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Abstract: Assembler Encoding is a neuro-evolutionary method which was used to produce a neural decision system for 
a team of autonomous underwater vehicles. Since results accomplished during experiments with the classic variant of 
Assembler Encoding appeared to be unsatisfactory, the method has been appropriately improved. The paper presents 
modifications to Assembler Encoding and reports experiments whose main goal was to test effectiveness of each of 
them.  
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I.  INTRODUCTION 

 
Assembler Encoding (AE) is a neuro-evolutionary 

method which originates from the cellular encoding (CE) 
[8]. Like CE, AE encodes the Artificial Neural Network 
(ANN) in the form of a program. This program called 
Assembler Encoding Program (AEP) has, however, 
a different structure from the CE program. In CE, the 
programs are in the form of trees, whereas AEPs have 
a linear structure as programs in Linear Genetic Program-
ming [9, 13]. The consequence of differences in the 
construction of programs in both related methods is using 
different evolutionary techniques in both cases. CE uses 
Genetic Programming to form programs, whereas AE uses 
Genetic Algorithms (GAs) for the same purpose. The 
second difference between CE and AE is the method for 
creating ANNs. In CE, ANNs are created directly1, i.e. 
each operation from a program operates (adds or removes 
neurons or connections) directly on ANN. AE presents 
a different approach. In this case, ANNs evolve in three 
separate phases. First, a GA is used to produce AEPs. Next, 
each AEP creates and fills up a Network Definition Matrix 
(NDM) including all the information necessary to produce 
                                                 
1 In CE, indirect representations of ANNs, i.e. CE programs, directly 
operate on the networks  

a final ANN. Once the matrix is completely formed, it is 
transformed into an ANN. The advantage of such approach 
is that a single operation in AEP can modify many 
elements of a network. For example, modification of 
a single row in NDM modifies all synaptic weights of 
a neuron. Meanwhile, in the CE program, a single opera-
tion usually changes a single parameter of ANN (weight of 
interneuron connection, parameter of neuron, etc.). In 
consequence, effective AEPs can be simpler and shorter 
than CE programs and thus, they could be found faster than 
the latter.  

Another method which, like AE, uses a three-phase 
procedure of evolving ANNs is HyperNEAT proposed at 
more or less the same time as AE by Gauci and Stanley [4]. 
In this case, first the NEAT method [21] is used to evolve 
ANNs called Compositional Pattern Producing Networks 
(CPPNs). Each CPPN is then used to create a special data 
structure which represents the final ANN. Once the CPPN 
stops working, the ANN is formed based on the infor-
mation included in the data structure. 

At first glance, AE and HyperNEAT are very similar. 
However, they differ in two fundamental elements. First, 
they use various evolutionary techniques to form AEPs and 
CPPNs. In AE, the evolution proceeds according to 
Cooperative Co-Evolutionary GA (CCEGA) [14, 15] 
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which, in contrast to NEAT, is a co–evolutionary, multi–
population technique predisposed to evolve modular 
solutions as AEPs. Second, AEPs and CPPNs work in 
a completely different way. CPPNs are neural networks 
which are separately activated for each element of the data 
structure defining ANN. Outputs of the network are used to 
update the data structure and thereby determine weights of 
interneurons connections. Meanwhile, AEPs are programs 
which use their operations to modify NDMs and, in 
consequence, parameters of ANNs. The modus operandi of 
operations depends on both their implementations 
determined beforehand by a man and values of parameters 
determined in the evolutionary way. In contrast to CPPNs 
which can only decide about parameters of ANNs, AEPs 
have greater potentials. Since AEP operations are partially 
defined by a man, the programs can in principle perform 
any actions on NDMs and ANNs. For example, they can 
also decide about the size of ANNs or control the learning 
process with application of an external learning algorithm.  

To date, AE has been tested in three different testing 
problems, i.e. in the optimization problem, in the predator-
prey problem and in the inverted pendulum problem. In all 
the tests, the method demonstrated fairly good effective-
ness. Noteworthy is the fact that it successfully competed 
with different direct neuro-evolutionary methods (e.g. CM 
[11], SANE [12]) and reinforcement learning methods (e.g. 
Q-learning [2]) in problems which rather prefer the latter 
[19]2. Good performance of AE in the testing problems and 
the fact that it belongs to the indirect class of neuro–
evolutionary methods, appropriate for more complex tasks, 
affected the decision about applying it to construct a deci-
sion system (DS)3 for a team of Autonomous Underwater 
Vehicles (AUVs). Since a target use of the vehicle team is 
to protect a warship against various types of underwater 
objects, preliminary tests with AE were carried out in 
a variant of the predator-prey problem in which roles of 
predators and prey were played by AUVs. In the 
experiments performed in simulation, the main goal of the 
vehicles-predators, like in the standard form of the 
predator-prey problem, was to capture a fast vehicle-prey 
behaving by a simple deterministic strategy. Since the 
speed of each predator was lower than or equal to the speed 
of the prey, the predators had to cooperate to accomplish 
the goal. The experiments revealed that the version of AE 
used so far has difficulties in generating effective DSs. To 

                                                 
2AE was also compared with state-of-the-art neuro-evolutionary methods: 
NEAT [21, 22], ESP [6] and CoSyNe [7]. The experiments reported in the 
work [16], unpublished so far, confirmed high effectiveness of AE 
3The task of DS is to provide high-level decisions concerning direction 
and velocity of move for each vehicle  
 

improve effectiveness of AE, it was necessary to introduce 
a few modifications to the method. All the modifications 
were tested experimentally and compared with the classic 
form of AE. The results of the tests are presented in the 
current herein.  

