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I.  INTRODUCTION 
 

 Nowadays, major hardware vendors redirect their road-
maps toward highly parallel and power-efficient devices. 
They focus on increasing the number of low power com-
puting cores rather than increasing their complexity and 
clock frequency. This paradigm shift means that further 
substantial progress in performance require highly parallel 
software codes and tight application to hardware mapping. 
However, we should note that end users are interested in 
the results of programming, and not programming itself. 
Therefore, we have started various programming and 
support activities at Poznań Supercomputing and Net-
working Center (PSNC) in order to help end users with the 
software development on new accelerated hardware 
architectures to meet their demanding computing require-
ments. We envision that many-core, hybrid and accelerated 
computing will play a significant role in the future e-Infra-
structure in Poland and worldwide. Thus we have decided 
to focus on hardware devices commonly available for end 
users, as their great computational power comes along with 
low price and power consumption. Two hardware architec-
tures fulfilling these requirements were designated: nVidia 
GPU with CUDA programming environment standing for 
GPGPU architecture, and Cell B.E representing a more 

hybrid solution. We are working with leading IT vendors, 
such as nVidia, IBM or Intel. We are also involved in some 
R&D efforts in national-wide infrastructure projects, e.g. 
Pl-GRID or POWIEW, and we have managed to create 
many proof-of-concept applications scenarios demonstrat-
ing added values behind the accelerated hardware applied 
for High Performance Computing (HPC). This paper aims 
to present some example algorithms, representing com-
pletely different applications areas, in particular Computa-
tional Fluid Dynamics (CFD) and image processing – motion 
tracking and JPEG2000 compression, and the way the new 
accelerated hardware can be applied for efficient computing. 
Moreover, this paper shows the main accelerated hardware 
characteristics, their influence on parallel programming and 
experimental results of application benchmarks comparing 
traditional CPU-based with GPU and Cell-based approaches. 
Both advantages and disadvantages of new hardware 
architectures and programming environments are presented. 
Finally, the paper is concluded with a number of best 
practices, experiences and learned lessons that we want to 
share with end users porting or planning to run their own 
applications on accelerated hardware. 
 The paper is organized as follows. Sections II and III 
briefly describe the GPU architecture (NVIDIA GTX 280 
graphic card) and Cell B.E (QS21) architecture, respec-
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tively. Sections IV-6 present the selected proof-of-concept 
applications implemented in PSNC on GPUs and Cells: 
Computational Fluid Dynamics, Motion Tracking and 
JPEG2000 compression. These sections describe the gen-
eral ideas of the problem, GPU implementation details and 
obtained experimental results. Section VII presents other 
users of PSNC's accelerated hardware infrastructure and 
their applications. Section VIII summarizes this work. 
 
 

II.  GPU  ARCHITECTURE 
 
 The increasing programmability of graphics process-
ing units (GPUs) allows to use these chips not only for 
specific graphics computations for which they were 
designed, but for general-purpose computing problems. 
This field is called GPGPU (General-Purpose computa-
tion on GPUs). 
 Programmable GPU is a highly parallel, multi-
threaded, many-core processor with a very high computa-
tional power and memory bandwidth. The main difference 
between CPU and GPU is that graphic cards, specialized 
for graphics rendering (e.g. compute-intensive and highly 
parallel computation), have more transistors devoted to 
data processing than to data caching and flow control. As 
a result, while computational efficiency is much higher, 
memory transfers between GPU and CPU can be a bottle-
neck in some applications. 
 GTX 280 graphic card consists of 30 multiprocessors 
(MP) with texture filtering and addressing units, a texture 
cache, a set of registers, a cache for constants, and 
a parallel data cache. Each multiprocessor has eight 
stream processors (SP). A multiprocessor is responsible 
for creating, managing, and executing concurrent threads. 
Lightweight thread creation, zero-overhead thread 
scheduling and fast barrier synchronization  efficiently 
support programs that  can be decomposed into parallel 
subproblems according to SIMD architecture (single 
instruction – multiple data).  
 Threads are arranged in blocks, each block being 
executed on one multiprocessor. To manage hundreds of 
threads, a multiprocessor creates, manages, schedules and 
executes threads in groups of 32 parallel threads called 
warps. As soon as a block of threads finishes its 
calculations, another block is launched to a multipro-
essor. A warp executes one common instruction at a time, 
so full efficiency is realized when all 32 threads of a warp 
agree on their execution path. If threads of a warp diverge 
via a data- dependent conditional branch, the warp 
serially executes each branch path taken, disabling 
threads that are not on that path. When all paths com-

