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I.  INTRODUCTION 

 
I.1. Evolutionary Forces behind Language Development 
  
 The ability to use language distinguishes humans from 
all other species. Certain species have also developed some 
communication modes but of much smaller capabilities and 
complexity. For several decades various schools have tried 
to explain the emergence and development of language 
using diverse perspectives. Nativists argue that our lan-
guage capacity is a collection of domain-specific cognitive 
skills that are somehow encoded in our genome. However, 
the idea of the existence of such a Language Acquisition 
Device or “language organ” (the term coined by their most 
prominent representative Noam Chomsky [1]), has been 
challenged by empiricists, who argue that linguistic per-
formance of humans can be explained using domain-
general learning techniques. Recently, Sampson [2] has 
even questioned the most appealing argument of nativists, 
which refers to the poverty of stimulus and apparently fast 

learning of grammar by children. An important issue of 
possible adaptative merits of language does not seem to be 
settled either. Non-adaptationists, again with Chomsky as 
the most famous representative [3], consider language as 
a side effect of other skills and thus claim that its evolution, 
at least at the beginning, was not attributable to any fitness 
advantage. A chief argument against the non-adaptationist 
stand is the observation that there is a number of costly 
adaptations that seem to support human linguistic abilities 
such as a large brain, a longer infancy period or de-
scended larynx. Recently, in their influential paper Pinker 
and Bloom argued that, similarly to other complex 
adaptations, language evolution can be explained entirely 
by means of natural selection mechanisms [4]. Their 
paper triggered a number of works where language was 
examined from the perspective of evolutionary biology or 
game theory [5, 6]. In particular, Nowak et al. used some 
optimization arguments which might explain the origin of 
some linguistic universals [7]. They suggested that words 
appeared in order to increase the expressive capacity and 
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sentences (formed of words) limit memory requirements. 
The confrontation of nativists with empiricists and adap-
tationists with non-adaptationists does not seem to lead to 
consensus so far but certainly deepens our understanding 
of these problems [8].  
 Recently, a lot of works on language emergence have 
an evolutionary flavour. Such an approach puts some 
constraints on possible theories of the language origin. In 
particular, it rules out non-adaptationist theories, where 
language is a mere by-product of having a large and 
complex brain [9, 10]; see [4] for discussion. The emer-
gence of language has also been listed as one of the major 
transitions in the evolution of life on Earth [11]. An 
interesting question is whether this transition was variation- 
or selection-limited [12]. In variation-limited transitions the 
required configuration of genes is highly unlikely and it 
takes a considerable amount of time for the nature to invent 
it. For selection-limited transitions the required configura-
tion is easy to invent but there is no (or only very weak) 
evolutionary pressure that would favour it. Relatively large 
cognitive capacities of primates and their genetic proximity 
with humans suggest that some other species could also 
have been capable of developing language-like commu-
nication. Since they did not, it was perhaps due to a weak 
selective pressure. Such indirect arguments suggest that the 
emergence of language was selection-limited [12].  
 Some interesting results can be obtained by applying 
game-theory reasoning to one of the most basic problems 
of emerging linguistic communication, namely why do we 
talk and why do we exchange valuable and trustful infor-
mation. Since speaking is costly (it takes time, energy and 
sometimes might expose a speaker to predators), and 
listening is not, such a situation seems to favour selfish 
individuals that would only listen but would not speak. 
Moreover, in the case of the conflict of interests the 
emerging communication system would be prone to misin-
formation or lying. The resolution of these dilemmas 
usually refers to the kin selection [13] or reciprocal altru-
ism [14]. In other words, speakers remain honest because 
they are helping their relatives or they expect that others 
will do the same for them in the future. As an alternative 
explanation Dessalles [15] suggests that honest information 
is given freely because it is profitable – it is a way of com-
peting for status within a group. Some related results on 
computational modelling of the honest cost-free com-
munication are reported by Noble [16].  
 A necessary ingredient of language communication is 
learning. It is thus legitimate to ask whether Darwinian 
selection might account for the genetic hard-wiring of 
a Language Acquisition Device. Indeed, this (hypothetical) 