The paper is organized as follows: Section II is an 
introduction to AE; Section III is a description of all the 
modifications to AE; Section IV is the report on the 
experiments; Section V is the summary.  

 
 

II.  FUNDAMENTALS   
OF  ASSEMBLER  ENCODING 

 
There are two key elements of AE, i.e. AEP and NDM. 

Each AEP is composed of two parts, i.e. a part including 
operations and a part including data (memory cells). To 
build NDM, the operations are run in turn and when 
working they can use data located at the end of AEP 
(Fig. 1). In AEPs, various operations can be used. The main 
task of most operations is to modify NDM. The modi-
fication can involve a single element of NDM or a group 
of elements. Figure 2 presents two example operations 
used in AE.  

The task of CHG is to change a single element in NDM. 
A new value of the element, stored in parameter p0, is 
scaled to <–1,1>. An address of the element depends on 
both parameters p1, p2 and registers R1, R2. The role of the 
registers is detailed in the further part of the paper. 

CHGC0 modifies elements of NDM located in a column 
indicated by parameter p0 and register R2. The number of 
elements updated is stored in parameter p2. The index of 
the first updated element is located in register R1. To 
update elements of NDM, CHGC0 uses data from AEP. The 
index of the first memory cell used by CHGC0 is stored in 
p1.  

In addition to the operations whose task is to modify 
the content of NDM, AE also uses a jump operation 
denoted as JMP. The jump makes it possible to repeatedly 
use the same code of AEP in different places of NDM. It is 
possible thanks to changing values of the registers once the 
jump is carried out. An example use of the jump is 
demonstrated in Fig. 4. The program presented in the figure 
proceeds as follows. First, both registers are initiated to 0. 
Then, the first two operations are run, the result of which is 
visible in the top left corner of NDM. In the next step, the 
jump denoted in the figure as JMP(0, 2, 0) is executed. It 
 

 
 



Assembler Encoding Improved 13

 
Fig. 1. Using AE to create ANN 

 
 

CHG: :run(p0,p1,p2)  

{ 

row=(abs(p1)+R1)mod NDM.width;  

column=(abs(p2)+R2)mod NDM.height;  

NDM[row,column]=p0/MaxValue;  

} 

CHGC0::run(p0,p1,p2)  

{ 

column=(abs(p0)+R2)mod NDM.height; 

numberOfIterations=abs(p2)mod NDM.width; 

for(i=0;i<=numberOfIterations;i++){  

    row=(i+R1)mod NDM.width;  

    NDM[row,column]=D[(abs(p1)+i)mod D.length]/MaxValue;}  

}  

Fig. 2. CHG and CHGC0 operations (p0,p1,p2 are parameters of operation, D[i] is ith element of data, D.length is the length of 
data sequence, MaxValue is a scaling value, R1,R2 are registers) 
 
 

a)  b) 

     CHGM0|59|-11|53|37 

     CHGM1|48|15|30|-3 

     CHGM1|-32|-20|29|7 

     Data:-34|-8|-46|46|58|-57|-4|-48|-1|52|-12| 

     -54|-7|40|35|23|-47|1|47|38|32|-46|55|-22|17 

 

Operations:  

0011000 0110111 1110100 0101011 0101001  

1101110 0000011 0111100 0011110 1110000 

0101000 1000001 1001010 0101110 0111000  

Data:  

1010001 1000100 1011101 0011101 0010111 

1100111 1001000 1000011 1100000 0001011 

1001100 1011011 1111000 0000101 0110001 

0111010 1111101 0100000 0111101 0011001 

0000001 1011101 0111011 1011010 0100010 (b)  

Fig. 3. Phenotypic (a) and genotypic (b) representation of example AEP (CHGM0 and CHGM1 are example operations used in AE) 
 
 

 
Fig. 4. JMP operation 
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Fig. 5. Using ADDN and DELN by AEP 

 
 

 
Fig. 6. NDM as Connectivity Matrix 

 
 

first updates values of the registers and then control goes 
back to the first operation of AEP. R1 is set to 0 (Memory 
cell 0) whereas R2 to 2 (Memory cell 1). At this point the 
two operations preceding the jump are called once again. 
This time, however, both operations update a different 
fragment of NDM. Since the jump is run twice, each time 
with different values of the registers, the first two opera-
tions of AEP are executed in three different areas of NDM.  

An additional group of operations used in AE are 
operations whose task is to change the size of NDM. In 
AE, an initial size of NDM is encoded in a chromosome 
with data (Fig. 5). Then, each AEP has a potential to modify 
the size of NDM through the use of operations ADDN and 
DELN. ADDN adds new rows and columns to NDM. This 
procedure corresponds to adding new neurons to ANN, 
neurons unconnected with the rest of ANN. Addition of new 
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Fig. 7. Evolution of AEPs for n = 3 

 
 

neurons does not destroy connections established in ANN. 
The task of DELN is to remove a single neuron from ANN. 
The elimination of the neuron practically takes place through 
removing a corresponding row and column from NDM. 

