|-46|55|-22|17

(a)

Operations:

0011000 0110111 1110100 0101011 0101001
1101110 0000011 0111100 0011110 1110000

0101000 1000001 1001010 0101110 0111000

Data:

1010001 1000100 1011101 0011101 0010111

1100111 1001000 1000011 1100000 0001011

1001100 1011011 1111000 0000101 0110001
0111010 1111101 0100000 0111101 0011001

0000001 1011101 0111011 1011010 0100010

(b)

Fig. 5. Phenotypic (a) and genotypic (b) representation of an exam-
ple AEP in AE

II. 2. Modification no. 1

The main difference between AE and modification no.

1 (M1) concerns operations used in AEPs. The remaining

elements of both methods are the same. In AE, AEPs can

be built with all the seven operations specified in Table 1.

The characteristic of all the operations is that they always

modify some continuous fragment in NDM. Modification of

many isolated fragments of the matrix is impossible in this

case.

Unlike AE, M1 uses only one type of operation, say,

CHGM2. Construction of the operation enables it, however,

to modify separate areas of NDM. To accomplish such ef-

fect, CHGM2 introduces successive data into NDM leaving

empty spaces time to time. Segments of NDM filled in with

data and segments remained intact occur in the matrix alter-

nately. The length of each segment depends on parameters

of the operation, the first parameter determines the length of

all the segments with data whereas the second parameter in-

dicates the length of all the empty segments. The remaining

two parameters determine the number of iterations (the num-

ber of successive empty segments) and address of an element

in NDM where the operation starts to work.

In M1, like in AE, AEPs evolve in one population with

data and at least in one population containing CHGM2s. Since

CHGM2 uses a total of four parameters it is encoded in the

form of a constant length chromosome consisting of four bi-

nary segments, one per each parameter. The code of the oper-

ation is unnecessary in this instance because each population

includes exclusively CHGM2s.

II. 3. Modification no. 2

In modification no. 2 (M2), the main operation respon-

sible for shaping NDM is CHGM3. Each AEP includes one

or more CHGM3s situated at the very start of the program.

Each CHGM3 modifies consecutive elements of NDM, row

by row, using data for that purpose. The same data can be

used many times by a single CHGM3. The operation has four

parameters. The first two parameters indicate an element in

NDM where the operation starts to work (indexes of col-

umn and row), the third parameter determines the number

of elements to be modified whereas the fourth parameter is

a pointer to the first element of data used by the operation.

CHGM3 CHGM3
CHGT0

111000
d1 d2 d3

0 0 0 0 0 0 0 0 0 0
0

d1
0
0

d2
d3
0

d1 d2 d3 d1 d2 d3 d1 d2 d3
d2 d3 d1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 d2 d3 d1 d2 d3 d1

d3 d1 d2 d3 d1 d2 d3 d1 d2
d1 d2 d3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Population no.1 with

CHGM3s

Population no.2 with

CHGM3s
Population no.3 with

CHGT0s Population no.4 with

Data

1 1 1 0 0 0 1 1 1 0
0
1
1
0
1
1
0

0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0
0

d1
0
0

d2
d3
0

0 d2 d3 d1 0 0 0 d2 d3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 d2 0 0 0 d3 d1
0 0 0 d3 d1 d2 0 0 0

d1 d2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Fig. 6. Example NDM produced with M2
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The last operation in each AEP is CHGT0 whose task is

to determine the final architecture of ANN. This operation

does not fix weights of interneuron connections as CHGM3

but only indicates which connections exist in the network

and which do not. CHGM3s determine an initial architec-

ture of ANN which is then reduced by means of a single

CHGT0. To this end, CHGT0 reads all the elements from

NDM and eliminates connections which should not appear in

a resultant ANN. Information of which connections should

be eliminated and which whould not is stored in an in-

put whose length can be various for different operations.

When the number of bits in the vector is lower than the num-

ber of all items in NDM, information included in the vector

is used again, until the whole ANN architecture is defined.

Like shared data for different operations, such a solution en-

ables AE to repeatedly use the same information memorized

in AEPs and, in consequence, to represent complex ANNs

by means of simple programs.

In M2, AEPs evolve at least in three populations.