organ is most likely responsible for some of the arbitrary 
(as opposed to the functional) linguistic structures. But for 
such an organ to be of any value, an individual has to 
acquire the language first. The inheritance of characteristics 
acquired during an individual lifetime is usually associated 
with long-discredited Lamarckian mechanism and thus 
considered to be doubtful. However, the relation between 
evolution and learning is more delicate and the attempts to 
clarify the mutual interactions of these two adaptive 
mechanisms have a long history. According to a purely 
Darwinian explanation, known as the Baldwin effect 
[17-19], there might appear a selective pressure in a po-
pulation for the evolution of the instinctive behaviour that 
would replace the beneficial, but costly, learned behaviour 
[20]. Presumably, the Baldwin effect played an important 
role in the emergence and evolution of language but certain 
aspects of these processes still remain unresolved [21]. For 
example, a relatively stable environment is needed for the 
Baldwin effect to occur since rather slow evolutionary 
processes will otherwise not keep up with the fast changing 
environment. As the language formation processes are 
rather fast (in comparison to the evolutionary time scale), 
Christiansen and Chater questioned the role of adaptive 
evolutionary processes in the formation of arbitrary struc-
tures like Language Acquisition Device [22]. Actually, 
they suggest a much different scenario, where it is a lan-
guage that adapted to human brain structures rather than 
vice versa.  

 
I.2. Language as a Complex Adaptive System  
 
 From the above description it is clear that studying the 
emergence and evolution of language is a complex and 
multidisciplinary task and requires cooperation of not only 
linguists, neuroscientists, and anthropologists, but also 
experts in artificial intelligence, computer sciences or 
evolutionary biology [23]. One can distinguish two levels 
at which language can be studied and described [24] 
(Fig. 1). At the first level the description centers on the 
individual language users: their linguistic performance, 
language acquisition, speech errors, speech pathologies or 
brain functioning in relation with language processing. The 
language of each individual is slightly different. Neverthe-
less, within a certain population these individuals can 
efficiently communicate and that establishes the population 
level. At this level language is considered as an abstract 
system that exists in a sense separately from its individual 
users. There are numerous interactions between these two 
levels. Indeed, the linguistic behaviour of individuals 
depends on the language specific to the population they are 
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part of. And, as a feedback, the language used in a given 
population emerges from linguistic behaviour of individu-
als composing this population. Various processes shaping 
such a complex system operate at different time scales. The 
fastest dynamics operates at the individual level (onto-
genetic time scale [25]), which includes, for example, lan-
guage acquisition processes. Much slower processes, such 
as migrations of language populations, dialect formation or 
language extinctions, operate at the so-called glossogenetic 
time scale. The slowest processes are involved in the 
biological evolution of language users, which defines the 
phylogenetic time scale. Processes operating at these 
different time scales are not independent (Fig. 1). Biologi-
cal evolution might change linguistic performance of 
individuals, which might affect the glossogenetic proc-
esses, which might in turn have an influence on phylo-
genetic development of individuals. For example, a muta-
tion that changes the vocal ability of a certain individual, if 
spread in his/her population, might lead to a dialect for-
mation or a language extinction. Such population-level 
processes might change the selective pressure that indi-
vidual language users are exposed to, which might affect 
phylogenetic processes, thus closing the interaction loop.  
 Various levels of descriptions and processes operating 
at several time scales suggest that undoubtedly, to describe 
    

