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Abstract: In this paper, we shall attempt to extend the generalized exponential geometric distribution of Silva et al.
[1]. The new four-parameter distribution also generalizes the Weibull-geometric distribution of Barreto-Souza et al. [2],
exponentiated Weibull, and several other lifetime distributions as special cases. A useful characteristic of the new distribution
is that its failure rate function can have different shapes. We first study certain basic distributional properties of the new
distribution and provide closed form expressions for its moment generating function and moments. General expressions are
also obtained for the order statistics densities and stress-strength parameter. Our findings happen to enfold several known
results as special cases. The model parameters are estimated by the maximum likelihood method and the Fisher information
matrix is discussed. Finally, the model is applied to a real data set and its advantage over some rival models is illustrated.
Key words: Beta Weibull, Beta Weibull-geometric, Maximum likelihood estimation, Order statistics, Resilience parameter
family, Stress-strength parameter

I. INTRODUCTION

For many years, authors have been interested in develop-
ing methods for generating distributions with more flexibility
for applications to data modeling. One of the remarkable
methods, which has received much attention in the literature,
is elevating the cumulative distribution function (cdf) of a
random variable, say F , with a power parameter, say γ > 0.
The parameter γ > 0 is called a resilience parameter and
{F (.|γ) = F γ(.), γ > 0} is a resilience parameter family
or, alternatively, a proportional reverse hazards family, with
underlying cdf F (see [3]). Clearly, F (.|1) = F (.).

In recent years, several distributions belonging to the re-
silience parameter family have been proposed in the literature.
The exponentiated Weibull (EW) distribution which is a gen-
eralization of the Weibull distribution has been proposed by
Mudholkar et al. [4], [5], and [6]. The generalized exponential
(GE) distribution proposed by Gupta and Kundu [7], which
extends the exponential distribution, is another remarkable
distribution in the resilience parameter family. Nadarajah and

Kotz [8] presented four exponentiated type distributions that
extend the standard gamma, standard Weibull, standard Gum-
bel, and standard Fréchet distributions. In addition, as some
recent works, we can address the generalized exponential-
Poisson (GEP) distribution proposed by Barreto-Souza and
Cribari-Neto [9], the generalized modified Weibull (GMW)
distribution proposed by Carrasco et al. [10], and the general-
ized exponential geometric (GEG) distribution given by Silva
et al. [1] which extend the exponential-Poisson distribution of
Kus [11], the modified Weibull distribution of Lai et al. [12],
and the exponential-geometric (EG) distribution of Adamidis
and Loukas [13], respectively. An alternative version of the
GEG distribution is also given in [14].

In this paper, we attempt to extend the GEG distribution
by raising the cdf of the Weibull-geometric (WG) distribu-
tion [2] to the power of a resilience parameter, say γ > 0,
whereas, the GEG distribution is obtained by elevating the cdf
of an EG distribution to the power of γ > 0. (For a compari-
son, see also Equations (1) and (13)). The main motivations
for providing this paper include generalizing the GEG dis-
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tribution, providing failure rate function shapes, two general
forms for order statistics densities and stress-strength param-
eter for distributions generated by the resilience parameter
family, and also illustrating the advantage of the new distri-
bution over some competitive models by applying it to a real
data set.

In Section 2, the new distribution is proposed and its basic
distributional properties such as the cumulative distribution,
density, survival, failure rate, and moment generating func-
tions as well as the moments and order statistics distributions
are studied. The maximum likelihood method and Fisher in-
formation matrix are discussed in Section 3. Estimation of
the stress-strength parameter with a general form is given in
Section 4. Section 5 is devoted to the capacity of the new
distribution in data modeling using a real data set. Some
concluding remarks are given in Section 6.

II. PROPOSED DISTRIBUTION AND ITS BASIC
DISTRIBUTIONAL PROPERTIES

Barreto-Souza et al. [2] proposed the WG distribution
with the cdf

G(x; p, β, α) =
1− e−(βx)α

1− pe−(βx)α
; x > 0,

where p ∈ (0, 1), β > 0, and α > 0 are constants. Now, we
consider the following new cdf

F (x; p, β, α, γ) =

(
1− e−(βx)α

1− pe−(βx)α
)γ

; x > 0, (1)

where γ > 0 is a resilience parameter. A random vari-
able as X with the cdf given in (1) is said to have the
extended generalized exponential geometric (EGEG) (or
exponentiated Weibull-geometric) distribution with the no-
tation EGEG(p, β, α, γ). As two characteristics of the
EGEG(p, β, α, γ) distribution, when γ > 0 is an integer,
we may note that the cdf of max(Y1, Y2, ..., Yγ) coincides
with the cdf given in (1), where Yi’s are γ independent and
identically distributed (iid) WG random variables. In addi-
tion, in the case of integer γ > 0, cdf (1) can be considered
as the cdf of the γth order statistic of N iid Weibull ran-
dom variables, where N is a geometric random variable with
the success probability 1 − p, denoted by N ∼ Ge(1 − p),
and is independent of Xi’s. That is, we have the following
observations:
Lemma II.1 LetX1, X2, ...XN be iid random variables hav-
ing an absolutely continuous distribution function F with
a density function f , where N has a geometric distribution
with probability mass function P (N = n) = (1 − p)pn−1;
n = 1, 2, ..., denoted by N ∼ Ge(1− p), and is independent
of Xi’s. Then, the density, cumulative distribution, and sur-
vival functions of U = min(X1, X2, ...XN ) are, respectively,
given by

fU (x) =
(1− p)f(x)

