
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 71-79

I. INTRODUCTION

 Nowadays, major hardware vendors redirect their road-
maps toward highly parallel and power-efficient devices.
They focus on increasing the number of low power com-
puting cores rather than increasing their complexity and
clock frequency. This paradigm shift means that further
substantial progress in performance require highly parallel
software codes and tight application to hardware mapping.
However, we should note that end users are interested in
the results of programming, and not programming itself.
Therefore, we have started various programming and
support activities at Poznań Supercomputing and Net-
working Center (PSNC) in order to help end users with the
software development on new accelerated hardware
architectures to meet their demanding computing require-
ments. We envision that many-core, hybrid and accelerated
computing will play a significant role in the future e-Infra-
structure in Poland and worldwide. Thus we have decided
to focus on hardware devices commonly available for end
users, as their great computational power comes along with
low price and power consumption. Two hardware architec-
tures fulfilling these requirements were designated: nVidia
GPU with CUDA programming environment standing for
GPGPU architecture, and Cell B.E representing a more

hybrid solution. We are working with leading IT vendors,
such as nVidia, IBM or Intel. We are also involved in some
R&D efforts in national-wide infrastructure projects, e.g.
Pl-GRID or POWIEW, and we have managed to create
many proof-of-concept applications scenarios demonstrat-
ing added values behind the accelerated hardware applied
for High Performance Computing (HPC). This paper aims
to present some example algorithms, representing com-
pletely different applications areas, in particular Computa-
tional Fluid Dynamics (CFD) and image processing – motion
tracking and JPEG2000 compression, and the way the new
accelerated hardware can be applied for efficient computing.
Moreover, this paper shows the main accelerated hardware
characteristics, their influence on parallel programming and
experimental results of application benchmarks comparing
traditional CPU-based with GPU and Cell-based approaches.
Both advantages and disadvantages of new hardware
architectures and programming environments are presented.
Finally, the paper is concluded with a number of best
practices, experiences and learned lessons that we want to
share with end users porting or planning to run their own
applications on accelerated hardware.
 The paper is organized as follows. Sections II and III
briefly describe the GPU architecture (NVIDIA GTX 280
graphic card) and Cell B.E (QS21) architecture, respec-

High Performance Computing
on New Accelerated Hardware Architectures

Marek Błażewicz, Krzysztof Kurowski, Bogdan Ludwiczak, Krystyna Napierała

Poznań Supercomputing and Networking Center

Applications Department
ul. Noskowskiego 10, 61-704 Poznań, Poland,

e-mail: {marqs/krzysztof.kurowsk/bogdanl/krysia}@man.poznan.pl

(Received: 15 July 2010; revised: 29 October 2010; published online: 23 November 2010)

Abstract: This paper presents recent work that has been performed in the context of high performance computing and hybrid
architectures at Poznan Supercomputing and Networking Center. Three algorithms: JPEG2000 – compression/decompression,
computational fluid mechanics and motion tracking have been parallelized on various architectures and compared to reference
sequential applications. The performance results, implementation issues and best practices are discussed as well.
Key words: high performance, hybrid computing, NVIDIA CUDA, GPGPU, hardware accelerators

user
Tekst maszynowy
CMST SI(1) 71-79 (2010)

user
Tekst maszynowy
DOI:10.12921/cmst.2010.SI.01.71-79

user
Tekst maszynowy

M. Błażewicz, K. Kurowski, B. Ludwiczak, K. Napierała 72

tively. Sections IV-6 present the selected proof-of-concept
applications implemented in PSNC on GPUs and Cells:
Computational Fluid Dynamics, Motion Tracking and
JPEG2000 compression. These sections describe the gen-
eral ideas of the problem, GPU implementation details and
obtained experimental results. Section VII presents other
users of PSNC's accelerated hardware infrastructure and
their applications. Section VIII summarizes this work.