One population includes CHGM3s, the next one CHGT0s,

and the last one sequences of data. The number of popula-

tions with CHGM3s automatically grows when it is necessary

to add the next CHGM3 to all AEPs. Since all the populations

with operations are homogeneous in terms of operations they

include, the only component of the operations which has

to be encoded in chromosomes is a list of their parameters.

As a result, each CHGM3 is encoded in the form of a constant

length chromosome consisting of four binary segments, one

per each parameter. In turn, CHGT0 is a variable length bi-

nary string in which each ”1“ means connection whereas ”0“

no connection.

II. 4. Modification no. 3

Modification no. 3 (M3) is in principle modification no.

2 without shared data. Lack of the data in AEPs results in

three changes of M3 in relation to M2. First, instead of four

parameters CHGM3, M3 uses CHGM4 with a variable list of

parameters which instead of data are transferred into NDM.

A modus operandi of CHGM4 is exactly the same as CHGM3.

Second, AEPs evolve at least in one population with CHGM4

and in one population with CHGT0. There is no population

with data. Third, whereas CHGM3s evolve as constant length

binary strings, CHGM4s, at the genotypic level, are repre-

sented in the form of variable length chromosomes.

II. 5. Modification no. 4

Modification no. 4 (M4) uses two operations, i.e. CHGM5

and CHGT0. Like CHGM4, CHGM5 copies input parameters

directly into NDM. The order of modified elements in NDM

is the same as in CHGM4 and CHGM3. However, in CHGM5

there is no parameter which decides about the number of

copied parameters, and CHGM5 simply copies all its parame-

ters. Moreover, in CHGM5, there are no parameters which in-

dicate the element of NDM where the operation should start

to work, this element is pointed out by AEP.

Construction of AEP is different from all the previous

variants of AE. Like in M3, each AEP consists of two parts.

The first part includes a sequence of CHGM5s whereas the

second part is a single CHGT0. In this case, however, the

first part is performed in a loop. In M4, CHGM5s work like

relay runners, i.e. the first CHGM5 starts to work in an initial

fragment of NDM whereas each subsequent operation con-

tinues work of its predecessor in a place up to which it came.

The whole sequence of CHGM5s is run in a loop up to the

point when all the elements in NDM have an assigned value.

Like in M3, the last operation in AEP is CHGT0 which de-

termines the final architecture of ANN.

(CHGM4)p11,p12,p13,p14,p15
CHGT0

111000

0 0 0 0 0 0 0 0 0 0
0

p15
0
0
0
0
0

p11 p12 p13 p14 p15 p11 p12 p13 p14
p11 p12 p13 p14 p15 p11 p12 0 0

0 0 0 0 0 0 0 0 0
0 p21 p22 p23 p21 p22 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Population no.1 with

CHGM4s

Population no.2 with

CHGM4s
Population no.3 with

CHGT0s

1 1 1 0 0 0 1 1 1 0
0
1
1
0
1
1
0

0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0
0

p15
0
0
0
0
0

0 p12 p13 p14 0 0 0 p13 p14
0 0 0 p14 p15 p11 0 0 0
0 0 0 0 0 0 0 0 0
0 p21 p22 p23 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(CHGM4)p21,p22,p23

Fig. 7. Example NDM produced with M3

In M4, AEPs evolve in almost identical way as in M3.

The only difference between both modifications concerns

encoded forms of CHGM4 and CHGM5. CHGM4, in addition

to parameters copied into NDM, needs three other parame-

ters which define its area of activity in NDM, while CHGM5

does not need such information. It copies all the parame-

ters into NDM, starting from a point where its predecessor

left off. In consequence, chromosomes encoding CHGM5 are

shorter by three binary segments than chromosomes encod-

ing CHGM4.