Once AEP finishes its work, the process of trans-
forming NDM into ANN is started. To make it possible to 
construct ANN based on NDM, the latter has to include all 
the information necessary to create ANN. When we wish to 
create the same skeleton of ANN, i.e. ANN without 
determined weights of interneuron connections, NDM can 
take the form of the classical connectivity matrix (CM) 
[11], i.e. a square, binary matrix of the number of rows and 
columns equal to the number of neurons. Value ”1” in the 
i-th column and the j-th row of such a matrix means a con-
nection between the i-th neuron and the j-th neuron. In turn, 
value ”0” means the lack of connection between these 
neurons. When the purpose is to create a complete ANN 
with determined values of weights, types of neurons, 
parameters of neurons, then NDM should take the form of 
a real valued variety of CM with extra columns or rows 
containing definitions of individual neurons. An example 
of such a matrix is presented in Fig. 6.  

In AE, AEPs and in consequence ANNs are shaped by 
GAs. The evolution decides about the arrangement of the 
operations and data in AEP, and about values of operation 
parameters. Implementations of the operations do not 
evolve, they are defined beforehand. The evolution of 
AEPs proceeds according to CCEGA proposed by Potter 
and De Jong [14, 15, 17]. In CCEGA, an evolutionarily 
created solution is divided into parts, and each part evolves 
in a separate population. A complete solution is formed 
from selected representatives of each population. To use 
the scheme above in relation to AEPs, it is necessary to 
divide them into parts. In the case of AEPs, the division is 
natural. The operations and data make up natural parts of 
the programs. Since CCEGA assumes the evolution of each 
part in a separate population, an AEP consisting of n 

operations and a sequence of data evolves in n populations 
with operations and one population with data (Fig. 7). 
During the evolution, AEPs expand gradually. Initially, all 
AEPs include one operation and a sequence of data. The 
operations and data come from two different populations. 
When the evolution stagnates, i.e. the lack of progress in 
fitness is observed over some period, a set of populations 
containing the operations is enlarged by one population. This 
procedure extends all AEPs by one operation. 

In AE, the operations and data are encoded in the form 
of binary strings. Each chromosome-operation includes 
five blocks of genes. The first block determines a code of 
the operation, while the remaining blocks contain a binary 
representation of four parameters of the operation (e.g. 
01000|11000|01000|00000|00100 represents the following 
operation: CHGC0|-1|1|0|2). Chromosomes-data are vectors 
including binary encoded integers. Each integer encodes 
a single element of data. In AE, all the chromosomes-
operations have the same length. The chromosomes-data 
can change the length during the evolutionary process.  

 
 

III.  MODIFICATIONS  
TO  ASSEMBLER  ENCODING 

 

In the experiments reported further, seven different 
modifications to AE were tested. The first modification 
(modification No. 1) involves the way of transforming NDM 
into ANN. The task of the six remaining modifications, i.e. 
modifications No. 2 to 7, is to streamline the process of 
evolving AEPs. All the seven modifications mentioned 
above are shortly described in the following sections.  
 
III.1. Modification 1  

As mentioned in Section II, in AE, ANNs are formed 
based on the information included in NDMs. Each NDM 
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contains a part defining the connectivity in an ANN and 
a part defining individual neurons. In the former part, each 
element determines weight of a connection between 
corresponding neurons. In turn, in the latter part, each 
element determines value of one of neuron parameters, e.g. 
bias, type of neuron, parameter of transfer function. To 
obtain an effective ANN, AEP has to determine values of 
appropriate elements in NDM. Elements in the matrix 
unchanged by the AEP are equal to zero. Parameters of an 
ANN corresponding to the unchanged elements are in 
consequence also equal to zero. In the case of the first part 
of NDM, the zero value means lack of a single connection 
in ANN. This value does not thwart efforts of AEP in other 
fragments of NDM. Values inserted in other places of the 
matrix are not lost. They have influence on the shape of 
ANN. The same situation is with the second part of the 
matrix and with such parameters as bias and type of 
neuron. The zero value of the mentioned parameters also 
do not make work of AEP in other places of NDM useless. 
For bias, the value zero only means the lack of ”zero” input 
in a single neuron whereas for the type of neuron it means 
the assignment of one of the types to the neuron, e.g. 
sigmoid. In the case of the parameter of transfer function, 
we deal with a different situation. The value zero of the 
parameter mentioned means a constant activity of a neuron. 
Values of other parameters of the neuron, determined by 
AEP in other fragments of NDM, do not have any 
influence on its behavior, and in consequence they are lost. 
In order to prevent such a situation, the definition of 
a neuron should be complete, i.e. it should involve both 
connections and parameters. Since, the connections and the 
parameters of neurons are defined in two separate places in 
NDM, the complete definition of many neurons may 
require many operations and be a serious difficulty for 
AEPs. To make the task of AEPs simpler, modification 
No. 1 suggests to use a default value for the parameter of 
transfer function for each neuron. The default value should 
only be applied when NDM includes the value zero in 
appropriate place. Otherwise, the value from NDM is used.  
 