 
Fig. 1. Language as a complex adaptive system. Many different 
processes involved in language evolution operate at various levels 
and time scales, but nevertheless strongly influence each other. 
Individual-level processes (ontogenetics), such as, e.g., language 
acquisition or acts of communication, i.e. those determined 
mainly by interactions between individual language users, are 
relatively fast. Much slower are population-level processes (glos-
sogenetics), such as language formations or extinctions, grammar 
changes, and migrations. To obtain a complete description one 
has also to consider biological evolution of language users 
(phylogenetics), the processes of which (the slowest ones among 
those affecting language evolution) determine individuals via 
their genetic endowment. Various processes at individual and 
population levels affect the fitness landscape, which influences 
the biological evolution level. Similarly, individual language 
     users are affected by populational and evolutionary processes  

adequately the language evolution, extremely complex 
models must be used. Correspondingly, analyzing such 
models and predicting their behaviour must also be very 
difficult. It is known that some phenomena involving 
feedback interactions might be described in terms of 
nonlinear differential equations, such as, for example, 
Lotka-Volterra equations describing interacting popula-
tions. The behaviour of such nonlinear equations is often 
difficult to predict, since abrupt changes even of the 
qualitative nature of solutions might take place. Language 
evolution, however, seems to be a much more complex 
issue than ecological problems of interacting populations, 
and its description in terms of differential equations 
would be much more complicated if at all feasible.  
 Recently, the most promising and frequently used ap-
proach to examine such systems is computational model-
ling of multi-agent systems. Using this method one 
examines a language that emerges in a bottom-up fashion 
as a result of interactions within a group of the so-called 
agents equipped with some linguistic functions. Then one 
considers language as a complex adaptive system that 
evolves and complexifies according to biologically inspired 
principles such as selection and self-organization [26]. 
Thus, the emerging language is not static but evolves in 
a way that hopefully is similar to human language evolu-
tion. Of course, using such an approach one cannot explain 
all intricacies of human languages. A more modest goal 
would be to understand some rather basic features that are 
common to all languages such as meaning-form mappings, 
origin of linguistic coherence (among agents without 
central control and global view), or coevolutionary origin 
of grammar and meaning.  
 Within the multi-agent approach, two groups of models 
can be distinguished. In the first one, originating from the 
so-called iterated learning model, one is mainly concerned 
with the transmission of language between successive 
generations of agents [27, 28]. Agents classified as teachers 
produce some expressions, which are passed to learners. 
Using statistical learning techniques such as, e.g., neural 
networks, learners try to infer a grammar producing such 
expressions. Next, the teachers are replaced by the learners 
while a new population of learners is introduced, and the 
procedure is iterated. The most important issue that the 
iterated learning model has successfully addressed is the 
transition from a holistic language (in which complex 
meanings are expressed in unstructured arbitrary forms) to 
a compositional language (in which complex meanings are 
expressed in structured forms). However, since such 
procedure is computationally relatively demanding and the 
number of communicating agents is thus typically very 
small (for example, one teacher and one learner), the prob-
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lem of the emergence of linguistic coherence must be 
neglected in this approach. To tackle this problem Steels 
introduced a naming game model [29]. In this approach one 
examines a population of agents trying to establish a com-
mon vocabulary for a certain number of objects present in 
their environment. The change of generations is not re-
quired here since the emergence of a common vocabulary 
is a consequence of the communication processes between 
agents, and they are not divided into teachers and learners 
but take the roles of a speaker or a hearer alternately.  
 It seems that the iterated learning model and the naming 
game model are at two extremes: the first model empha-
sizes the generational turnover while the second one con-
centrates on one-generation (cultural) interactions. Since in 
language evolution both aspects are present, it is desirable 
to examine models that combine evolutionary and cultural 
processes. Recently we have introduced such a model [30] 
and one of the objectives of the present paper is to provide 
further analysis of its behaviour based on more extensive 
simulations. Our model captures all three basic aspects of 
language: learning, culture, and evolution. In our model 
agents try to establish a common vocabulary like in the 
naming game model, but in addition they can breed, 
mutate, and die. Moreover, they are equipped with an 
evolutionary trait: learning ability. When communication 
between agents is sufficiently frequent, cultural processes 
create a niche in which a larger learning ability becomes 
advantageous. Thus learning abilities increase, and in turn 
their large values make the cultural processes more 
efficient. As a result the model undergoes an abrupt bio-
linguistic transition where both linguistic performance and 
abilities of agents change very rapidly [30]. One of the 
main results reported in this paper is that under the 
plausible assumption of the intensity of communication 
increasing continuously in time, this bio-linguistic tran-
sition is replaced with a series of fast, transition-like 
changes. In our opinion, the proposed model shows that 
linguistic and biological processes have a strong influence 
on each other, which has certainly contributed to an 
explosive development of our species. That learning in our 
model modifies the fitness landscape of a given agent and 
facilitates the genetic accommodation of learning ability is 
actually a manifestation of the much debated Baldwin 
effect.  
 