(CHGM5)p11,p12,p13,p14,p15 Loop

p11 p12 p13 p14 p15 p21 p22 p23 p11 p12
p13
p15
p22
p11
p13
p15
p22

p14 p15 p21 p22 p23 p11 p12 p13 p14
p21 p22 p23 p11 p12 p13 p14 p15 p21
p23 p11 p12 p13 p14 p15 p21 p22 p23
p12 p13 p14 p15 p21 p22 p23 p11 p12
p14 p15 p21 p22 p23 p11 p12 p13 p14
p21 p22 p23 p11 p12 p13 p14 p15 p21
p23 p11 p12 p13 p14 p15 p21 p22 p23

Population no.1 with

CHGM5s
Population no.2 with

CHGM5s
Population no.3 with

CHGT0s

1 1 1 0 0 0 1 1 1 0
0
1
1
0
1
1
0

0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 0 0 0
1 1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1

p11 p12 p13 0 0 0 p22 p23 p11 0
0

p15
p22

0
p13
p15

0

0 p15 p21 p22 0 0 0 p13 p14
0 0 0 p11 p12 p13 0 0 0

p23 p11 0 0 0 p15 p21 p22 0
0 p13 p14 p15 0 0 0 p11 p12
0 0 0 p22 p23 p11 0 0 0

p21 p22 0 0 0 p13 p14 p15 0
0 p11 p12 p13 0 0 0 p22 p23

(CHGM5)p21,p22,p23
CHGT0

111000

Fig. 8. Example NDM produced with M4
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II. 6. Modification no. 5

This modification (M5) is a counterpart of M3 in which

roles of CHGM4 and CHGT0 are swapped. M5 uses two op-

erations, i.e. CHGT1 and CHGM6. A single CHGM6 is always

located at the very start of each AEP and its role is to fill in

all NDM with values. To this end, the operation copies in-

put parameters directly into the matrix, row by row. Transfer

of the parameters into the matrix is repeated up to the point

when all items in NDM have an assigned value.

After CHGM6, a sequence of CHGT1 starts. Each CHGT1

has three parameters determining area of activity of the op-

eration (the address of the first element and the number of

consecutive elements in NDM analyzed by the operation)

and one binary vector indicating which connections should

exist in ANN and which should not. CHGM6 produces NDM

representing a fully–connected recurrent ANN whose con-

nectivity is then reduced by successive CHGT1s.

In M5, AEPs evolve in one population with CHGM6s and

at least in one population with CHGT1s. At the genotypic

level, both operations are represented as varied length binary

strings.

(CHGM6)p11,p12,p13,p14,p15
CHGT1

111000

p11 p12 p13 p14 p15 p11 p12 p13 p14 p15
p11
p11
p11
p11
p11
p11
p11

p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15

Population no.1 with

CHGM6s

Population no.2 with

CHGT1s
Population no.3 with

CHGT1s

0 0 0 0 0 0 1 1 1 0
0
0
0
0
1
0
0

0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 p12 p13 p14 0
0
0
0
0

p11
0
0

0 p13 p14 p15 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 p13 p14 0 0 p12 p13 0 0

p12 0 0 p15 p11 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

CHGT1

110011

Fig. 9. Example NDM produced with M5

II. 7. Modification no. 6

Modification no. 6 (M6) is a combination of M4 and M5.

It uses two operations, i.e. CHGT2 and CHGM6. Like in M5,

each CHGM6 is situated at the very start of each AEP and

its task is to fill in all NDM with values. In the further part

of AEP occurs a sequence of CHGT2s that is looped like in

M4. Successive CHGT2s establish or remove connections in

consecutive fragments of NDM starting work from a point

where predecessors left off. Each CHGT2 operates in a frag-

ment of NDM of the length equal to the length of its input

vector. The sequence of CHGT2 is repeated until the last el-

ement in NDM is reached.

Evolution of AEPs in M6 proceeds like in M5. The only

difference is that chromosomes encoding CHGT2s do not

contain first three binary segments indicating area of activity

of the operation. Since this area is determined by the number

of bits in the input vector and by predecessors of each oper-

ation, the information contained in these segments is unnec-

essary to produce CHGT2.

III. EXPERIMENTS ON THE PREDATOR–PREY

PROBLEM

The main goal of the experiments on the predator–prey

problem was to verify the following hypothesis. Generally,

there are considerably more neural architectures which can

be represented in the form of NDMs with a distributed con-

tent than other architectures (for a given maximal topology

of an ANN and NDM, hence we can create many other

”lighter“ topologies by eliminating some elements from

NDM), and there are also more effective neural architectures

represented in the form of such matrices. In consequence, the

ability to produce the above matrices is crucial for effective-

ness of each method which uses a matrix representation of

ANNs – methods which have such ability are more effective

than other methods.