(1− pF (x))2
,

FU (x) =
F (x)

1− pF (x)
(2)

and

FU (x) =
(1− p)F (x)

1− pF (x)
,

for all x ∈ R = (−∞,+∞), where F = 1− F .

Proof. Using a conditional argument, the assertion follows. �

Since the distribution of U belongs to the Marshall and Olkin
family [15], Lemma II.1 can also be followed from [15].
Theorem II.1 Under conditions given in Lemma II.1, the
density and cumulative distribution functions of the rth order
statistic of a random sample X1, X2, ...XN are given by

fr(x) =
r(1− p)f(x)F (x)r−1

{1− pF (x)}r+1
; x ∈ R (3)

and

Fr(x) = [FU (x)]r; x ∈ R, (4)

respectively, where FU (x) is as given in (2).

Proof. The density function of the rth order statistic, when
N has a general discrete distribution πN (n); n = 1, 2, ..., is
given by

fr(x) =
1

(r − 1)!πr
f(x)F (x)r−1G

(r)
N (F (x)); x ∈ R, (5)

where πr = P (N ≥ r) =
∑∞
n=r πN (n) and GN (.) denotes

the probability generating function (pgf) of N defined by

GN (z) = E
(
ZN
)

=

∞∑
n=1

znπN (n) (6)

and G(r)
N (z) is its rth derivative (see [16]). Since here N has

a geometric distribution, (6) reduces to

GN (z) =
(1− p)z
1− pz

; |z| < 1

and, thus, its rth derivative is given by

G
(r)
N (z) =

(1− p)r!pr−1

(1− pz)r+1
; r = 1, 2, ... . (7)

In addition, in this case,

πr =

∞∑
n=r

(1− p)pn−1 = pr−1 (8)
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and, therefore, by inserting (7) and (8) into (5), the density
function given in (3) is immediately achieved. Equation (4)
is then obtained by integrating from (3) and the proof is com-
pleted. �

As another example in this connection, we can address
the GEG distribution of Silva et al. [1]. In fact, using another
motivation different to that of Silva et al. [1], we can say that
if X1, X2, ...XN is a random sample from an exponential dis-
tribution, where N ∼ Ge(1− p) is independent of Xi’s, then
the distribution of the rth order statistic of Xi’s agrees with
the GEG distribution, when its resilience parameter is an inte-
ger (see the cdf and density function of the GEG distribution
given in (13) and (14), respectively).

II. 1. Density, survival, and failure rate functions

Let X be a random variable following the
EGEG(p, β, α, γ) distribution. Clearly, the corresponding
probability density function (pdf) associated with the cdf (1)
is given by

f(x; p, β, α, γ) =

=
γαβα(1− p)xα−1e−(βx)α

(
1− e−(βx)α

)γ−1(
1− pe−(βx)α

)γ+1 ; x > 0,

(9)

where α > 0 and γ > 0 are shape parameters, β > 0 is
a scale parameter, and parameter p ∈ (0, 1) is called a tilt
parameter (see [3]).
Theorem II.2 The density function of an EGEG(p, β, α, γ)
distribution is logconcave if α ≥ 1, γ > 1, and p ≤ γ−1

γ+1 and,
thus, it is strongly unimodal. It is logconvex if 0 < α ≤ 1 and
0 < γ ≤ 1 and, thus, it is unimodal with mode at the origin.

Proof. Define η(x) = −f ′(x)/f(x) = −(log f(x))′, where
f ′ is the first derivative of f . Therefore,

η(x) = − 1

x

{
α− 1− α(βx)α

+
(γ − 1)(βx)ααe−(βx)

α

1− e−(βx)α
− (γ + 1)p(βx)ααe−(βx)

α

1− pe−(βx)α
}
,

whose first derivative is given by

η′(x) =
α− 1

x2
+
α(βx)α

x2

{
α− 1

− (γ − 1)e−(βx)
α

[(α− 1)(1− e−(βx)α)− α(βx)α]

(1− e−(βx)α)2

+
(γ + 1)pe−(βx)

α

[(α− 1)(1− pe−(βx)α)− α(βx)α]

(1− pe−(βx)α)2

}
.