 

II.  MODEL 
 
 In our model we consider a set of agents located at sites 
of a square lattice of a linear size L. The agents are trying 
to establish a shared vocabulary referring to a single object 

present in their environment. An assumption that agents 
communicate only about a single object does not seem to 
restrict the generality of our considerations and has already 
been used in some other studies of naming game [31, 32] or 
language change [33] models. A randomly selected agent 
takes the role of a speaker that communicates a word 
chosen from its inventory to a hearer that is randomly 
selected among nearest neighbours of the speaker. The 
hearer tries to recognize the communicated word, namely it 
checks whether it has the word in its inventory. A positive 
or negative result translates into communicative success or 
failure, respectively. In some versions of the naming game 
model [31, 32], a success means that both agents retain in 
their inventories only the chosen word, while in the case of 
failure the hearer adds the communicated word to its 
inventory.  
 To implement the learning ability, we have modified 
this rule and assigned weights wi (wi > 0) to each i-th word 
in the inventory. The speaker selects then the i-th word 
with the probability wi /Σjwj where summation is over all 
words in its inventory (if its inventory is empty, it creates 
a word randomly). If the hearer has the word in its 
inventory, it is recognized. In addition, each agent k is 
characterized by its learning ability lk (0 < lk < 1), which is 
used to modify weights. In the case of success both speaker 
and hearer increase the weights of the communicated word 
by their respective learning abilities. In the case of failure 
the speaker subtracts its learning ability from the weight of 
the communicated word. If after the subtraction the weight 
becomes negative, the corresponding word is removed 
from the speaker’s inventory. The hearer in the case of 
failure, i.e., when it does not have the word in its inventory, 
adds the communicated word to the inventory with a unit 
weight.  
 Apart from communication, agents in our model evolve 
according to the population dynamics: they can breed, 
mutate, and eventually die. To specify the intensity of these 
processes, we have introduced a communication probabil-
ity p. With the probability p the chosen agent becomes 
a speaker, and with the probability 1 − p it undergoes ap-
propriate vital processes. Namely, the agent either dies with 
the probability 1− psurv, or survives with the probability 
psurv, where psurv = exp(−at)[1 − exp(−b Σjwj/+w,)], and 
a = 0.05 and b = 5 are certain parameters whose role is to 
ensure a suitable speed of population turnover. Moreover, t 
is the age of an agent and +w, is the average (over agents) 
sum of weights. The above formula takes into account both 
the agent’s linguistic performance (the bigger Σjwj the 
larger psurv) and its age (the older it is the smaller its psurv 
is). If the agent survives, it breeds, provided that there is an 
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empty site in its nearest neighbourhood. The offspring 
typically, i.e. with the probability 1− pmut, inherits the 
parent’s learning ability and the word of the highest 
weight from its inventory (in the offspring’s inventory the 
initial weight of the word equals one). With a small 
probability pmut a mutation takes place and the learning 
ability of an off-spring is randomly selected. With the 
same probability pmut an independent check is made 
whether to mutate the inherited word. A diagram illustrat-
ing the dynamics of our model is given in the Appendix. 
Let us also notice that the behaviour of our model which 
is described below is to some extent robust with respect to 
some modifications of its rules. For example, qualitatively 
the same behaviour is observed for modified values of the 
parameters a and b, a different form of the survival prob-
ability psurv (provided it is a decreasing function of the 
agent’s age t and an increasing function of the quality of 
its linguistic performance Σjwj), or different breeding 
and/or mutation rules. 