In the beginning of the experiments, each method pre-

sented in the previous section was tuned to the problem.

To this end, each of them was run many times for differ-

ent parameter settings. For one setting thirty evolutionary

runs were carried out. Results obtained for the best settings

were then used to compare the methods. The comparison

was made based on two criteria. First, a learning ability, i.e.

the ability to evolve effective neural solutions, was tested.

To measure this ability, the average fitness of ANNs being

the final effect of each evolutionary run was used. Second,

ANNs were also analyzed in terms of their capability to gen-

eralize knowledge acquired during the evolutionary process.

To this end, each ANN was tested on tasks which were not

presented to them before.

(CHGM6)p11,p12,p13,p14,p15
CHGT1

111000

p11 p12 p13 p14 p15 p11 p12 p13 p14 p15
p11
p11
p11
p11
p11
p11
p11

p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15
p12 p13 p14 p15 p11 p12 p13 p14 p15

Population no.1 with

CHGM6s

Population no.2 with

CHGT2s
Population no.3 with

CHGT2s

1 1 0 0 1 1 1 1 1 0
0
1
1
1
0
1
0

0 1 1 0 0 1 1 1 1
0 0 0 1 1 0 0 1 1
1 1 0 0 0 1 1 0 0
1 1 1 1 0 0 0 1 1
0 1 1 1 1 1 0 0 0
1 0 0 1 1 1 1 1 0
0 1 1 0 0 1 1 1 1

0 0 0 0 0 0 p12 p13 p14 0
0
0
0
0

p11
0
0

0 p13 p14 p15 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 p13 p14 0 0 p12 p13 0 0

p12 0 0 p15 p11 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

CHGT1

110011
Loop

Fig. 10. Example NDM produced with M6

The experiments were carried out in simulation and in

the configuration with one prey and three chasing predators.

Both the predators and the prey were implemented as Re-

motely Operated Vehicle (ROV) ”Ukwial“ [10] (Fig. 12; the

vehicle with a control system become Autonomous Under-

water Vehicle – AUV). The behavior of all the vehicles was

simulated by means of a discrete time model defined in [22].

In the experiments, the predators and the prey lived

in a common artificial environment. To represent the envi-

ronment, a square of size 100× 100 meters was used (see
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Fig. 11, to simplify calculations, both the predators and the

prey moved on a horizontal surface under the water). The en-

vironment did not contain any obstacles. In order to ensure

infinite space for the predators and the prey and for their

struggles, the environment was open at each side. Thus, ev-

ery attempt to move beyond upper, lower, right or left bor-

der of the square caused the object making such an attempt

to move to the opposite side of the environment.

Fig. 11. Artificial world for predators and prey [19]

The predators were controlled by a single neuro-

controller (NC) whose task was to determine a movement

direction for each of them. At each time step, NC de-

cided about change of the current course of each vehicle.

The course could be changed by: 0, 5, 10, . . . , 355 degrees

(it is necessary to note that decisions of NC determined only

a final state of the vehicles which they ultimately should

reach, a real course after the maneuver and duration of the

complete maneuver depended on current parameters of each

vehicle). The speed of the predators was constant during the

tests and amounted to 0.5 m/s.

In the experiments, two types of prey were used, i.e.

a simple and an advanced prey. The strategy of the sim-

ple prey forced it to stand still when no predator was closer

to it than its range of vision (the range of vision of the prey

amounted to 50 meters) and to move directly away from the

nearest predator otherwise. In contrast to the simple prey, the

advanced one always took into account all visible predators.

As before, it started to move only when some predators were

noticed. To determine a direction of a next move, the first

activity of the advanced prey was to calculate a single posi-

tion representing all predators being in its close proximity.

The closer the predator was to the prey, the greater its influ-

ence on the calculated position was. In the following step,

the "common" position of the predators was treated as the

position of the closest (virtual) predator and the strategy of

the simple prey was used thereafter.

When moving each prey could select the same actions as

the predators. The speed of the preys also amounted to 0.5

m/s. Since the speed of the predators was the same as the

speed of the escaping prey, they could not simply chase it

to grasp it. We assumed that the prey was captured if the dis-

tance between it and the nearest predator was shorter than 10

meters.