(10)

It can be shown that

(γ + 1)p
[
(α− 1)

(
1− pe−(βx)α

)
− α(βx)α

](
1− pe−(βx)α

)2 >

>
(γ − 1)

[
(α− 1)(1− e−(βx)α)− α(βx)α

](
1− e−(βx)α

)2 ,

(11)

for all x > 0, β > 0, p ∈ (0, 1), α > 0, γ > 1, and
p ≤ γ−1

γ+1 . A proof of (11) is provided in the appendix. There-
fore, if α ≥ 1, then (10) implies that η′(x) > 0 and, thus,
the logconcavity of f is proved in this case. In addition,
since both functions (α − 1)(1 − e−(βx)α) − α(βx)α and
(α− 1)(1− pe−(βx)α)− α(βx)α are negative for all x > 0,
0 < α ≤ 1, β > 0, and p ∈ (0, 1), (10) implies that
η′(x) < 0, when 0 < γ ≤ 1. Thus, the logconvexity of f
is immediately explored in this case. Since it is known that
logconcave densities are strongly unimodal and logconvex
densities are decreasing with mode at the infimum of their
support, i.e., here the origin (see, e.g., [17]), the proof is
completed. �

Fig. 1 plots the density function of an EGEG(p, β, α, γ)
distribution for different parameter values. It is easily
seen that the survival and failure rate functions of an
EGEG(p, β, α, γ) distribution are given by

F (x; p, β, α, γ) = 1−
(

1− e−(βx)α

1− pe−(βx)α
)γ

; x > 0,

and

h(x; p, β, α, γ) =

=
γαβα(1− p)xα−1e−(βx)α

(
1− e−(βx)α

)γ−1(
1− pe−(βx)α

) { (
1− pe−(βx)α

)γ
−
(
1− e−(βx)α

)γ } ; x > 0,

respectively.

Corollary II.1 The failure rate function of an EGEG(p, β,
α, γ) distribution is increasing if α ≥ 1, γ > 1, and p ≤ γ−1

γ+1
and it is decreasing if 0 < α ≤ 1 and 0 < γ ≤ 1.

Proof. According to the proof of Theorem II.2, we have
η′(x) > 0 for α ≥ 1, γ > 1, and p ≤ γ−1

γ+1 . Thus, Glaser’s
[18] Theorem implies that the failure rate is increasing in this
case. In addition, we have η′(x) < 0, for 0 < α ≤ 1 and
0 < γ ≤ 1. Therefore, Glaser’s [18] Theorem again implies
that the failure rate is decreasing in this case. �

Fig. 2 plots the failure rate function of an
EGEG(p, β, α, γ) distribution for different selected pa-
rameter values which contains the failure rate shapes of some
previously known distributions. As we see from Fig. 2, the
failure rate function can also take bathtub and upside-down
bathtub shapes for other values of the parameters.

As an important property of the resilience parameter
family, we see that the reversed failure rate function of an
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Fig. 1. Plots of an EGEG(p, β, α, γ) density function for different parameter values
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EGEG(θ, γ) distribution, where θ = (p, β, α), i.e.,

r
EGEG

(x;θ, γ) =
f
EGEG

(x;θ, γ)

F
EGEG

(x;θ, γ)
= γ r

WG
(x;θ),

is proportional to the reversed failure rate function of the
WG(θ) distribution.

A simulation of the EGEG(p, β, α, γ) random variable

can be obtained by the relationship X = 1
β

{
log 1−pU

1
γ

1−U
1
γ

} 1
α

.

The qth quantile xq of an EGEG(p, β, α, γ) distribution is

given by xq = 1
β

{
log 1−pq

1
γ

1−q
1
γ

} 1
α

, and, consequently, its me-

dian equals m = 1
β

{
log 1−p(0.5)

1
γ

1−(0.5)
1
γ

} 1
α

.

II. 2. Some known special cases

Below, we observe that the family of EGEG(p, β, α, γ)
distributions contains several previously known distributions
as special cases.
1. When γ = 1, the EGEG(p, β, α, γ) distribution reduces
to the WG(p, β, α) distribution of Barreto-Souza et al. [2]
with pdf

fWG(x; p, β, α) =

=αβα(1− p)xα−1e−(βx)
α

(1− pe−(βx)
α

)−2; x > 0.

(12)

2. When γ = α = 1, we obtain the EG(p, β) distribution of
Adamidis and Loukas [13] with pdf

fEG(x; p, β) = β(1− p)e−βx(1− pe−βx)−2; x > 0,

which reduces to an exponential distribution with parameter
β > 0, when p→ 0+.
3. When α = 1, the EGEG(p, β, α, γ) distribution gives the
GEG(p, β, γ) distribution of Silva et al. [1] with the cdf and
pdf

FGEG(x; p, β, γ) =

{
1− e−(βx)

1− pe−βx

}γ
; x > 0, (13)

and

fGEG(x; p, β, γ) =γβ(1− p)e−βx(1− e−βx)γ−1

×(1− pe−βx)−(γ+1); x > 0,
(14)

respectively, which reduces to a GE distribution with parame-
ters γ > 0 and β > 0, when p→ 0+.
4. When p → 0+, the EGEG(p, β, α, γ) distribution con-
verges to the EW (β, α, γ) distribution (see, e.g., [4]) with
pdf

fEW (x;β, α, γ) = γαβαxα−1e−(βx)
α

(1− e−(βx)
α

)γ−1;

x > 0,

(15)

which reduces to a Weibull distribution with parameters
α > 0 and β > 0, when γ = 1.
5. The EGEG(p, β, α, γ) distribution reduces to a degener-
ated distribution at the origin, when p→ 1−.