 
  

III.  RESULTS 
 
 To examine the properties of the model, numerical 
simulations have been performed. Most of the results have 
been obtained for L = 60 and pmut = 0.001, but simulations 
for L = 80 or pmut = 0.01 have led to similar results. 
A typical simulation starts on a lattice with each site 
occupied by an agent having in its inventory a single word 
chosen randomly for each agent and assigned a unit weight. 
Unless specified otherwise, the learning ability of each 
agent in the initial configuration is also chosen randomly.  

 
III.1. Bio-linguistic Transition  

 An important parameter of the model is the com-
munication probability p that specifies the intensity of 
communication attempts in comparison with population 
changes. In general, for small p the model remains in 
a phase of linguistic disorder with only small clusters of 
agents using the same language. We define the language of 
an agent as the highest-weight word in its inventory. Such 
a definition means that agents using the same language 
usually (but not always) use a mutually recognizable word, 
which ensures a relatively large rate of communication 
successes for such agents. A typical distribution of lan-
guages in this disordered small-p phase is shown in the 
upper left panel of Fig. 2, where agents using the same 
language are drawn with the same shade of grey. Upon 
increasing the communication probability p, the clusters of 

agents only slightly increase, but after reaching a certain 
threshold an abrupt transition takes place and the model 
enters a phase of linguistic coherence with almost all agents 
belonging to the same cluster (Fig. 2, lower left panel).  

 

 
Fig. 2. Exemplary configurations of the evolutionary naming 
game model with L = 60 and pmut = 0.001. Agents using the same 
language (left panels) or having the same learning ability (right 
panels) are marked with the same shade of grey (white: l = 0, 
black: l = 1, i.e., the darker – the greater learning ability). In the 
small-p phase (upper panels) communication acts are infrequent, 
and agents using the same language (left) or having the same 
learning ability (right) form only small clusters. In this phase the 
communication success rate s and the average learning ability l 
are small (see also Figs. 3-4). In the large-p phase (lower panels) 
more frequent acts of communication result in the emergence of 
a common language. Thus, almost all agents use the same lan-
guage and, moreover, have the same (and great) learning ability 
 
 
 To examine the nature of this transition, we have 
measured the communication success rate s defined as an 
average over agents and simulation time of the fraction of 
successes with respect to all communication attempts 
(Fig. 3). Moreover, we have measured the average learning 
ability l (Fig. 4). Since death, birth, and mutation processes 
depend on the linguistic performance of agents, during the 
evolution of the model some agents will be more favoured 
than others. As a result, the average learning ability l and 
the success rate s turn out to depend on the communication 
probability p. One can notice that upon increasing p the 
abrupt transition takes place around p = 0.23, where both 
the communication success rate s and the learning ability l 
jump rapidly. Moreover, upon decreasing p this transition 
takes place at a much lower value, namely around p = 0.15. 
Such a hysteretic behaviour indicates that the transition in 
our model is discontinuous. Let us also emphasize, that 
although s and l seem to exhibit a similar p-dependence, 

 
 
p = 0.15 
 
 
 
 
 
 
 
 
 
 
 
p = 0.3 

language  l                         learning ability 
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they are of much different nature – while the success rate 
characterizes the overall linguistic performance of a given 
agent (during its lifetime), the learning ability is an in-
herited property, which does not change during the lifetime 
of an agent. 

 

 
Fig. 3. The communication success rate s as a function of the 
communication probability p. Calculations were made for the 
system size L = 60 and the mutation probability pmut = 0.001. 
Simulation time for each value of p was typically equal to 105 
steps with 3 × 104 steps discarded for relaxation. A step is defined 
as a single, on average, update of each site. For simulations with 
decreasing p, we first relaxed the system until a mono-language 
state was reached (with s and l close to unity). In the left part of 
        the graph the data are from simulations with fixed l = 0.5 
 
 

 
Fig. 4. The average learning ability l as a function of the com-
munication probability p. Details of the simulations are the same 
                                             as in Fig. 3  