In all the experiments, NCs had six inputs and three out-

puts. The number of outputs corresponded to the number of

predators. In turn, the number of inputs was twice the num-

ber of predators. Each output gave commands to one preda-

tor. In turn, each input informed about vertical or horizontal

distance between the prey and one of the predators.

Fig. 12. Vehicle ”Ukwial“ [22]

III. 1. Evaluation of NCs

In order to evaluate NCs, ninety different testing sce-

narios were produced. The first thirty scenarios were used

to learn NCs. The remaining ones were applied in a general-

ization phase to evaluate prepared NCs in terms of their ca-

pability to generalize knowledge acquired during the learn-

ing phase. Individual scenarios differed in the initial position

of the prey, the number of steps the predators could make

to capture the prey, and the type of the prey (simple or

advanced). Consecutive scenarios were more and more dif-

ficult. Initially, the predators had to capture the simple prey

and they could make 40 steps, which means 40 decisions of

NCs (400 seconds for a chase, one step took 10 seconds).

The predators which passed the first exam, had to do the

same but in 30 steps. In the next scenario, the maximum

number of steps which the predators could make to capture

the prey was decreased once again, this time to 20 steps.

The predators which captured the prey in all the previous
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scenarios had to face the advanced prey. As before, they had

to perform their task first in 40, then in 30, and finally in

20 steps. In all the scenarios, starting positions of all the

three predators were the same and situated in position (0, 0).

All the scenarios are described in Table 2.

Tab. 2. Description of scenarios used in the experiments

No. of
scenario

Max no. of steps Type of prey Initial positions

1-5 40 simple

6-10 30 simple

11-15 20 simple Fig. 14(a)

16-20 40 advanced (learning

21-25 30 advanced scenarios)

26-30 20 advanced

31-40 40 simple

41-50 30 simple

51-60 20 simple Fig. 14(b)

61-70 40 advanced (generalizing

71-80 30 advanced scenarios)

81-90 20 advanced

To measure effectiveness of each NC, the following eval-

uation functions were used:

f(NC) =

n
∑

i=0

fi (2)

f l
i =



































dmax −min
p

di(p),

prey not captured in ith scenario

fcaptured + (80−mi)/a,

prey captured in ith scenario

0, prey not captured in previous scenario
(3)

fg
i =























dmax −min
p

di(p),

prey not captured in ith scenario

fcaptured + (80−mi)/a,

prey captured in ith scenario,

(4)

where

f l
i – reward received in ith learning scenario

fg
i – reward received in ith generalizing scenario

di(p) – distance between prey and predator p in end

state of ith scenario

dmax – maximum distance between two points in en-

vironment

fcaptured – extra reward for grasping prey in single sce-

nario (fcaptured = 100)

mi – number of steps to capture prey (mi ≤ 40,
30 or 20)

a – this value prevents situation in which partial

success is better than success in all scenarios

n – number of scenarios (learning phase: n = 30,

generalization phase: n = 60)

(a)

(b)

Fig. 13. Starting positions of prey in learning (a) and generalizing
(b) scenarios

III. 2. Experimental results

The experiments summarized in Table 3 showed that in

terms of the learning ability all the modifications outperform

the original variant of AE. Modifications M1, M2, M3, and

M5 appeared to be the most effective achieving results at

more or less the same level. Somewhat worse efficiency was

noticed for modification M4 and its mirror image M6.

Since all the modifications use the same evolution-

ary scheme as AE, mechanisms responsible for searching

a genotype space could not have influence on better perfor-

mance of the modifications in relation to the original variant

of AE. The way for encoding AEPs is very similar in all the

cases, which means that this factor also could not affect dif-

ferences in performance between the modifications and AE.
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0 0 0 0 0 0 0 0 0 −0.634921 0 0 0

0 0 0 0 0 0 0 0 0 −0.634921 0 0 0

0 0 0 0 0 0 0 0 0 −0.634921 0 0 0

0 0 0.269841 0 0 0 0 0 0 −0.634921 0 0 0

0 0 0.15873 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.873016 0 0 0 0 0 0 0