plete, the threads converge back to the same execution 
path. As a consequence, to improve the performance 
a programmer should provide as few divergent 
instructions in a warp as possible.  
 Due to these characteristic features of GPUs, not all 
of the problems can be mapped efficiently to this 
architecture. The user will achieve the best results for 
problems which require massive computations performed 
locally, so that fast computational units could overlap 
relatively slow transfers to the global memory. For 
example, an image processing algorithm that performs the 
same operation on every pixel of an image can be very 
efficiently ported to GPU architecture – each thread can 
be assigned one pixel and perform the calculations in 
a fast and highly parallel manner. Other good examples of 
applications well suited to GPUs are: video and sound 
processing, cryptography, bioinformatics, genetics, chemical 
and physical simulations, weather forecasting and climate 
research. In this paper we present three sample applications 
which we efficiently ported to GPU architecture, to show the 
drawbacks and advantages of this architecture: Computa-
tional Fluid Dynamics, JPEG2000 compression and Motion 
Tracking algorithm. 
 
 

III.  CELL  B.E.  ARCHITECTURE 
 
 Cell Architecture grew from a challenge posed by 
Sony and Toshiba to provide power-efficient and cost-
effective high-performance processing for a wide range 
of applications, including the most demanding consumer 
appliance: game consoles. Cell B.E. (CBEA) is an inno-
vative solution based on the analysis of a broad range of 
workloads in areas such as cryptography, graphics trans-
form and lighting, physics, fast-Fourier transforms (FFT), 
matrix operations, and scientific workloads.  
 Cell B.E. processor is a multi-core chip comprised of 
a 64-bit Power Architecture processor core and eight 
synergistic processor cores, capable of massive floating 
point processing, optimized for compute-intensive work-
loads and broadband rich media applications. A high-
speed memory controller and high-bandwidth bus 
interface are also integrated on-chip. The breakthrough 
multi-core architecture and ultra high-speed communi-
cations capabilities deliver vastly improved, real-time 
response, in many cases 10 times the performance of the 
latest PC processors. The Cell BE architecture is OS 
neutral and supports multiple operating systems. In this 
paper we present our implementation of JPEG2000 
compression standard realized on Cell B.E. and GPU to 
compare the two architectures. 
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IV.  COMPUTATIONAL  FLUID  DYNAMICS 
 
 Computational Fluid Dynamics (CFD) is one of the 
branches of fluid mechanics which uses numerical methods 
and algorithms to solve and analyze fluid flows. CFD is 
used in various domains, such as oil and gas reservoir 
uncertainty analysis, aerodynamic body shapes optimi-
zation (e.g. planes, cars, ships, sport helmet, skis), natural 
phenomena analysis, numerical simulation for weather 
forecasting or realistic visualizations. The CFD problem is 
very complex and needs a lot of computational power to 
obtain the results in reasonable time.  However, because in 
fluid dynamics the behavior of particles depends only on 
the behavior of local, surrounding particles, CFD is well 
suited for the GPU architecture. 
 