II. GPU ARCHITECTURE

 The increasing programmability of graphics process-
ing units (GPUs) allows to use these chips not only for
specific graphics computations for which they were
designed, but for general-purpose computing problems.
This field is called GPGPU (General-Purpose computa-
tion on GPUs).
 Programmable GPU is a highly parallel, multi-
threaded, many-core processor with a very high computa-
tional power and memory bandwidth. The main difference
between CPU and GPU is that graphic cards, specialized
for graphics rendering (e.g. compute-intensive and highly
parallel computation), have more transistors devoted to
data processing than to data caching and flow control. As
a result, while computational efficiency is much higher,
memory transfers between GPU and CPU can be a bottle-
neck in some applications.
 GTX 280 graphic card consists of 30 multiprocessors
(MP) with texture filtering and addressing units, a texture
cache, a set of registers, a cache for constants, and
a parallel data cache. Each multiprocessor has eight
stream processors (SP). A multiprocessor is responsible
for creating, managing, and executing concurrent threads.
Lightweight thread creation, zero-overhead thread
scheduling and fast barrier synchronization efficiently
support programs that can be decomposed into parallel
subproblems according to SIMD architecture (single
instruction – multiple data).
 Threads are arranged in blocks, each block being
executed on one multiprocessor. To manage hundreds of
threads, a multiprocessor creates, manages, schedules and
executes threads in groups of 32 parallel threads called
warps. As soon as a block of threads finishes its
calculations, another block is launched to a multipro-
essor. A warp executes one common instruction at a time,
so full efficiency is realized when all 32 threads of a warp
agree on their execution path. If threads of a warp diverge
via a data- dependent conditional branch, the warp
serially executes each branch path taken, disabling
threads that are not on that path. When all paths com-

plete, the threads converge back to the same execution
path. As a consequence, to improve the performance
a programmer should provide as few divergent
instructions in a warp as possible.
 Due to these characteristic features of GPUs, not all
of the problems can be mapped efficiently to this
architecture. The user will achieve the best results for
problems which require massive computations performed
locally, so that fast computational units could overlap
relatively slow transfers to the global memory. For
example, an image processing algorithm that performs the
same operation on every pixel of an image can be very
efficiently ported to GPU architecture – each thread can
be assigned one pixel and perform the calculations in
a fast and highly parallel manner. Other good examples of
applications well suited to GPUs are: video and sound
processing, cryptography, bioinformatics, genetics, chemical
and physical simulations, weather forecasting and climate
research. In this paper we present three sample applications
which we efficiently ported to GPU architecture, to show the
drawbacks and advantages of this architecture: Computa-
tional Fluid Dynamics, JPEG2000 compression and Motion
Tracking algorithm.

III. CELL B.E. ARCHITECTURE

 Cell Architecture grew from a challenge posed by
Sony and Toshiba to provide power-efficient and cost-
effective high-performance processing for a wide range
of applications, including the most demanding consumer
appliance: game consoles. Cell B.E. (CBEA) is an inno-
vative solution based on the analysis of a broad range of
workloads in areas such as cryptography, graphics trans-
form and lighting, physics, fast-Fourier transforms (FFT),
matrix operations, and scientific workloads.
 Cell B.E. processor is a multi-core chip comprised of
a 64-bit Power Architecture processor core and eight
synergistic processor cores, capable of massive floating
point processing, optimized for compute-intensive work-
loads and broadband rich media applications. A high-
speed memory controller and high-bandwidth bus
interface are also integrated on-chip. The breakthrough
multi-core architecture and ultra high-speed communi-
cations capabilities deliver vastly improved, real-time
response, in many cases 10 times the performance of the
latest PC processors. The Cell BE architecture is OS
neutral and supports multiple operating systems. In this
paper we present our implementation of JPEG2000
compression standard realized on Cell B.E. and GPU to
compare the two architectures.

High Performance Computing on New Accelerated Hardware Architectures 73

IV. COMPUTATIONAL FLUID DYNAMICS

 Computational Fluid Dynamics (CFD) is one of the
branches of fluid mechanics which uses numerical methods
and algorithms to solve and analyze fluid flows. CFD is
used in various domains, such as oil and gas reservoir
uncertainty analysis, aerodynamic body shapes optimi-
zation (e.g. planes, cars, ships, sport helmet, skis), natural
phenomena analysis, numerical simulation for weather
forecasting or realistic visualizations. The CFD problem is
very complex and needs a lot of computational power to
obtain the results in reasonable time. However, because in
fluid dynamics the behavior of particles depends only on
the behavior of local, surrounding particles, CFD is well
suited for the GPU architecture.