 
 We have also examined the behaviour of the model 
with the learning ability kept fixed during entire simu-
lations. In this case there is also a phase transition between 
disordered and linguistically coherent phases but this time 

the transition is much smoother and there is no indication 
of the hysteretic behaviour (Fig. 3). To get further insight 
into the behaviour of our model, we have measured the 
fraction fm of agents using the language with the largest 
number of users. Simulations show that for the learning 
ability kept fixed fm decreases also in a much smoother way 
(Fig. 5). Moreover, its variance has a pronounced peak 
at the transition point, which this time takes place around 
p = 0.07 (Fig. 6). Such large fluctuations of fm (and the 
variance of s shows a similar behaviour) in the vicinity of 
the transition point and an absence of a jump suggest that it 
might be a continuous transition.  
 
 

 
Fig. 5. The fraction fm of agents using the language with the 
largest number of users as a function of the communication 
probability p. For simulations with the learning ability not kept 
fixed, we started from the configuration with all agents having the 
same word in their repositories and the learning ability set to 0.98. 
Such a choice of the initial state leads to only minor differences in 
                comparison with simulations in Figs. 3-4 

 
.  

 
Fig. 6. The variance of fm. Details of simulations are the same  
                                              as in Fig. 5  
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Fig. 7. Lifetime of agents as a function of the learning ability l for 
several values of the communication probability p. One can notice 
that in a predictable environment (large-p phase) having a great 
learning ability is advantageous. In a random environment (low-p 
phase), the lifetime of an agent is almost independent on its 
                                      learning ability 
 
 
 A noticeable difference between small-p and large-p 
phases appears in the learning-ability dependence of 
lifetime of agents (Fig. 7). One can see that in the large-p 
phase, where neighbouring agents are likely to use the 
same language, having a large learning ability increases the 
agent’s lifetime (faster learning enables faster accom-
modation to the predictable linguistic environment). On the 
other hand, in the small-p phase (i.e., in the random lin-
guistic environment) the lifetime is almost independent on 
the learning ability. Before presenting computational re-
sults concerning the dynamics of our model, let us notice 
that sudden transitions in linguistic models were also 
reported in some other models [7, 38].  

 
III.2. Dynamic Behaviour  
 
 Because each agent is characterized by its learning 
ability, states which are homogeneous (namely such that 
a majority of agents use the same language) but of different 
average learning abilities are not equivalent. As a result, 
evolution of the model in an intricate way depends on the 
initial configuration and the parameters p and pmut. This is 
particularly transparent in the range 0.15 < p < 0.25, where 
the model exhibits a hysteretic behaviour (for pmut = 0.001). 
An example that shows the dependence of the behaviour of 
the model on its initial configuration is shown in Fig. 8. In 
a center of a lattice of size L = 60, we have created a square 
seed of 100 agents having the same learning ability (0.98) 
and the same word in their inventories. This seed is 
surrounded by 60 × 60 − 100 = 3500 agents of a smaller 

learning ability (0.5). As can be seen in Fig. 8, the evo-
lution depends on whether the surrounding agents use the 
same language as those in the seed (homogenous case) or 
whether their repositories contain initially random words 
  
 

 

Fig. 8. Time evolution of the learning ability l for the L = 60 
model with the seed of 100 agents with l = 0.98 surrounded by 
3500 agents with l = 0.5. The course of the evolution depends on 
the initial state (here: inventories) of surrounding agents (see main 
                                text for the detailed description)  

 

 (random case). In the first case the system ends up in 
a homogenous state where a majority of agents use the 
same language and have the same learning ability (0.98). In 
the second case the model evolves toward a multi-language 
state with much smaller learning abilities. In such a setup 
the size of the seed or the learning abilities of the sur-
rounding agents are also important parameters that might 
affect the course of the evolution of the model. For 
example, we observed that also in the homogenous case but 
with surrounding agents having an even smaller learning 
ability (0.3), the model evolved toward a multi-language 
state. 