IV.1.  Algorithm 

 In this work the Navier-Stokes equations were imple-
mented. They are derived from Newton's Second Law and 
describe the continuous incompressible fluid. The Navier-
Stokes equations are [1]: 

  .Du φ v u f
Dt

= −∇ + Δ +  (1) 

  0,u∇ ⋅ =  (2) 
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and 
v  – is a coefficient of kinematic viscosity of the fluid, 
u – is the velocity of the fluid, 
f – represents various body forces (like  gravity), 
φ  – is the pressure divided by the constant density of the 

  fluid. 
 To perform the computations on CPU or GPU, the 
mathematical model had to be discretized. Fluid was 
divided into the Euler mesh. Each part of the mesh 
represents a small part of the fluid defined by velocity and 
pressure. Parameters defining the fluid (pressure and 
velocity) are iteratively computed for the whole mesh by 
simulating fluid position in the next period of time ( ).t t+ ∂  

 In the incompressible continuous model of fluid dy-
namics, to preserve the law of conservation of the mass the 
velocity divergence has to be equal to zero (Equation 2). 
However, in the discrete model, due to the inaccuracy of 
calculations, the velocity divergence becomes a non-zero 
value. In order to fulfill the requirements of the incom-
pressible fluid, velocity divergence is minimized during the 
process of pressure calculation (see [2] for details). This 
process has low computational complexity, but it is the 
most time-consuming part of the algorithm, because it 
needs to be launched iteratively in order to gain the desired 
accuracy. 
 During the discrete simulation of fluid flow, the 
quantum of time t∂  has to be small enough to guarantee 
the stability of the mathematical model. Otherwise it results 
in indeterministic model behavior. The value of t∂  was 
determined during experimental analysis and it depended 
on mesh granulation.. 
 The surface of the fluid is defined by the MAC [3] 
(Marker And Cell) method. Each particle is moved by the 
velocity of this part of the mesh in which the particle 
resided. Fluid properties are calculated only for those parts 
of the mesh which contain some particles. The particles do 
not take part in the fluid computation, they just mark the 
position of the fluid and especially the surface. 
 
IV.2.  GPU  Implementation 

 Taking into consideration that all operations in the 
equations are performed in the close neighborhood for each 
cell in the Euler's grid, this algorithm fits the GPU 
architecture very well. In each iteration, every block 
calculates the positions of particles in its part of the mesh 
and exchanges borderline conditions with neighboring 
blocks after every iteration. In this way heavy computa-
tions can overlap occasional transfers to global memory. 
What is more, the resolution of the Euler grid may be very 
easily enlarged (by allocating new computational blocks), 
and thus the algorithm used in this work is very scalable – 
it can either perform calculations more accurately by 
reducing the grain of calculations, or perform simulations 
for larger scale. 
 
IV.3.  Results 

Simulation was tested on 6 different sizes of mesh, and 
the results were averaged over 1000 time steps. The tests 
were performed on nVidia GPU GTX 280 and the speed-up 
was measured over the referential sequential CPU code run 
on Intel CPU Core 2 Quad Q9550. First of all, we observed 
that not all functions of CFD simulation benefited from 
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porting to GPU in the same way. The functions that 
benefited the most from parallelization were those with 
a great amount of homogeneous computations and a small 
number of conditional statements. Others could not be well 
parallelized onto a graphic device because of the architec-
ture limitations. Table 1 shows speed-ups for all functions 
used in our CFD model. The worst speed-up was observed 
for recalculating surface and border criteria function 
which is responsible for tracking the fluid interface inside 
the computational grid and changing the status of grid cells. 
It consists of conditional statements and data transfers from 
one part of the grid to another. This type of operations is 
executed effectively on CPU, but slowly on GPU. That is 
why this function runs only 1 to 4 times faster than on 
CPU. In spite of slow speed-up (or sometimes even 
slowdown), in most cases it is still more profitable to 
execute this portion of the program on GPU, because 
copying data between GPU and CPU would be more time-
consuming than performing it on GPU, even slower but 
without data transfers. 

The biggest speed-up is observed for particles advec-
tion function which moves the particles over the 
computational grid using the linearly interpolated in the 
particle's location speed. On GPU, the interpolation is 
computed by GPU's hardware in a structure called texture. 
The operation is very fast and the required data is cached, 
which makes it even more profitable. On CPU, the 
interpolation has to be implemented as a part of the 
software and thus is much slower. Moreover, the particles 
advection function performs very homogeneous compu-
tations and has fever conditional statements than other 
functions which represent a desired model of computations 
for the GPU architecture. 