III.2. Modification 2  

As already mentioned, the evolution in AE proceeds 
according to CCEGA. This algorithm assumes that 
operations and data evolve in many separate populations. 
It, however, does not introduce any limitations on the type 
of a GA used inside individual populations. To select GAs 
that are most suited for AE, a number of experiments had 
been carried out [18]. In the experiments, three GAs were 
tested, i.e. Canonical GA (CGA) [5], Steady State GA 
(SSGA) [25], and Eugenic GA (EuGA) [1, 20]. The 

experiments have revealed that the best solution for AE is 
when evolution in each population proceeds according to 
CGA. In this algorithm, the most popular replacement 
strategy is to swap all individuals from a population for 
new offspring individuals being a result of different genetic 
operators, mainly crossover and mutation, on selected 
parental individuals. The task of the crossover is a global 
exploration of the whole space in search of promising 
solutions, whereas the mutation plays a rather exploitative 
role, i.e. it carries out a local search in a proximity of 
a good solution. A local range of the mutation is achieved 
by introducing into a genotype slight random perturbations. 
However, the assumption is that small changes in a geno-
type result in small changes in a phenotype. In AE, we deal 
with another situation. The mutation may be equally explo-
ratory and destructive as the crossover (see Section III.7). 
This means that AE has not any tool responsible 
exclusively for local search of a solution space. In the 
current variant of the method, this problem is solved by 
means of a strong selective pressure in populations 
including operations. Once a promising operation is found 
a significant portion of the remaining operations from the 
same population quickly become its copy. Since only a part 
of mutations results in large modifications of a phenotype 
and there are many copies of the same good operation (the 
same situation is in all populations with operations), the 
area around a promising solution is carefully explored. 
Such a course of action of the algorithm can be viewed as 
jumps from one promising region of the phenotype space to 
another.  

Modification No. 2 suggests solving the problem de-
scribed above in another way, namely by means of elitism. 
Thanks to the elitism the most fit operations and data 
should always be preserved. In this case, good solutions 
should not be lost so fast as in the previous case. This 
makes a chance for a part of mutations to accurately explo-
re a region in the proximity of a good solution. Moreover, 
the elitism may also create an opportunity to increase 
a diversity in each population. Since there is a guarantee 
that the best solution will not be lost, it does not have to be 
replicated many times to increase its chance to survive. In 
consequence, each population may include many different 
individuals, each of which may become a potential parent 
for a next good solution.  

In the experiments, two different types of elitism were 
tested, i.e. pure and probabilistic elitism. In the first case, 
only the best individuals become elite and are introduced 
without any modifications to a newly created population. In 
the second case, elite individuals are selected at random. Of 
course, better individuals have a greater chance to be selec-
ted than the worse ones.  
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III.3. Modification 3  

In the current version of AE, the evolution in each 
population proceeds with constant values of parameters. 
Probabilities of mutation, crossover and cut-splice 
(shortening or extending a chromosome; this operator is 
only used in relation to chromosomesdata which can 
change their length during the evolution) do not change 
over time. Such an approach, however, makes effective 
evolution of AEPs difficult. The greatest problems are with 
the code part of AEPs and with the mutation of individual 
operations. For AEPs, a constant mutation of operations 
means greater and greater modifications of their code parts 
in subsequent co-evolutionary generations. As mentioned 
before, the code parts of AEPs change the length with the 
passage of time. Initially, each AEP has only one operation 
to which next operations are successively added if the 
programs cannot accomplish progress in performance over 
an assumed time. In the initial phases of the evolution, 
when all AEPs include only one operation, slight modifica-
tions introduced to operations do not cause greater changes 
in behavior of their programs. The situation changes when 
AEPs have two, three or more operations. This time, not 
large modifications in the operations can mean huge 
changes in the activity of their programs. This, in turn, can 
cause large bounds of fitness of AEPs created in con-
secutive coevolutionary generations, and in consequence 
great difficulties in the evolution of effective programs.  

In order to prevent such problems, modification No. 3 
proposes to adjust the level of mutation performed on 
operations to the number of operations contained in AEPs. 
The magnitude of the mutation determined at the beginning 
of the evolutionary process refers only to programs 
consisting of one operation. When AEPs have more opera-
tions the probability of mutation determined for a single 
operation AEPs is divided by the number of operations cur-
rently used in the programs.  
 
III.4. Modification 4  

This modification introduces a similar solution as 
above, but in relation to data. Chromosomes-data can 
change their length during consecutive co-evolutionary 
generations. To this end, the cut-splice operator mentioned 
above is used. A constant value of per-bit mutation proba-
bility, in the case of variable length data, means statistically 
more mutations in longer chromosomes-data than in the 
shorter ones. Moreover, assuming that data from longer 
chromosomes more often occur in NDMs and thereby in 
ANNs (it is not always the case, the number of data 
introduced to NDM depends on operations), more mutations 
in longer chromosomes-data could also mean more changes 

in ANNs. In order for the changes introduced to chro-
mosomes-data to always induce similar changes in ANNs, 
regardless of the length of chromosomes, modification No. 4 
suggests making mutations in chromosomes-data dependent 
on their length. Shorter data should be mutated with a greater 
probability than their longer counterparts.  
 