0 0 0 0 0 0.253968 0.269841 0 0 0 0 0 0

0 0 0 0 0 0.634921 0.15873 0.714286 0 0 0 0 0

0 0 0 0 0 −0.650794 0.666667 0 0 0 0 0 0

0 0.619048 0 0 −0.111111 0.619048 0.793651 0 0 −0.634921 0 0 0

0 −0.888889 0 0 0.15873 −0.888889 −0.031746 0 0 −0.634921 0 0 0

0 −0.968254 0 0 0.126984 −0.968254 0.015873 0 0 −0.634921 0 0 0

(a) Example pattern matrix generated with M1

0 0 0 0 0 −0.0952381 0 0 0 0.507937 0 0 0

0 0 0 0 0 −0.793651 0 0 0 −0.666667 0 0 0

0 0 0 0 0 −0.936508 0 0 0 0.825397 0 0 0

0 0 −0.920635 0 0 0.603175 0 0 0 0.269841 0 0 0

0 0 0 0 0 −0.746032 0 0 0 −0.380952 0 0 0

0 0 0 0 0 −0.333333 0 0 0 −0.365079 0 0 0

0 0 0 0 0 −0.111111 0 −0.793651 0 0.0793651 0 0 0

0 0 0 0 0 0.698413 0 0 0 0.952381 0 0 0

0 0 0 0 0 0.015873 0 0 0 −0.0952381 0 0 0

0 0 0 0 0 −0.444444 0 1 0 0.650794 0 0 0

0 0 0 0 0 0.746032 0 0 0 −0.809524 0 0 0

0 0 0 −0.920635 0 −0.920635 0 0 0 −0.793651 0 0 0

0 0 0 0 0 0.809524 0 0 0 0.746032 0 0 0

(b) Example pattern matrix generated with M3

Fig. 14. Example pattern matrices

Therefore, the only justification of the achieved results is that

new operations with a special capability to form NDMs with

a distributed content make building effective ANNs easier

compared to the original variant of AE. The fact that all

the modifications in spite of differences in construction ap-

peared to be more effective than AE means that the ability

to form the matrices above is a significant factor improving

performance of AE. Using operations which can only mod-

ify continuous clusters in NDM severely limits this ability.

New variants of AE make NDMs with a distributed content

easier to generate and thereby they increase effectiveness of

AE in forming efficient neural networks.

With regard to NDMs, the ones produced by modifica-

tions M4 and M6 require special attention. It turned out

that all of them represent ANNs with a maximum accept-

able number of neurons. This is due to the fact that a resul-

tant NDM in both modifications is a combination of matri-

ces whose all elements have a value assigned by appropriate

operations (see Figures 8 and 10). In this case, there is no

element untouched by AEP. The matrix including weights of

interneuron connections is usually completely filled up with

values different from zero whereas matrix defining topology

of an ANN includes at least one "1" in each column and row

(it is unlikely for a chromosome encoding topology of an

ANN to include many zeros in turn). A combination of both

matrices leads to a NDM with at least one value different

from zero in each column and row. Since no row and col-

umn from such a matrix can be omitted when building ANN,

a network with a maximum acceptable number of neurons is

finally constructed.

Even though the remaining modifications adjust the

number of neurons to a problem, their NDMs also seem

to be characteristic. This time, we often dealt with matri-

ces whose content took the form of oblong horizontal clus-

Tab. 3. Results of experiments on predator-prey problem (LPh - learning phase, GPh - generalization phase; e.g. fitness 2582.2 means 25
scenarios in which prey was captured, on average)

AE M1 M2 M3 M4 M5 M6

Average fitness LPh 2582.2 2757.03 2795.15 2767.15 2716.67 2773.5 2673.01

Average fitness GPh 3399.57 3994.56 3722.16 3878.32 2984.27 3794.29 3382.23
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ters with holes (zeros). Such content of the matrices may be

the result of the problem to be solved or operations used in

AEPs (all new operations modify NDMs row by row). If the

operations were mainly responsible for such state of affairs

it would mean that a part of modifications may have diffi-

culties in solving problems requiring other NDMs than the

ones produced in the experiments. To test it, further experi-

ments were carried out, and their results are reported in the

following section.

As for the generalization abilities of ANNs, they in most

cases agree with the results achieved during the learning

phase. That is, ANNs which performed well in the learn-

ing tasks were also effective in the generalization ones and

vice versa. ANNs produced by M4 and M6 are exceptions

to this rule. In this case, we often dealt with the overfitting

phenomenon. As mentioned above, ANNs produced by M4

and M6 were usually much more complex in terms of con-

struction than other ANNs. In consequence, they had diffi-

culties in generalizing knowledge acquired during the learn-

ing phase.