Figure 1 presents speed-up of total CFD simulation on 
GPU over a sequential code on CPU, depending on the 
mesh size. The GPU device is designed to compute massive 
amounts of data in parallel. When computations are launched 

 
 

Fig. 1. Speed-up of GPU implementation depending  
on the mesh size 

 
 

over a small (for this architecture) portion of data (domain 
size up to 256), the speed-up is not so significant because it 
does not take advantage of all available computational 
power. For domains smaller than 256, some computational 
units have no work assigned and stay idle. Larger domains 
use all available computational units, so the growth of 
speed-up is much slower. However, it still increases 
because the total time becomes less and less affected by 
a constant time of  launching the code on external device. 
The irregularity of the second phase is caused by the fact 
that the computational blocks are not decomposed equally 
on multiprocessors at the beginning. This fact becomes less 
important with the growth of the computational domain and 
thus the deployed computational blocks. For the largest 
tested domain, the GPU version was up to 75 times faster 
than the sequential code. 
 
 

V.  MOTION  TRACKING 
 
 Motion tracking is a process of identifying a moving 
object (or several ones) in time in a video stream from 

Table 1. Speed-up of different functions used in CFD model 

Size Total time 
Particles 
advection 

Calculating 
divergence 

Calculating 
Z factor 

Calculating 
pressure 

Calculating 
velocity 

Recalc. surface 
and border 

criteria 

64 9.72 51.34 1.04 3.94 2.45 4.48 0.3 

128 22.2 87.61 3.12 10.83 5.95 17.61 0.82 

256 43.16 105.73 26.38 25.18 19.16 28.38 1.78 

512 49.35 102.66 37.34 31.95 23.82 35.56 2.64 

1024 66.74 131.6 59.37 49.36 32.33 45.85 3.9 

1536 74.46 137.75 49.56 63.19 41.67 49.78 3.31 
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a camera. The process of motion tracking can be divided 
into two challenging tasks:  
1. How to choose the good targets (features) that will be 

easy to track. 
 Good features to track are generally those parts of an 

image which have a high contrast. Therefore, neither 
plain regions nor edges are of interest (the former 
would be difficult to track in any direction, the latter 
can be tracked in only one dimension). The interesting 
points are called “corners” - points that are traceable in 
two dimensions. 

2. How to associate target locations in consecutive video 
frames.  

 This is especially difficult when the objects are moving 
fast relative to the frame rate, the image is blurry, the 
objects rotate in third dimension, there are rapid 
lighting changes or another object obscures the tracked 
object. The most common approach compares features 
between consecutive frames as it is considered to be 
robust to rotation and lighting changes. 

 

 

Fig. 2. Feature tracking: Visualization of movement direction 
 
 
 The information about shifts of the corners between 
frames in a video stream can be used for various purposes. 
First, speeds of the objects in the scene can be tracked. 
Second, by analyzing the direction of movement, features 
belonging to the static landscape can be distinguished from 
the moving object (see Fig. 2 with our visualization of 
movement direction). Another information that can be 
retrieved from corner tracking is the depth of an image. If 
the video shows a static scenery and the camera constantly 
moves along, the depth of a picture can be estimated as the 
objects close to the camera move faster than the objects in 
a distance. Common applications include sports analysis, 

robotics, military tracking, industrial inspection and video 
surveillance. 
 
V.1.  Algorithm 

 To find interesting features in an image to track, the 
Harris corner detector is used. This approach is a popular 
point detector due to its strong invariance to rotation, 
scale, illumination variation and image noise. The Harris 
corner detector is based on the local auto-correlation 
function of a signal, where the local auto-correlation 
function measures local changes of the signal with 
patches shifted by a small amount in different directions. 
If changes of a signal are significant independently of the 
direction of a shift, it means  a corner was found.   
 To calculate the Harris measure of “cornerness” of 
a pixel, first xI  and yI  derivatives of an image under 
a window are calculated. xI  and yI  derivatives are cal-
culated by convolving the image with two separable 
Sobel filters. Then the matrix that captures the intensity 
structure of the local neighborhood is computed and its 
eigenvalues are determined. By analyzing the eigenvalues 