II. 3. Moment generating function and moments

It seems that mgf of an EGEG(p, β, α, γ) distribution is
not easily found directly from the density function given in
(9). Hence, we first obtain an alternative expression for the
density function of the EGEG(p, β, α, γ) distribution using
the series representation

(1− z)−k =

∞∑
i=0

Γ(k + i)

Γ(k)i!
zi; |z| < 1, k > 0. (16)

Then, we obtain a closed form for the mgf of the
EGEG(p, β, α, γ) distribution and show that our result con-
tains certain known results in this connection. Using (16), pdf
(9) can be represented by

f(x) =

∞∑
i=0

(1− p)pi αβα

B(γ, i+ 1)
xα−1e−(i+1)(βx)α

× (1− e−(βx)
α

)γ−1 =

= (1− p)
∞∑
i=0

pifBW (x; γ, i+ 1, β, α),

(17)

where

fBW (x; a, b, λ, c) =
cλc

B(a, b)
xc−1e−b(λx)

c

×
{

1− e−(λx)
c
}a−1

; x > 0,

is the density function of the beta Weibull (BW) distribution
proposed by Cordeiro et al. [19] with parameters a > 0, b >

0, λ > 0, and c > 0, where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt

is the beta function. The beta Weibull distribution has also
been studied by Famoye et al. [20] and Lee et al. [21]. As
we see from (17), the EGEG(p, β, α, γ) density function is
an infinite weighted sum of BW densities with a geometric
weight. Hence, we can obtain some of its properties, such as
the mgf and moments, directly from those of the BW distri-
bution.

For a random variable Y following the BW (a, b, λ, c)
distribution, Cordeiro et al. [19] showed that the mgf of Y ,
for real non-integer a > 0, is given by

MY (t) =
Γ(a)

B(a, b)

∞∑
r=0

∞∑
j=0

trΓ(r/c+ 1)(−1)j

λrΓ(a− j)(b+ j)r/c+1r!j!
, (18)
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and, when a > 0 is integer, it is given by

MY (t) =

=
1

B(a, b)

∞∑
r=0

trΓ(r/c+ 1)

λrr!

a−1∑
j=0

(
a− 1

j

)
(−1)j

(b+ j)r/c+1
.

(19)

Now, combining Eqs. (17) and (18), for real non-integer
γ > 0, yields

MX(t) =(1− p)

×
∞∑
i=0

∞∑
r=0

∞∑
j=0

pi
Γ(γ + i+ 1)trΓ(r/α+ 1)(−1)j

βrΓ(γ − j)(i+ 1 + j)r/α+1i!r!j!
,

and, when γ > 0 is integer, by combining Eqs. (17) and (19),
we have

MX(t) = (1− p)

×
∞∑
i=0

∞∑
r=0

γ−1∑
j=0

pi
(γ + i)!trΓ(r/α+ 1)(−1)j

βr(γ − 1− j)!(i+ 1 + j)r/α+1i!r!j!
.

(20)

In particular, for γ = 1, Equation (20) reduces to

MZ(t) = (1− p)
∞∑
i=0

∞∑
r=0

pi
trΓ(r/α+ 1)

βrr!(i+ 1)r/α
, (21)

whereZ is a WG random variable with parameters p ∈ (0, 1),
β > 0, and α > 0 (see also [22]).

Cordeiro et al. [19] showed that the mth moment of the
BW distribution, for real non-integer and integer values of
a > 0, respectively, are as given below:

E(Y m) =
Γ(a)Γ(m/c+ 1)

λmB(a, b)

×
∞∑
j=0

(−1)j

Γ(a− j)j!(b+ j)m/c+1
; m = 1, 2, ...,

and

E(Y m) =
Γ(m/c+ 1)

λmB(a, b)

a−1∑
j=0

(
a− 1

j

)
(−1)j

(b+ j)m/c+1
;

m = 1, 2, . . . .

Thus, by (17), it readily follows that the mth moment of the
EGEG(p, β, α, γ) distribution, for a non-integer γ > 0, is
given by

E(Xm) =
(1− p)Γ(m/α+ 1)

βm

×
∞∑
i=0

∞∑
j=0

piΓ(γ + i+ 1)(−1)j

Γ(γ − j)(i+ 1 + j)m/α+1i!j!
; m = 1, 2, . . . ,

which reduces to

E(Xm) =
(1− p)Γ(m/α+ 1)

βm

×
∞∑
i=0

γ−1∑
j=0

pi(γ + i)!(−1)j

(γ − j − 1)!(i+ 1 + j)m/α+1i!j!
; m = 1, 2, . . . ,

(22)

when γ > 0 is an integer value. In particular, when γ = 1,
Equation (22) becomes

E(Zm) =
(1− p)Γ(m/α+ 1)

βm

∞∑
i=0

pi(i+ 1)−m/α =

=
(1− p)Γ(m/α+ 1)

pβm
L(p,m/α),

where L(p, a) =
∑∞
j=1 p

jj−a is Euler’s polylogarithm func-
tion (Erdelyi et al. [23]) and Z is as in (21).