III.5. Modification 5  

As above, in modification No. 5, we also deal with 
a variable mutation of data. Initially, the standard value of 
the mutation is used. This value is changed in two 
situations. Stagnation of the evolution over an assumed 
period is the first out of the two situations mentioned 
above. To escape from a point where the evolution is stuck, 
the mutation of data is gradually augmented. The process 
of augmenting the mutation is immediately stopped once 
the first symptoms of exit from the stagnation point are 
observed. The end of the stagnation is connected with 
returning to a standard value of the data mutation.  

The improvement of the best result achieved so far is 
the second situation when the standard value of the data 
mutation is changed. This time, however, we deal with 
a reduction of the mutation to some an assumed value. The 
main goal of such a procedure is to meticulously search the 
area close to the currently best solution. When further 
improvement of the result does not occur for a longer time 
the mutation is getting back to the standard value.  
 
III.6 Modification 6  

Modification No. 6 suggests introducing restrictions 
into the process of crossing over the operations. In the 
version of AE used so far, each operation can be crossed 
over with any other operation, regardless of the type of 
both operations. This means that two completely different 
operations can exchange their genetic material without any 
hindrance. In modification No. 6, this situation is changed 
and freedom of the crossover is restricted exclusively to 
operations of the same type.  
 
III.7. Modification 7 

Modification No. 7 suggests altering the way of mutat-
ing operations. In the version of AE used so far, the 
operations are mutated in the same way regardless of the 
type. They are treated as simple binary strings. Different 
roles played by individual fragments of chromosomes-
operations are not taken into consideration during the muta-
tion. Each bit is mutated with the same probability. In such 
a case, even a modification of a single bit can lead to enor-
mous changes in both the modus operandi of the operation 
and the ANN itself. For example, switching a single 



T. Praczyk 18

CHG::mutate(probMutation)  
{ 
mutate(code,0.1*probMutation); 
mutate(p0,probMutation);  
mutate(p1,0.5*probMutation); 
mutate(p2,0.5*probMutation); 
}  

CHGC0::mutate(probMutation)  
{ 
mutate(code,0.1*probMutation); 
mutate(p0,0.1*probMutation); 
mutate(p1,0.8*probMutation); 
mutate(p2,0.5*probMutation);  
} 

Fig. 8. Example mutation of CHG and CHGC0. The least mutation is on the operation code, i.e. on the first fragment of chromosome-
operation and on parameters which indicate the activity area of the operation in NDM 

 
 
bit in the code of operation can cause a complete change in 
its behavior (It is not always the case. In AE, different 
codes could mean the same operation. For example, for two 
operations available when creating AEPs, codes 110(3) and 
111(7) mean the same operation, i.e. operation No. 1. This 
is because 3 mod 2 and 7 mod 2 in both cases is equal to 1). 
To prevent such situations, modification No. 7 suggests 
making the way of mutating operations dependent on their 
type. Codes of operations and parameters whose 
modification results in drastic changes in behavior of the 
operations (e.g. addresses to data used by operations) 
should be mutated very rarely. The remaining parameters 
can be mutated more frequently (Fig. 8).  
  
 

IV.  EXPERIMENTS 
 

The main goal of the experiments was to determine 
a new and more effective variant of AE; the variant which 
could successfully be used to evolve efficient neuro-DSs 
for a system of cooperating AUVs. In the experiments all 
the modifications presented in Section III were tested. The 
first step was to examine the variant of AE without modifi-
cations. Then, individual modifications were added to the 
pure variant. In the case of improvement of the result, 
a modification was accepted and a next modification was 
introduced to the accepted variant. In order for the problem 
solved during the experiments to be maximally similar to 
the one which AUVs will have to solve in the future, 
decision was made to use the predator-prey problem as 
a test-bed for neuro-DSs and their AUVs.  

To compare individual modifications, their learning 
abilities, i.e. abilities to produce effective ANNs, were 
measured. ANNs generated during the experiments were 
not tested in terms of their generalization performance. The 
ability of ANNs to generalize knowledge is a quality 
indicator of the entire method but not individual modi-
fications. The shape of ANNs produced in AE depends on 
operations used by AEPs. They form NDMs and thereby 
ANNs. In the experiments, all the modifications used the 
same types of operations and there is no reason to think 
that different modifications prefer different operations and 

thereby produce ANNs with completely different charac-
teristics. A feature differing individual modifications is 
their speed in creating effective ANNs but not ANNs 
themselves. For that reason, generalization tests were not 
carried out.  
 
IV.1. Predator-prey problem  

The experiments were carried out in a configuration 
with one prey and three chasing predators. Both the 
predators and the prey were implemented as the Remotely 
Operated Vehicle (ROV) of the type ”Ukwial” (Fig. 9) 
[10]. The behavior of all the vehicles was simulated by 
means of a simple discrete time model defined in the 
following section.  
 
 

 
Fig. 9. Vehicle ”Ukwial” 

 
 

In the experiments, the predators and the prey lived in 
a common artificial environment. To represent the environ-
ment a square of 200 × 200 meters was used (both the 
predators and the prey could not submerge under the 
surface of the water). The environment did not contain any 
obstacles. In order to ensure infinite space for the predators 
and the prey and for their struggles, the environment was 
open at each side. Thus, every attempt to move beyond the 
upper, lower, right, or left border of the square caused the 
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object making such an attempt to move to the opposite side 
of the environment.  