1λ  and 2 ,λ  we can describe the characteristic of a point. 
Three situations can be distinguished: 
1. If both 1λ  and 2λ  are small, it means that the 

analyzed point is a part of a plain region. 
2. If one eigenvalue is high and the other low, an edge 

was found.  
3. If both eigenvalues are high, it indicates a corner. 
 For more details on this algorithm, see [4]. 
 Having calculated the cornerness values for each 
point in the image, we set a threshold over which we con-
sider a point as a good feature to track. To avoid having 
features located very close to each other, we divide an 
image into small parts and choose one representative 
(best) corner for each region. 
 The standard approach to feature tracking is to measure 
the correlation between the feature in one image and 
a point shifted by some distance in the consecutive frame. 
By comparing the correlations in the search region, we 
choose the best match as the new position of the tracked 
feature. Among the strategies to measure the correspon-
dence between two features under mask, the SSD (sum of 
squared differences) is considered to be of  good precision, 
but very time-consuming and hence applicable only in 
non-real-time programs [5]. The cost of computations de-
pends mostly on the range of the search region. Confining 
to a small search region saves search time and makes the 
search process easier, but runs the risk of the tracked 
feature leaving the search region entirely between frames. 
The other factor that influences the performance but also 



M. Błażewicz, K. Kurowski, B. Ludwiczak, K. Napierała 76

the time of computations is the size of patch which we treat 
as a feature and correlate between the images. Again, a 
small patch saves time, but is less accurate. 

 
V.2.  GPU Implementation 

 As the calculations for pixels are mostly local, the 
Harris algorithm can be effectively parallelized by dividing 
the image into smaller regions and assigning each region to 
a different block of threads. Each block calculates the 
cornerness for each pixel in its region and sends the 
position of the best pixel (representative of the region) back 
to host. The image data is saved in a texture memory. 
Using a texture provides a fast and cached access to the 
data and is especially well suited for image processing. For 
example, the methods for accessing the texture provide safe 
access to outside-the-border points. On CPU, safe access to 
the points behind a picture border must be explicitly 
ensured by a programmer. By implementing a more efficient 
algorithm on GPU, larger search regions and larger patches 
can be chosen, making the algorithm more reliable. 
 In feature tracking, the most natural way to parallelize 
the algorithm is to let each block calculate the best shift for 
one feature. It can be risky if there are only few features to 
track (the number of block would be too small) – the best 
performance will be achieved if there are more than 
30 features, which is usually the case. 
 
V.3.  Results 

 Performances of the two functions (feature finding 
and feature tracking) were analyzed independently. 
Results achieved on GPU were compared to the results of 
running the analogous serial code on one core on CPU. 
We observed the speed-up of 3,66 for feature finding in 
an HD image compared to CPU. The Harris corner 
detector requires high memory occupancy, which pre-
vents the GPU version from efficient overlapping the 
memory transfers with computations, thus the results 
were not impressive. The experiments for feature 
tracking were run on two video streams, one producing 
around 40 corners in feature finding function, and the 
other producing around 70 corners. A comparison was 
drown to find out how the number of tracked features 
influences the performances on CPU and GPU. Here the 
differences were more significant, because memory 
requirements were lower and the calculations were more 
suited to GPU architecture. The data could be stored in 
texture memory, which enabled to use  built-in manage-
ment of outside-the-border pixels and interpolation of 
data. This simplified the code compared to CPU, where 

safe access to the points behind a picture border had to be 
explicitly ensured by a programmer. 
 The results showed that the time on CPU increases 
linearly with the number of features while the time on 
GPU dos not change. As a result, for 40 features the GPU 
version was 45 times faster than CPU, while for 70 
features the speedup was of 58. The GPU algorithm is 
therefore more scalable and can be applied for real-time 
tracking in high-resolution video stream.  