II. 4. Order statistics

Let X1, X2, ..., Xn be a random sample from an
EGEG(θ, γ) distribution, where θ = (p, β, α). Then, the
density function of the ith order statistic is given by

fi:n(x;θ, γ) =

=
1

B(i, n− i+ 1)

×f(x;θ, γ)[F (x;θ, γ)]i−1[1− F (x;θ, γ)]n−i

=
1

B(i, n− i+ 1)

×
n−i∑
k=0

(
n− i
k

)
(−1)kf(x;θ, γ)[F (x;θ, γ)]k+i−1

=
γ

B(i, n− i+ 1)

×
n−i∑
k=0

(
n− i
k

)
(−1)kg(x;θ)[G(x;θ]γ(k+i)−1

=
1

B(i, n− i+ 1)

×
n−i∑
k=0

(−1)k
(
n−i
k

)
i+ k

fEGEG(x;θ, γ(i+ k)),

(23)

where g(x;θ) and G(x;θ) are the density function and cdf
of the WG(θ) distribution, respectively. Note that (23) is
a general form, i.e., it holds for any distribution belong-
ing to the resilience parameter family. For example, the
corresponding expression given by Silva et al. [1] for the
GEG(p, β, γ) distribution agrees with this general form.
As we see, the density function of the ith order statis-
tic of an EGEG(p, β, α, γ) distribution is a finite linear
combination of EGEG(p, β, α, γ(i + k)) densities.Thus,
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we may obtain certain properties of the ith order statis-
tic of the EGEG(p, β, α, γ) distribution, such as its mo-
ments, directly from the corresponding properties of the
EGEG(p, β, α, γ(i+ k)) distribution.

III. ESTIMATION AND FISHER INFORMATION
MATRIX

Let x1, x2, ..., xn be n observations from a random sam-
ple drawn from the EGEG distribution and θ = (p, β, α, γ)T

be the parameter vector. The log-likelihood function is given
by

` =n log[γαβα(1− p)] + (α− 1)

n∑
i=1

log xi

−
n∑
i=1

(βxi)
α + (γ − 1)

n∑
i=1

log(1− e−(βxi)
α

)

−(γ + 1)

n∑
i=1

log(1− pe−(βxi)
α

).

The components of the score vector U =
(
∂`
∂p ,

∂`
∂β ,

∂`
∂α ,

∂`
∂γ

)T
are given by

∂`

∂p
=
−n

1− p
+ (γ + 1)

n∑
i=1

e−(βxi)
α

1− pe−(βxi)α
,

∂`

∂β
=
nα

β
− α

β

n∑
i=1

(βxi)
α

+
(γ − 1)α

β

n∑
i=1

(βxi)
αe−(βxi)

α

1− e−(βxi)α

− (γ + 1)pα

β

n∑
i=1

(βxi)
αe−(βxi)

α

1− pe−(βxi)α
,

∂`

∂α
=
n

α
+ n log β +

n∑
i=1

log xi

−
n∑
i=1

(βxi)
α log(βxi)

+ (γ − 1)

n∑
i=1

(βxi)
αe−(βxi)

α

log(βxi)

1− e−(βxi)α

− (γ + 1)p

n∑
i=1

(βxi)
αe−(βxi)

α

log(βxi)

1− pe−(βxi)α

and

∂`

∂γ
=

n

γ
+

n∑
i=1

log
1− e−(βxi)α

1− pe−(βxi)α
.

Using a numerical method such as the Newton-Raphson
procedure, the maximum likelihood estimates (MLEs) of the

parameters are obtained by solving the nonlinear equations
U(θ̂) = 0 . The total Fisher information matrix is given by
In(θ) = nI(θ), where

I(θ) =


Ipp Ipβ Ipα Ipγ
Iβp Iββ Iβα Iβγ
Iαp Iαβ Iαα Iαγ
Iγp Iγβ Iγα Iγγ

 ,
whose components can be calculated by

Iθi,θj = −E
(
∂2`

∂θiθj

)
; i, j = 1, 2, 3, 4.