In the experiments the predators were controlled by 
a single ANN whose task was to determine movement 
direction for each of them. ANNs had six inputs and three 
outputs, the number of outputs corresponded to the number 
of predators and, in turn, the number of inputs was twice 
the number of predators. Each output gave commands to 
one predator (new course, see below) and, in turn, each 
input informed about vertical or horizontal distance 
between the prey and one of the predators.  

Each predator could move in the following directions: 
0, 5, 10, …, 355 degrees. The speed of the predators was 
constant during the tests and amounted to 0.5 m/s. As for 
the prey, two different types were used, i.e. simple and 
advanced prey. The simple prey behaved according to 
a deterministic strategy which forced it to stand still when 
no predator was closer to it than 50 meters, and to move 
directly away from the nearest predator otherwise. When 
moving, the simple prey could select the same directions as 
the predators. The speed of the prey amounted to 0.5, 0.75 
or 1 m/s.  

Unlike its simpler counterpart the advanced prey always 
made a decision taking into consideration the location of all 
predators situated close to it (closer than 50 meters). 
Actions performed by the advanced prey were also 
deterministic and they directed it toward safe areas of the 
environment, i.e. areas without predators. Other aspects of 
behavior of the advanced prey, i.e. its speed, behavior away 
from the predators, and actions which the prey could 
perform at each step, were the same as in the case of the 
simple prey.  

Since the speed of the predators was either lower or the 
same as the speed of the escaping prey, they could not 
simply chase the prey to grasp it. To achieve the goal, the 
predators had to cooperate. The prey was assumed to be 
captured if the distance between it and the nearest predator 
was lower than 5 meters.  

 
IV.2. Vehicles  

Since all the experiments were carried out in simu-
lation, behavior of the automatically controlled underwater 
vehicle ”Ukwial” (the vehicle with its controllers; the task 
of the controllers is to convert high-level decisions 
provided by DS into low-level ones for propellers of the 
vehicle) had to be modeled appropriately. To simulate 
movement of the vehicle, a nonlinear model described in 
six degrees of freedom is usually used [3]. Moreover, to 
control the vehicle (along a fixed path), several nonlinear 
controllers of motion parameters are needed [23]. In 

consequence, simulation of the vehicle with application of 
the models and controllers mentioned above inevitably 
involves time consuming calculations. In the case of 
experiments with a single vehicle, such an approach seems 
to be justified. However, when there is a need to simulate 
many vehicles, a different solution has to be applied.  

Since in the experiments a neuro-evolutionary method 
which tests many different neural solutions per evolu-
tionary generation was used to speed up calculations, it was 
necessary to employ another method for simulating the 
vehicle. Especially for the purposes of the experiments, 
a simplified model representing both the vehicle and its 
controllers was devised [24]. The model mentioned above 
is a reduced discrete counterpart of the nonlinear model. It 
assumes representation of the vehicle in the form of 
a matrix [ ] I x JijS P=  where I is a set including advance 
velocities of the vehicle Vi = iΔV ( 1.. ,i I=  ΔV is a quan-
tization step of the advance velocity), and J is the number 
of motion parameters (e.g. course, coordinate x, coordinate 
y) of the vehicle. [ ]ij

K x Lij klP p= Δ  is a matrix including 
changes of motion parameter Δpkl in response to a desired 
value of a selected parameter set

kp  for Vi and for j-th motion 
parameter of the vehicle, K is a set including desired values 
of a selected parameter set set

kp k p= Δ  1.. ,k K=  setpΔ  is 
the quantization step of the desired values of the selected 
parameter), and L is a set including points in time of para-
meter registration ( 1.. ,lt l t l l= Δ =  Δt is a discretization 
step).  

To test reliability of the simplified model, comparison 
tests with its nonlinear counterpart were carried out [24]. 
The tests showed that both models are similar (trajectories 
of the vehicles modeled by means of both compared 
models were very similar, the task of the vehicles was to 
move along a desired trajectory with three turning points). 
Moreover, the tests also made it possible to determine 
a degree of speeding up calculations when using the 
simplified model. It appeared that for the simplified model, 
simulations of the vehicle motion were 16.500 times shorer 
than for its more complex equivalent. In both compared 
cases vehicles moved along the same trajectories. All the 
simulations were performed on the following computer 
platform: Intel Core2 DUO and Windows XP/Matlab. 

In the experiments reported in the paper, because of 
flatness of the environment (the vehicles moved on the 
surface), the following model was used: S = [Pij]6x3. The 
matrix Pi1 included changes of course ,klψΔ  the matrix Pi2 
included changes Δxkl of coordinate x, and the matrix Pi3 
included changes Δykl of coordinate y. All the elements in 
the matrices above were determined in response to the 
desired course set ,kψΔ  set( 1..36, 5 ),k ψ= Δ =  in l-th time 
step (l = 1..60, Δt = 0.5 s), for different Vi (ΔV = 0.25 m/s). 



T. Praczyk 20

All the parameters in Pij were registered for the vehicle 
”Ukwial”.  
 

 
IV.3. Evaluation of ANNs 

In order to evaluate ANNs generated during the 
experiments, thirty different testing scenarios (or training 
tasks) were used. At first, each neuro-DS was tested in the 
first and the simplest scenario, say, No. 1. If the predators 
could not capture the prey during an assumed period, the 
test was stopped and the DS received appropriate 
evaluation that depended on the distance between the prey 
and the nearest predator. However, if the predators 
grasped the prey, they were put to test according to the 
next scenario. During the experiments, the predators 
could make 50 steps (50 decisions) before the scenario 
was interrupted.  