 
III.3. The Baldwin Effect  
 
 The fact that both the communication success rate s and 
the average learning ability l have a jump at the same value 
of p (Figs. 3-4) shows that communicative and biological 
ingredients strongly influence each other, which leads to 
a single and abrupt transition. In our model successful 
communication requires learning. A new-born agent com-
municating with some mature agents who already worked 
out a certain (common in this group) language will in- 
crease the weight of a corresponding word. As a result, in 
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subsequent acts of communication the agent will use 
mainly this word. In what way might such learning get 
coupled with evolutionary traits? The explanation of this 
phenomenon is known as the Baldwin effect. Although at 
first sight it looks like a discredited Lamarckian pheno-
menon, the Baldwin effect is actually purely Darwinian 
[34, 21]. There are usually some benefits related with the 
task a given species has to learn and there is a cost of 
learning this task. One can argue that in such case there is 
some kind of an evolutionary pressure that favours 
individuals for which the benefit is larger or the cost is 
smaller. The evolution will then lead to the formation of 
species where the learned behaviour becomes an innate 
ability. It should be emphasized that the acquired charac-
teristics are not inherited. What is inherited is the ability to 
acquire the characteristics (the ability to learn) [20]. In the 
context of the language evolution the importance of the 
Baldwin effect was suggested by Pinker and Bloom [4]. 
Perhaps this effect is also at least partially responsible for 
the formation of the Language Acquisition Device (and in 
our model the learning ability l, as a feature heritable and 
unchangeable during a phenotypic development, might be 
regarded as approximately corresponding to the LAD). 
However, many details concerning the role of the Baldwin 
effect in the evolution of language remain unclear [35].  
 We have already argued [30] that in our model the 
Baldwin effect is also at work. Let us consider a population 
of agents when the communication probability p is below 
the threshold value (p < pc . 0.23). In such a case the 
learning ability remains at a rather low level (since clusters 
of agents using the same language are small, it does not pay 
off to be good at learning the language of neighbours). 
Now, let us increase the value of p above the threshold 
value. More frequent communication changes the behav-
iour dramatically. Apparently, clusters of agents using the 
same language are now sufficiently large and it pays off to 
have a large learning ability because that increases the 
success rate and thus the survival probability psurv. Let us 
notice that psurv of an agent depends on its linguistic 
performance (Σjwj) rather than its learning ability. Thus 
clusters of agents of good linguistic performance (learned 
behaviour) can be considered as niches that direct the 
evolution by favouring agents with large learning abilities, 
which is precisely the Baldwin effect. It should be noticed 
that linguistic interactions between agents (whose rate is set 
by the probability p) are typically much faster than evo-
lutionary changes (set by pmut) and such an effect has also 
been observed in simulations [30].  
 As a result of a positive feedback (large learning ability 
enhances communication, which enlarges clusters, which 
even more favours an increased learning ability) a discon-