The above expectations can be obtained numerically by
mathematical softwares such as MATLAB or MAPLE. How-
ever, the total Fisher information matrix can be approximated
by

In(θ̂) ≈ −


∂2`
∂p2 |θ̂

∂2`
∂p∂β |θ̂

∂2`
∂p∂α |θ̂

∂2`
∂p∂γ |θ̂

∂2`
∂β∂p |θ̂

∂2`
∂β2 |θ̂

∂2`
∂β∂α |θ̂

∂2`
∂β∂γ |θ̂

∂2`
∂α∂p |θ̂

∂2`
∂α∂β |θ̂

∂2`
∂α2 |θ̂

∂2`
∂α∂γ |θ̂

∂2`
∂γ∂p |θ̂

∂2`
∂γ∂β |θ̂

∂2`
∂γ∂α |θ̂

∂2`
∂γ2 |θ̂

 ,
where θ̂ is MLE of θ. Under conditions given in Fergu-
son ( [24], pp:121), θ̂ has an asymptotic distribution as
N4(θ, In(θ̂)−1), or equivalently, In(θ̂)1/2(θ̂ − θ)T has
a multivariate standard normal distribution. The asymp-
totic normal distributions are usually used for constructing
approximate confidence intervals, confidence regions, and
testing of hypotheses of the parameters. For example, an
asymptotic confidence interval with confidence coefficient
1 − γ for parameters θj ; j = 1, 2, 3, 4, is computed by
(θ̂j ∓ z1−γ/2

√
Iθ̂j ,θ̂j ) where Iθ̂j ,θ̂j is the jth diagonal ele-

ment of In(θ̂)−1 and z1−γ/2 is the (1− γ/2)th quantile of
the standard normal distribution (see Section 5).

IV. ESTIMATION OF THE STRESS-STRENGTH
PARAMETER

In the context of reliability, the stress-strength parameter
R = P (X > Y ) is a measure of component reliability and
its estimation problem, when X and Y are independent and
follow a specified distribution, has been discussed widely
in the literature. Suppose that the random variable X is the
strength of a component which is subjected to a random stress
Y . The component fails whenever X < Y and there is no
failure when X > Y . In this section, the R parameter is esti-
mated for theEGEG(θ, γ) distribution, where θ = (p, β, α).
We shall discuss the matter for different cases as below:

IV. 1. The case γ1 6= γ2

Let X and Y be independent random variables with
respective distributions EGEG(θ, γ1) and EGEG(θ, γ2),



224 Hamid Bidram

where θ = (p, β, α). The stress-strength parameter
is given by

R =P (X > Y ) =

∫ ∞
0

fX(x;θ, γ1)FY (x;θ, γ2)dx

=

∫ ∞
0

γ1g(x;θ)G(x;θ)γ1+γ2dx

=
γ1

γ1 + γ2
,

(24)

where g(x;θ) and G(x;θ) are the density function and cdf
of the WG(θ) distribution, respectively. As we see, (24) can
be considered as a general form. For example, see the corre-
sponding expression for the GEG(p, β, γ) distribution given
by Silva et al. [1].

Now, assume that x1, x2, ..., xn and y1, y2, ..., ym are
independent observations of X ∼ EGEG(p, β, α, γ1)
and Y ∼ EGEG(p, β, α, γ2), respectively. The total log-
likelihood function `R(θ∗), where θ∗ = (p, β, α, γ1, γ2)T ,
is given by

`R(θ∗) = n log γ1 +m log γ2

+(n+m) log[αβα(1− p)]

+(α− 1)

 n∑
i=1

log xi +

m∑
j=1

log yj


−

n∑
i=1

(βxi)
α −

m∑
j=1

(βyj)
α

+(γ1 − 1)

n∑
i=1

log
(

1− e−(βxi)
α
)

+(γ2 − 1)

m∑
j=1

log
(

1− e−(βyj)
α
)

−(γ1 + 1)

n∑
i=1

log
(

1− pe−(βxi)
α
)

−(γ2 + 1)

m∑
j=1

log
(

1− pe−(βyj)
α
)
.

The MLE of θ∗, say θ̂∗, can be calculated numeri-
cally from the system of nonlinear equation UR( ˆθ∗) =
(∂`R∂p̂ ,

∂`R
∂β̂
, ∂`R∂α̂ ,

∂`R
∂γ̂1

, ∂`R∂γ̂2 )T = 0. Hence, the parameter R

can be estimated by R̂ = γ̂1
γ̂1+γ̂2

.

IV. 2. The cases γ1 6= γ2 and p1 6= p2

Assume that X ∼ EGEG(p1, β, α, γ1) and Y ∼
EGEG(p2, β, α, γ2) are independent random variables.

In this case, the parameter R can be written as

R =

∫ ∞
0

γ1αβ
α(1− p1)xα−1e−(βx)

α

× (1− e−(βx)α)γ1−1

(1− p1e−(βx)α)γ1+1

×
(

1− e−(βx)α

1− p2e−(βx)α
)γ2

dx.

Expanding the binomial terms
(
1− p1e−(βx)

α)γ1+1
and(

1− p2e−(βx)
α)γ2 , according to Equation (16), we obtain

R =
1− p1

B(γ1, γ2)(γ1 + γ2)

×
∞∑
i=0

∞∑
j=0

pi1p
j
2

(
i+ j

j

)
B(γ1 + i+ 1, γ2 + j).