 
 

 
Fig. 10. Starting positions of prey (for one speed and type of prey 

all five starting positions were tested) 
 
 
Individual scenarios differed in the initial position 

(Fig. 10), speed (0.5, 0.75 or 1m/s), and type of the prey 
(simple or advanced). Consecutive scenarios were more 
and more difficult. At first, the predators had to capture the 
simple prey that was as fast as them. The predators which 
passed the first exam had to pit against the prey that was 
one and a half time faster than them. In the next step, the 
speed of the prey was increased to the maximum value. 
The predators which captured the prey in all the previous 
scenarios had to face the advanced prey taking better 
decisions than its predecessor. In the beginning, speed of 
the prey was minimum but it grew in the following testing 
scenarios. In all the scenarios all the predators always 
started from position (0,0). All the thirty scenarios are 
described below.  

• Scenarios no 1-5: prey’s speed = 0.5 m/s, simple prey,  
• Scenarios no 6-10: prey’s speed = 0.75 m/s, simple 

prey,  

• Scenarios no 11-15: prey’s speed = 1 m/s, simple prey,  
• Scenarios no 16-20: prey’s speed = 0.5 m/s, advanced 

prey,  
• Scenarios no 21-25: prey’s speed = 0.75 m/s, advanced 

prey,  
• Scenarios no 26-30: prey’s speed = 1 m/s, advanced prey.  

In all the experiments, the following evaluation func-
tion (or fitness function) was used:  

( )
0

n

i
i

f ANN f
=

= ∑  

( )
( )

max

captured

min , prey not captured in -th scenario

50 / , prey captured in -th scenario  

0; prey not captured in -th scenario

ip

ii

d d p i

f m a if

i

−⎧
⎪
⎪ + −= ⎨
⎪
⎪⎩

where  
fi – the reward received in i-th scenario  
di(p) – the distance between the prey and a predator p in the 
end state of ith scenario  
dmax – the maximum distance between two points in the 
environment  
fcaptured – the reward for grasping the prey in a single sce-
nario (fcaptured = 100)  
mi – the number of steps to capture the prey (mi < 50)  
a – this value prevents the situation in which partial success 
is better than success in all scenarios  
n – the number of scenarios (n = 30). 
 
  
IV.4 Parameter settings  

In the experiments, all variants of AE (the classic 
variant and variants with the modifications) were tested 
many times to tune each of them to the problem. For each 
variant, values of three parameters were determined, i.e. 
mutation probability, crossover probability, and size of 
tournament. The reaming parameters were common for all 
the variants, and they were not subject to the tunning 
process (Table 1).  
 

Table 1. Parameter setting common for all the variants 

Parameter AE 

No. of subpopulations from 2 to 6 

Size of subpopulations 80 (data), 40 (operations) 

No. of data maximally 20 

Size of ANNs (hidden units) maximally 4 

(2)
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AEPs created within the evolutionary process, regard-
less of the variant of AE, could use seven different types of 
operations, i.e. CHGFF, CHGC0, CHGR0, CHGC1, 
CHGR1, CHGM0, CHGM1. All the operations are descri-
bed in Appendix at the end of the paper. 

 
IV.5. Experimental results  

To compare different variants of AE, with and without 
modifications, two criteria were used, i.e. the percentage of 
successful ANNs and the average fitness of ANNs. In the 
paper, the successful ANN means an ANN which 
successfully controlled the predators in all the thirty 
scenarios specified in the previous section. Each variant of 
AE after tunning was run sixty times, i.e. sixty ANNs were 
generated for each of them. Results of the experiments are 
presented in Table 2. 

The table shows that, in most cases, the modifications 
proposed in the paper appeared to be beneficial for AE. As 
a whole they considerably improved performance of the 
method. The classic variant without modifications gene-
rated only 11.6% of successful ANNs whereas the number 
of successfully ended training tasks was equal to twenty 
(on average, average fitness > 20fcaptured) in this case. In the 
preliminary research, such result was recognized as 
unsatisfactory, the more so because it was achieved in 
simulated conditions. The modifications allowed AE to 
construct almost twice as many successful ANNs (23.3% - 
the last column). Moreover, effectiveness of the chase grew 
to twenty six successfully ended training tasks, on average.  

Modifications No. 1, 2, and 7 had the greatest influence 
on the final result. In the case of modifications No. 3, 4, 
and 5, the performance improvement was somewhat 
smaller. The only modification which appeared to be 
harmful for AE was modification No. 6. It seems that the 
main cause of worse results of this modification was the 
number of different operations used in AEPs. In the 
experiments, AEPs could use six types of operations (see 
Section IV.4). As a result, it was a very low chance to 
select two parental operations of the same type (all the 
populations with operations included 40 individuals) and to 
crossover them. A very rare crossover contributed to less 
effective exploration of the solution space and in conse-
quence to worsening the performance of AE.  

To increase the probability of crossovers between 
operations in modification No. 6, the set of operations 
available to AEPs was reduced to operations CHGFF and 
CHGM0. Even though results achieved in this case were 
better than for the variant with six operations they turned 
out to be still unsatisfactory (see Tab. 3).  