IV. EXPERIMENTS ON MATRICES

The main goal of the experiments reported in this section

was to estimate and compare the ability of the methods pre-

sented in Section 2 to form diverse neural architectures or,

in other words, to estimate their completeness. Since, in AE,

ANNs are encoded in the form of NDMs, the tests were car-

ried out on matrices, not on ANNs. That is, the task of each

method was not to produce ANNs but some pattern matri-

ces. In the experiments, only AE and modifications M1, M2,

M3, and M5 were tested. Modifications M4 and M6 were ne-

glected because of their unsatisfactory results in the previous

phase of the experiments.

In order for the tests to reliably characterize each

method, the pattern matrices had to be as varied as possible.

To this end, matrices which represented ANNs in the previ-

ous experiments were applied, in total 210 different matrices,

30 per each method. To increase their diversity, half of them

were additionally transposed.

Even though the matrices generated in the previous

experiments represented ANNs used to solve the same

problem, there was a wide diversity range among them.

They were very different in terms of how and where they

were filled in. Comparing many of them one could have the

impression that deals with random matrices. Generally, they

were sufficiently diverse to carry out the experiments exclu-

sively based on them. Additional argument for the matrices

from the previous phase of the experiments was that they

all represented true ANNs. In the case of random matrices,

there would not have been any guarantee that they corre-

spond to any ANNs.

During the tests, each method was run 210 times for

the same parameter setting as in the experiments on the

predator–prey problem (see Table 5 in Appendix). In each

run, which took maximally 60000 generations, a single ma-

trix was generated. Fitness of each AEP was measured in the

following way:

f(AEP ) =















∑

i,j

fm
i,j

N2
if

∑

i,j

fm
i,j > 0

0, otherwise

(5)

fm
i,j =



























1

|mAEP (i, j)−mP (i, j)|+ 1
,

if
mAEP (i, j),mP (i, j) 6= 0

∨mAEP (i, j),mP (i, j) = 0

− 1, otherwise,
(6)

where

mAEP (i, j) – i, jth item in matrix generated by AEP,

mP (i, j) – i, jth item in pattern matrix,

N – height and width of all matrices.

According to (5), fitness of each AEP was an average

over rewards and penalties received while comparing all

items from a pattern matrix and the matrix generated by the

program. AEPs were rewarded if in both compared matrices

either zeros or values different from zero were at correspond-

ing positions, otherwise AEPs were penalized. This way,

AEPs were promoted, which produced matrices represent-

ing ANNs with the same topology as ANNs represented by

means of pattern matrices. Rewards were scaled to the range

(0, 1 >. Magnitude of the reward depended on the similar-

ity between values from both matrices. Maximum reward

amounted to one and was given when the values were iden-

tical, while penalties were always equal to minus one.

Tab. 4. Results of experiments on matrices (each cell in the table
includes average fitness of AEPs for selected pattern matrices)

AE M1 M2 M3 M5

30 AE0 matrices 0.67 0.32 0.91 0.45 0.32

30 M1 matrices 0.37 0.19 0.9 0.19 0.17

30 M2 matrices 0.66 0.39 0.93 0.55 0.38

30 M3 matrices 0.65 0.38 0.92 0.63 0.32

30 M4 matrices 0.1 0.1 0.62 0.09 0.1

30 M5 matrices 0.11 0.11 0.64 0.09 0.1

30 M6 matrices 0.3 0.21 0.85 0.29 0.2

All 210 matrices 0.41 0.24 0.83 0.32 0.23

The experiments summarized in Table 4 showed that

modification M2 has the greatest easiness in forming diverse

matrices and, as we assume, diverse neural architectures. Re-

gardless of the creator of pattern matrices the ones evolved

according to M2 were always closest to them. The remain-

ing methods turned out to be significantly worse than M2.

In the case of AE0 and M1, the cause seems to be slight
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flexibility of both methods. AE0 uses variety of operations

whereby it has the potential to produce diverse matrices.