(25)

Let x1, x2, ..., xn and y1, y2, ..., ym be independent ob-
servations from X ∼ EGEG(p1, β, α, γ1) and Y ∼
EGEG(p2, β, α, γ2), respectively. The total log-likelihood
function `R(θ∗), where θ∗ = (p1, p2, β, α, γ1, γ2)T , reduces
to

`R(θ∗) = n log γ1 +m log γ2 + (n+m) log(αβα)

+ n log(1− p1) +m log(1− p2)

+ (α− 1)

 n∑
i=1

log xi +

m∑
j=1

log yj


−

n∑
i=1

(βxi)
α −

m∑
j=1

(βyj)
α

+ (γ1 − 1)

n∑
i=1

log
(

1− e−(βxi)
α
)

+ (γ2 − 1)

m∑
j=1

log
(

1− e−(βyj)
α
)

− (γ1 + 1)

n∑
i=1

log
(

1− p1e−(βxi)
α
)

− (γ2 + 1)

m∑
j=1

log
(

1− p2e−(βyj)
α
)
.

Solving the system of nonlinear equation UR( ˆθ∗) =
(∂`R∂p̂1 ,

∂`R
∂p̂2

, ∂`R
∂β̂
, ∂`R∂α̂ ,

∂`R
∂γ̂1

, ∂`R∂γ̂2 )T = 0 numerically, the MLE

of θ∗, say θ̂∗, is obtained. The parameter R can be estimated
in this case with inserting θ̂∗ in Equation (25).

V. APPLICATION

In this section, we use a real data set to illustrate an ap-
plication of the EGEG distribution in data modeling. The
following skewed data are given by Smith and Naylor [25]
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Fig. 3. Densities plots of the fitted models

and discussed further by Barreto-Souza et al. [26] which rep-
resent the strengths of 1.5 cm glass fibres, measured at the
National Physical Laboratory, England. The data are:
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73,
1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66,
1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60,
1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50,
1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48,
1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

We fit the data to the EGEG(p, β, α, γ) model and
some sub-models such as the WG(p, β, α) model given in
(12),EW (β, α, γ) model given in (15),GEG(p, β, γ) model

given in (14), andGE(β, γ) model given in (15) when α = 1.
As a competitive model, we fit the four-parameter beta gen-
eralized exponential (BGE) distribution of Barreto-Souza
et al. [26] with pdf

f(x; a, b, λ, α) =
αλ

B(a, b)
e−λx

(
1− e−λx

)αa−1
×
{

1− (1− e−λx)α
}b−1

; x > 0,

for a > 0, b > 0, λ > 0, and α > 0 to these data. It is
worth mentioning here that cdf (1) is still a cumulative dis-

Tab. 1. MLE, maximized log-likelihood, AIC, and BIC of the fitted models

Model Parameters estimation `(θ̂) AIC BIC
EGEG p̂=-50.1217, β̂=0.9628, α̂=3.0691, γ̂ = 0.7314 -11.5146 31.0292 39.6017
BGE â = 0.4125, b̂ = 93.4655, λ̂ = 0.92271, α̂ = 22.6124 -15.5995 39.1989 47.7715
WG p̂=-14.8952, β̂=0.8594, α̂=3.1952 -13.6131 33.2262 35.5124
EW β̂=0.5820, α̂=7.2846, γ̂=0.6712 -14.6755 35.3511 41.7805
GEG p̂ = −111.2561, β̂=0.61421, γ̂=5.7807 -15.2068 34.4137 38.7000
GE β̂=2.6105, γ̂=31.3032 -31.3835 66.7670 71.0532
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tribution function even for p ≤ 0. Hence, we can consider
the EGEG distribution defined by cdf (1) for any p < 1 and
also for the WG distribution as a sub-model. Therefore, our
expressions for the moments, mgf, and order statistics are
also valid for −1 ≤ p < 1. For p < −1, numerical computa-
tion should be investigated. (For a similar explanation in this
connection, see [1]). To find the MLEs of the EW (β, α, γ)
model, the initial values are the MLEs of theGE(β, γ) model
and α = 1. Subsequently, the initial values for finding the
MLEs of the EGEG(p, β, α, γ) model can be MLEs of the
EW (β, α, γ) model and a value near zero for p. As men-
tioned above, we see from Tab. 1 that the estimation of p is
not range-preserving.

Table 1 contains MLEs of the parameters, maximized
log-likelihood function (`(θ̂)), Akaike information criterion
(AIC), and Bayesian information criterion (BIC) as known
criterions for comparing the fitted models.

According to AIC and BIC values in Table 1 and also
Figures 3 and 4, it seems that the EGEG distribution gives
a better fit than the BGE, EW, WG, GEG, and GE models.
We have also performed Kolmogorov-Smirnov tests whose
values (p-values) for the EGEG, BGE, WG, EW, GEG, and
GE are 0.0925 (0.6209), 0.1673 (0.0520), 0.1575 (0.0786),
0.1461 (0.1226), 0.1522 (0.0969), and 0.2290 (0.0022), re-
spectively. These results also confirm a good fit for the EGEG
model.