In the next step, homogeneous AEPs, i.e. AEPs 
including operations of only one type (either CHGFF or 
CHGM0), were applied. Since in such a solution the genetic 
material was always exchanged between individuals of the 
same type, all crossovers between operations were 
permissible and no restrictions were necessary to 
accomplish the effect assumed in modification No. 6. 

 
 

 
 

Table 2. Results of experiments (The table includes results averaged over 60 evolutionary runs: m 1 is the classic variant with 
modification No. 1, m 2 is the classic variant with modifications No. 1 and 2, and so on. Since modification No. 6 appeared to be 
harmful for AE it was not accepted and as a result m 7 is the classic variant with all the modifications except modification No. 6. When 
analyzing the content of the table it is necessary to remember that the result of each modification can only be compared with the result 
of its predecessor. This is because individual modifications were successively added to each other and e.g. the result of modification 
                                                  No. 3 is, in principle, the result of modifications No. 1, 2, and 3.)  

Criterion Classic m 1 m 2 m 3 m 4 m 5 m 6 m 7 

% of successful ANNs 11.6% 17.2% 21.2% 22.4% 21.6% 22.7% 20.4% 23.3% 

average fitness of ANNs 2023.5 2254.6 2389.5 2415.8 2483.2 2536.5 2405.6 2634.2 

 
 

Table 3. Results of additional experiments (the table includes results averaged over 60 evolutionary runs; this time m 7 means AE with 
                                                          all the modifications, description of m 6 is as in Table 2  

m 6 m 7 
Criterion 

CHGFF + CHGM0 CHGFF CHGM0 CHGFF 

% of successful ANNs 21.8% 22.8% 20.8% 24.5% 

average fitness of ANNs 2485.3 2622.7 2432.8 2715.6 
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a) b) 
 

 

c) 

Fig. 11. Example behavior of predators and prey 
 

 
Reduction of the set of operations to one operation 

positively affected effectiveness of AE. The results achie-
ved in this case appeared to be better not only for 
modification No. 6, but also for modification No. 7. 
Combination of modification No. 7 and homogeneous AEPs 
yielded the best outcome of the tests (24.5% of successful 
ANNs and twenty six successfully ended training tasks, on 
average). However, the performance improvement was 
only noticed for the variant with CHGFF. Application of 
CHGM0 was not so effective. This result means that even 
though modification No. 6 and its homogeneous variant can 
improve performance of AE, their applicability is limited to 
cases when we know an operation which guarantees the 
final success. Otherwise, homogeneous AEPs can even de-
teriorate effectiveness of AE.  

Another disadvantage of the solution with operations of 
one type may be a poor generalization of ANNs. In AE, the 
operations can be divided into two groups. The task of 
operations from the first group is to modify smaller 
fragments of NDM. An example of such operation is 
modification of a part of a column. Operations belonging to 

the second group are able to act in each fragment of NDM 
defining ANN, e.g. CHGM0 or CHGFF. In order for homo-
geneous AEPs to be able to influence each parameter of an 
ANN, they either have to include many operations with 
a lower operational range or to use more universal 
operations from the second group. In the latter case, AEPs 
are usually shorter and could be find faster. However, using 
exclusively such operations as CHGFF or CHGM0 may 
result in the situation in which all elements of NDM 
defining an ANN will be unequal to zero. Such matrices, in 
turn, correspond to fully connected ANNs which tend to 
overfit to a problem to be solved.  

 
 

V.  SUMMARY 
 

The paper presents seven modifications to AE and 
reports experiments whose the goal was to test 
effectiveness of each of them. The main cause of efforts 
aiming at modifying and streamlining AE was its 
unsatisfactory performance in generating effective neural 
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decision systems for a team of AUVs. Generally, the 
experiments revealed that the modifications proposed in the 
paper improve results of AE. The only modification which 
requires satisfying additional conditions to become a valu-
able element of AE is the restriction of operation 
crossovers exclusively to the ones between operations of 
the same type. In order for the modification mentioned 
above to result in progress in performance of AE, it 
appeared that it should be combined with AEPs 
homogeneous in terms of operations used in the programs.  

Generally, as a result of the experiments a new 
improved variant of AE including modifications No. 1-5, 
and 7 was developed. With regard to modification No. 6, it 
needs further research. A particularly interesting idea is to 
entirely rely AE on one type of operations. Such a solution 
requires, however, new operations which would enable an 
AEP to influence each element of ANN and to form ANNs 
with a sparse connectivity. 
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A   APPENDIX 
 
CHGFF – Update of a fragment of NDM above the diagonal. New values for the elements of the matrix are located in the 
data part of AEP.  
CHGC0 – Update of a fragment of a column of NDM. As before, new values for the elements of the matrix are located in 
the data part of AEP.  
CHGC1 – like CHGC0, but all updated elements have the same value.  
CHGR0 – like CHGC0, but update refers to a row of NDM. 
CHGR1 – like CHGC1.  
CHGM0 – Update of a block of elements in NDM. Elements are updated in columns, in turn, one after another. New 
values for the elements are located in the data part of AEP. 
CHGM1 – like CHGM0, but all the updated elements have the same value.  
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