 
 

VI.  JPEG2000 
 
 JPEG2000 is a new standard for picture encoding in 
digital movies. A movie with 4K (4096 × 2160) resolution 
demands a very fast real time encoding solution to 
distribute it, for eexample,. via live broadcasts. Although 
there are some hardware implementations that offer real 
time encoding, they are costly because specialized hard-
ware is required. Current consumer-level architectures 
with software implementations can provide low-cost 
alternative to hardware solutions. Therefore, we wanted 
to use new hybrid computing architectures, GPGPU and 
CELL B.E., to implement low-cost software base alterna-
tive solutions and at the same time to compare these two 
architectures. 
 The most important and computationally costly part 
of the JPEG2000 image compression standard is a Dis-
crete Wavelet Transform (DWT), a signal processing 
technique for extracting information based on sub-
coding. It can represent data by a set of coarse and 
detailed values in different scales. DWT is frequently 
used in many practical applications such as audio 
analysis, image compression and video encoding. In 
image compression DWT is used to decompose data into 
the horizontal and vertical characteristics. It is a one-
dimensional transform in nature, but applying it in the 
horizontal and vertical directions forms a two-dimen-
sional transform, which results in four smaller images. 
The DWT process can be repeated a number of times and 
it is then called a dyadic decomposition (see Fig. 3). The 
Cohen-Daubechies-Feauveau wavelet is one of the most 
commonly used set of discrete wavelet transforms in 
image compression. There are two versions of CDF 
wavelets: reversible integer-to-integer (CDF 53) and non-
reversible real-to-real (CDF 97) wavelet transforms. The 
reversible transform uses only rational filter coefficients 
during compression and no data is lost due to rounding. It 
is called lossless compression. The non-reversible trans-
form called lossy compression uses non-rational filter 
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coefficients. Both of these transforms are implemented 
in the JPEG2000 image compression standard [8], 
which has better performance compared to the JPEG 
standard [7].  
 
VI.1.  Algorithm 

 DWT can be realized by the lifting-based wavelet trans-
form proposed by Sweldens [8]. Lifting-based filtering is 
done by using four lifting steps, which update alternately 
odd or even sample values. Figure 4 shows a basic 
scheme of the DWT algorithm. First, in the horizontal 
transform a source image data rows using a lifting 
procedure are decomposed into a set of even samples and 
a set of odd samples. Then, samples are exposed to the  
  
 

 

Fig. 3. Dyadic decompression used in JPEG2000 
 
 

 
Fig. 4. DWT97 algorithm scheme 

deinterleaving procedure and the image data is transposed 
to represent rows as columns. The whole process is re-
peated to create a 2-dimensionally transformed image data. 

 
VI.2.  Cell B.E. implementation 

 The sequential algorithm given in [8] can be 
parallelized without any major changes by using the 
many – loops approach and computing it in two steps – 
horizontally (on all rows) and then vertically (on all 
columns or transposed rows). Columns are processed 
after rows, so there is a need to synchronize computa-
tions. However this approach does not use the Cell 
architecture efficiently, therefore we developed a parallel 
algorithm called tiled DWT which decomposes the 
problem differently. While the base DWT works on an 
image as a whole, the tiled version splits images into 
rectangles of the same size and invokes DWT on them 
independently. Our experiments showed that using tiled 
DWT improved the speed almost twice. 
 
VI.3. GPU implementation 

 For GPU implementation, the problem was also 
decomposed as in Cell's tiled DWT. An image is divided 
into multiple tiles, and the DWT algorithm is applied on 
each tile. Each thread block processed one tile in the 
image. Compared to the non-tiled version, it resulted in 
a reduced number of kernel invocations and calls to the 
global memory which optimized the amount of calcula-
tions for a single thread to overlap memory transactions. 
It should be stressed that although the concept of 
parallelization of the algorithm for both GPU and Cell 
B.E. is similar, the optimization details are completely 
different. 
 