The asymptotic variance-covariance matrix of the MLEs
for the EGEG model parameters, which is the inverse of the
observed Fisher information matrix, is given by

In(θ̂)−1 = 103

×


0.000151 −0.000040 0.013441 0.000010
−0.000040 0.000010 −0.003910 −0.000003

0.013441 −0.003913 0.000526 0.001954
0.000010 −0.000003 0.001954 0.000005

 .
Thus, 95% confidence intervals for the parameters are given
by p ∈ (−50.1217 ∓ 0.7616), β ∈ (0.9628 ∓ 0.1960),
α ∈ (3.0691∓ 1.4215), and β ∈ (0.7314∓ 0.1386).

In testing the null hypothesis H0 : GEG versus the alter-
native hypothesis H1 : EGEG, or equivalently, H0 : α = 1
versus H1 : α 6= 1, the likelihood ratio (LR) test statistic
value is 7.5068 (p-value=0.0061) which is significant at 1%
level. In addition, in testing the null hypothesis H0 : WG
versus the alternative hypothesis H1 : EGEG, or equivalently,
H0 : γ = 1 versus H1 : γ 6= 1, the LR test statistic value is
4.1970 (p-value=0.0405) which is significant at 5% level.

VI. CONCLUDING REMARKS

A new four-parameter lifetime distribution called the
extended generalized exponential geometric (EGEG) dis-
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Fig. 4. Empirical cdf plots of the fitted models
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tribution is proposed by adding a resilience parameter to
the Weibull-geometric (WG) distribution of Barreto-Souza
et al. [2]. The new distribution also extends the generalized ex-
ponential geometric (GEG) distribution of Silva et al. [1] and
includes some previously well-known distributions, such as
the exponentiated Weibull (EW), Weibull, generalized expo-
nential (GE), and the exponential-geometric (EG) distribution
of Adamidis and Loukas [13] as sub-models. A characteristic
of the EGEG distribution is that its failure rate function can
be decreasing, increasing, bathtub, and upside-down bathtub
depending on its parameters. We studied the basic distribu-
tional properties of the new distribution. Two general forms
are given for the order statistics densities and stress-strength
parameter. The maximum likelihood method is used to esti-
mate the model parameters. We fitted the EGEG model to a
real data set and found that the EGEG distribution yields a
more satisfactory fit to the data than its rival models.
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Appendix

Here, we intend to support the validity of inequality
(11), used in the proof of Theorem II.2. For this purpose,
let 0 < t = e−(βx)

α

< 1, for all x > 0, α > 0, and β > 0.
Then, (11) reduces to

α log t[(γ − 1)(1− pt)2 − (γ + 1)p(1− t)2] <

<(α− 1)(1− t)(1− pt)
×[(γ + 1)p(1− t)− (γ − 1)(1− pt)].

(26)

To prove (26), we make use of the following three Lemmas.

Lemma A.1 If γ > 1 and p ≤ γ−1
γ+1 , then (γ− 1)(1− pt)2−

(γ + 1)p(1− t)2 > 0.

Proof. From the inequality (1 − pt)2 > (1 − t)2 for all
t, p ∈ (0, 1) and p ≤ γ−1

γ+1 , the assertion follows. �

Lemma A.2 If γ > 1 and p ≤ γ−1
γ+1 , then log t[(γ − 1)(1 −

pt)2 − (γ + 1)p(1− t)2] ≤ (t− 1)[(γ − 1)(1− pt)2 − (γ +
1)p(1− t)2].

Proof. Using the simple inequality log t ≤ t− 1 for all t > 0
and Lemma A.1, we have the proof. �

Lemma A.3 If γ > 1, p ≤ γ−1
γ+1 , and α > 0, then

α(t − 1)[(γ − 1)(1 − pt)2 − (γ + 1)p(1 − t)2] <
(α− 1)(1− t)(1− pt)[(γ + 1)p(1− t)− (γ − 1)(1− pt)].

Proof. It is sufficient to prove that

α[(γ + 1)p(1− t)2 − (γ − 1)(1− pt)2]

−(α− 1)(1− pt)[(γ + 1)p(1− t)− (γ − 1)(1− pt)] < 0.

(27)

For this, we consider the L.H.S of (27) as a function of α.
Thus, the L.H.S of (27) reduces to

h(α) = −[(γ + 1)p(1− p)t(1− t)]α+ c(t),

where c(t) = (1−pt)[(γ+1)p(1−t)−(γ−1)(1−pt)] is a neg-
ative function, if p ≤ γ−1

γ+1 . It is clear that h(α) is a linear and
decreasing function of α. Further, limα→0 h(α) = c(t) < 0
and, thus, (27) is proved. �

Therefore, using Lemmas A.2 and A.3, the proof of (26)
is evident.
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