tinuous transition takes place both with respect to the 
communication success rate and the average learning 
ability (Figs. 3-4). An interesting question is whether such 
a behaviour is of any relevance in the context of human 
evolution. It is obvious that development of language, 
which probably took place somewhere around 105 years 
ago, was accompanied by important anatomical changes 
such as fixation of the so-called speech gene (FOXP2), 
descended larynx or enlargement of brain [36]. Linguistic 
and other cultural interactions that were already emerging 
in early hominid populations were certainly shaping the 
fitness landscape and that could direct the evolution of our 
ancestors via the Baldwin effect.  
 Since it is plausible that communication attempts in the 
human history were gradually becoming more frequent 
(and important), it is natural to simulate our model with the 
communication probability p increasing continuously in 
time. In the initial population, the agents’ learning abilities 
should be rather small. Since human populations are quite 
homogeneous with respect to linguistic abilities, it is 
desirable that the model dynamics should lead to an l-ho-
mogeneous state, i.e., a state where the majority of agents 
have the same, and large, learning abilities. Although many 
languages are now at the verge of extinction and one 
cannot exclude that in the future humans will use only one 
language, at least at present many languages exist. Thus in 
the model’s final state, or at least in a transient, although 
long-lasting state, there should be many languages (or 
rather several, taking into account limitations of the 
simulations). The results of our simulations can be seen in 
Fig. 9. Initially, the learning abilities have been set as 
random numbers distributed uniformly from the interval (0, 
0.1). One can notice that around t = 5 × 104 agents with the 
learning ability close to 0.1 dominate the system (the 
fraction of agents having the most frequently occurring 
learning ability fl . 1). However, with time and increasing 
communication probability p, such a small learning ability 
becomes insufficient, and around t = 12 × 104 agents with 
learning ability close to 0.3 dominate the system. However, 
fm, i.e., the fraction of agents whose language is used by the 
largest number of agents, still remains close to 0, which 
means that even the most widespread language is used only 
by a few agents. Around t = 15 × 104 the next transition 
takes place and agents with large learning abilities domi-
nate the system. Around that time fm starts to increase, 
which means that some languages diffuse while some 
become extinct. Since almost all agents have the same 
language ability, all languages are dynamically equivalent. 
Eventually, the system reaches the state where almost all 
agents use the same language (fm, s . 1), however, the time 
needed to reach such a state might be quite long. 
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 In Fig. 9 the behaviour of the model in the interval  
15 × 104 < t < 2 × 105 resembles the current stage of the 
human language evolution: a maximum learning ability 
dominating the population and several (not too many and 
not too few) languages in use. Before this final state, some 
plateaus can be distinguished separated by relatively rapid 
transitions. Such a behaviour differs from the single-step 
scenario seen in the simulations where p increases in finite 
steps but is kept constant during measurements (Figs. 3-4). 
 
 

 
Fig. 9. Time evolution of the model characteristics upon the linear 
in time increase of the communication probability p from 0.1 to 
0.5 (the lattice size L = 60). We measured the success rate s, the 
average learning ability l, the fraction of agents whose language is 
used by the largest number of agents fm, and the fraction of agents 
having the most frequently occurring learning ability fl. One can 
see that around t = 15 × 104 both fl and l become close to unity, 
which means that almost every agent has the same maximum 
learning ability. Further evolution gradually eliminates less 
widespread languages and leads to the state where almost all 
                       agents use the same language (fm, s . 1)  

 
Presumably the multi-step behaviour is a consequence of 
a continuous increase of p. As already discussed (Sec. I.2), 
basic factors that determine the evolution of language set 
some characteristic time scales of the corresponding 
processes. Thus, individual learning would take dozens of 
years, culture hundreds of years, and biological evolution 
most likely dozens of thousands of years. The speed of 
increase of p that might be interpreted as a speed of cultural 
changes has yet another characteristic time scale and our 
work shows that this scale might influence the evolution of 
language. Certainly, further research is needed to examine 
in more detail an intricate influence of learning, culture, 
and biological evolution on language. 
 

IV.  CONCLUSIONS 
 
 In the present paper we have examined an evolutionary 
naming game model. Simulations show that the coupling of 
linguistic and evolutionary ingredients produces a dis-
continuous transition and that learning can direct the 
evolution towards greater linguistic abilities (the Baldwin 
effect). However, under perhaps slightly more realistic 
assumptions, i.e. when the communication probability in-
creases continuously, this transition is split into a series of 
transitions. This result shows that the speed of cultural 
changes might be yet another factor affecting the evolution 
of language and setting an additional characteristic time 
scale. The present model is not very demanding com-
putationally. It seems to be possible to consider agents 
talking about more than one object, or to examine statistical 
properties of simulated languages such as, for example, 
distributions of their lifetimes or of the number of users. 
One can also study effects like diffusion of languages, the 
role of geographical barriers, or formation of language 
families. There is already an extensive literature document-
ing linguistic data as well as various computational meth-
ods of modelling, for example, a competition between 
natural languages [37-39]. The dynamics of the present 
model, based on an elementary act of communication, 
perhaps offers a more natural description of dynamics of 
languages than some other approaches that often use some 
kind of coarse-grained dynamics.  
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APPENDIX 
 

 The following block diagram illustrates the rules of the evolutionary naming game model. Updating inventories in 
the case of success or failure is described in the text.  
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