VI.4.  Results 

 The most important difference between Cell B.E. and 
the GPU is that Cell relies on heavy persistent threads, 
whereas GPU paradigm is to use very light-weighted 
threads. This has a huge impact on programming style for 
those architectures, resulting in the development of  
separate approaches. In our opinion the biggest drawback 
of GPU computing is a relatively high cost of memory 
transfers, which is not a problem in case of Cell B.E. 
thanks to the Element Interconnect Bus that allows the 
memory transfer and computation to overlap. On the 
other hand, the biggest drawback of Cell B.E. seems to be 
the PPE which uses a noticeable amount of time to 
initialize the threads compared to negligible time of 
thread creation in GPUs. The difference is presented in 
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Table 2. For the JPEG2000 application, heavy thread 
creation in Cell B.E. turned out to have a smaller impact 
on the overall performance than the long time of memory 
copy in GPU. As a result, Cell B.E. implementation  
achieved better speedup (see Table 3), although both 
implementations were very good compared to the 
sequential CPU version. However, in both cases in order 
to achieve satisfying results, a considerable number of 
optimization techniques had to be applied. 
 

Table 2. Cell QS21 and GPU comparison 

Device 
Initiali-
zation 

Memory copy   Computations 

Cell B.E. : QS21 10,8 ms 
altogether 0.7ms  

(using double buffering) 

GPU: GTX 280 0.15 ms 16.9 ms 2.29 ms 

 
 

Table 3. Cell QS21 and GPU comparison: total speedup 

Device Time Speedup 

x86 1500 ms 1.0x 

Cell B.E. : QS21 11.5 ms 130.43x 

GPU: GTX 280 19.5 ms 76.92x 

 
 
External applications and other works 

 Apart from the topics described in this paper, we are 
involved in many other application areas which are 
expected to gain performance increase or computation 
quality by porting them to the new architectures. We 
cooperate closely with several other application teams and 
support them with our expertise in porting the existing 
applications to various new architectures, or provide them 
with access to experimental testbeds that consist of the 
most sophisticated GPU solutions, IBM PowerXCell based 
servers or modern FPGA boards.  
 Let us mention some of the most interesting application 
areas we are active in:  

• efficient implementation of DNA alignment algo-
rithms with backtracking routine on multiple GPUs, 

• general-purpose quantum-chemical calculations, in-
cluding Hartree-Fock methods in Gaussian basis 
sets, DFT in Gaussian basis sets, DFT in Slater-type 
basis sets and others,  

• medical image processing and analysis,  
• complex protein structure simulation in biochemistry 

and biotechnology. 

VII.  CONCLUSIONS 
 
 The use of new accelerated hardware (such as GPUs and 
Cell B.E.) for high performance computing is in line with 
the current trend of “green computing” – increasing the 
computational power by using a lot of low power com-
puting cores instead of using singular cores of high 
complexity. These architectures require tight application to 
hardware mapping. In this paper we have presented the 
characteristics of each architecture and several proof-of-
concept applications from different domains, to demon-
strate how to efficiently exploit the computational capabili-
ties of this hardware.  
 Using three case studies (CFD, Motion Tracking and 
JPEG2000) we have showed a number of important 
guidelines which should be considered while porting new 
applications to accelerated hardware. The most important 
learned lessons are: 

• the proportion of computations to memory opera-
tions should allow to overlap costly data transfers 
with massively parallel computations; 

• applications with structured accesses to memory and 
local computations are naturally suited for these 
architectures; 

• calculations are efficient only for the datasets large 
enough to make use of all computational cores; 
otherwise the overheads, such as threads launching 
time, may degrade the performance; 

• although codes will generally be more complex than 
for standard CPU, proper use of different memory 
structures can even simplify the code and program-
ming effort; 

• accelerated hardware architectures have different 
characteristics (concerning e.g. thread allocation and 
memory structures); it should be taken into account 
when choosing the most appropriate architecture for 
a given application. 

 All things considered, the use of the new accelerated 
hardware requires a considerable programming effort. 
However, if applied properly, it can satisfy very demanding 
computational requirements. The computations are done at 
lower cost, solutions are more scalable and/or more precise, 
and can reach impressive speed-ups, enabling for example 
an advanced real-time video processing or physical 
simulations. Considering fast development of new hard-
ware architectures, dedicated languages and R&D com-
munities arising around them to help end users with their 
applications, we envision that many-core, hybrid solutions 
using new accelerated hardware are an important point in 
the development of e-Infrastructure. 
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