However, as already mentioned, all the operations applied in

AE0 and, in consequence, AE0 itself have difficulties gen-

erating matrices with a distributed content. M1 by using an

operation which makes construction of such matrices eas-

ier does not have such problems. However, the fact that it is

based on only one operation significantly narrows down the

set of matrices which can be easily and rapidly generated by

means of M1.

As for modifications M3 and M5, it seems that the main

cause of their worse performance is the length of chromo-

somes and a greater genotype space to search. In AE0, M1,

and M2, operations use shared data located in a separate

chromosome and for that reason they can be encoded in

the form of short chromosomes including only four param-

eters. In spite of a small length, each operation can intro-

duce to NDM many different values. This is because each of

them can use any fragment from a long data chromosome.

To achieve a similar effect in M3 and M5, their chromo-

somes encoding operations had to be considerably longer

than their counterparts from AE0, M1, and M2. In conse-

quence, AEPs in M3 and M5 had usually more complex

genotypes than the ones using shared data. Longer genotypes

meant, in turn, a larger search space which affected results

of both methods.

One can obviously ask the question why M1, M3, and

M5 were so effective in forming neuro-controllers whereas

when the task was to produce matrices they completely

failed. Note that all the mentioned methods appeared to be

even worse than AE0. It seems that the answer is the follow-

ing. In the predator–prey problem, there were more than one

effective solution and the task was only to find one of them.

M1, M3, and M5 found efficient ANNs faster than AE0

because they have the ability to form matrices with a dis-

tributed content and thereby they have easier access to more

effective ANNs than the original variant of AE. Meanwhile,

when the task was to generate one specific matrix chances

of all the methods became even. In this case, AE0 appeared

to be more effective than M1, M3 and M5.

V. SUMMARY

The paper proposes several modifications to AE and

evaluates them in terms of the ability to produce effective di-

verse neural architectures. The experiments on the predator–

prey problem revealed that all the modifications outperform

the original variant of AE in generating effective neuro-

controllers. They also showed that capability to easily form

NDMs with values loosely scattered throughout the ma-

trix is a factor which strongly affects effectiveness of AE.

The experiments with matrices showed how the methods

cope with building diverse neural architectures. It turned out

that modification M2 is unrivaled in this respect.

APPENDIX

Parameter setting in the experiments on predator-prey problem

Tab. 5. Parameter setting (d – data, o – operations; number of genes in chromosomes and probability of mutation were individually fixed
for each method during tuning process)

Parameter All the methods

Number of evolutionary generations 60 000

Probability of crossover 0.7 in all populations

Probability of cut-splice 0.1 in all populations with variable length chromosomes

Size of tournament 1 in all populations

Number of elite individuals 1 in all populations

Hidden neurons in ANNs maximally 4

Type of neurons in ANNs sigmoid

Parameter AE0 M1 M2 M3

Number of subpopulations 2÷10 2÷10 3÷10 3÷10

Size of subpopulations
100 (d) 100 (d) 100 (d) 100 (CHGT0s)

50 (o) 50 (CHGM2) 50 (CHGM3) 50 (CHGM4s)

No. of integer or binary 20÷40 (d) 20÷40 (d) 20÷40 (d), 5 (CHGM3) 10÷40 (CHGM4)

Genes in chromosomes 5 (o) 4 (CHGM2) 10÷30 (CHGT0) 20÷40 (CHGT0)

Probability of mutation
0.01 (d) 0.03 (d) 0.03 (d) 0.05 (CHGT0)

0.15 (o) 0.1 (CHGM2) 0.03 (CHGM3), 0.06 (CHGT0) 0.1 (CHGM4)
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Parameter M4 M5 M6

Number of subpopulations 3÷10 3÷10 3÷10

Size of subpopulations
100 (CHGT0s) 100 (CHGM6s) 100 (CHGM6s)

50 (CHGM5s) 50 (CHGT1s) 50 (CHGT2s)

Number of integer or binary 10÷40 (CHGM5) 10÷40 (CHGM6) 20÷40 (CHGM6)

genes in chromosomes 10÷40 (CHGT0) 10÷40 (CHGT1) 30÷50 (CHGT2)

Probability of mutation
0.08 (CHGT0) 0.01 (CHGM6) 0.03 (CHGM6)

0.05 (CHGM5) 0.3 (CHGT1) 0.1 (CHGT2)
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