IV.1. Algorithm

 In this work the Navier-Stokes equations were imple-
mented. They are derived from Newton's Second Law and
describe the continuous incompressible fluid. The Navier-
Stokes equations are [1]:

 .Du φ v u f
Dt

= −∇ + Δ + (1)

 0,u∇ ⋅ = (2)

where:

 ,D u
Dt t

∂= + ⋅∇
∂

 (3)

 ,
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

 (4)

2 2 2

2 2 2x y z
∂ ∂ ∂Δ = + +
∂ ∂ ∂

 (5)

and
v – is a coefficient of kinematic viscosity of the fluid,
u – is the velocity of the fluid,
f – represents various body forces (like gravity),
φ – is the pressure divided by the constant density of the

 fluid.
 To perform the computations on CPU or GPU, the
mathematical model had to be discretized. Fluid was
divided into the Euler mesh. Each part of the mesh
represents a small part of the fluid defined by velocity and
pressure. Parameters defining the fluid (pressure and
velocity) are iteratively computed for the whole mesh by
simulating fluid position in the next period of time ().t t+ ∂

 In the incompressible continuous model of fluid dy-
namics, to preserve the law of conservation of the mass the
velocity divergence has to be equal to zero (Equation 2).
However, in the discrete model, due to the inaccuracy of
calculations, the velocity divergence becomes a non-zero
value. In order to fulfill the requirements of the incom-
pressible fluid, velocity divergence is minimized during the
process of pressure calculation (see [2] for details). This
process has low computational complexity, but it is the
most time-consuming part of the algorithm, because it
needs to be launched iteratively in order to gain the desired
accuracy.
 During the discrete simulation of fluid flow, the
quantum of time t∂ has to be small enough to guarantee
the stability of the mathematical model. Otherwise it results
in indeterministic model behavior. The value of t∂ was
determined during experimental analysis and it depended
on mesh granulation..
 The surface of the fluid is defined by the MAC [3]
(Marker And Cell) method. Each particle is moved by the
velocity of this part of the mesh in which the particle
resided. Fluid properties are calculated only for those parts
of the mesh which contain some particles. The particles do
not take part in the fluid computation, they just mark the
position of the fluid and especially the surface.

IV.2. GPU Implementation

 Taking into consideration that all operations in the
equations are performed in the close neighborhood for each
cell in the Euler's grid, this algorithm fits the GPU
architecture very well. In each iteration, every block
calculates the positions of particles in its part of the mesh
and exchanges borderline conditions with neighboring
blocks after every iteration. In this way heavy computa-
tions can overlap occasional transfers to global memory.
What is more, the resolution of the Euler grid may be very
easily enlarged (by allocating new computational blocks),
and thus the algorithm used in this work is very scalable –
it can either perform calculations more accurately by
reducing the grain of calculations, or perform simulations
for larger scale.

IV.3. Results

Simulation was tested on 6 different sizes of mesh, and
the results were averaged over 1000 time steps. The tests
were performed on nVidia GPU GTX 280 and the speed-up
was measured over the referential sequential CPU code run
on Intel CPU Core 2 Quad Q9550. First of all, we observed
that not all functions of CFD simulation benefited from

M. Błażewicz, K. Kurowski, B. Ludwiczak, K. Napierała 74

porting to GPU in the same way. The functions that
benefited the most from parallelization were those with
a great amount of homogeneous computations and a small
number of conditional statements. Others could not be well
parallelized onto a graphic device because of the architec-
ture limitations. Table 1 shows speed-ups for all functions
used in our CFD model. The worst speed-up was observed
for recalculating surface and border criteria function
which is responsible for tracking the fluid interface inside
the computational grid and changing the status of grid cells.
It consists of conditional statements and data transfers from
one part of the grid to another. This type of operations is
executed effectively on CPU, but slowly on GPU. That is
why this function runs only 1 to 4 times faster than on
CPU. In spite of slow speed-up (or sometimes even
slowdown), in most cases it is still more profitable to
execute this portion of the program on GPU, because
copying data between GPU and CPU would be more time-
consuming than performing it on GPU, even slower but
without data transfers.

The biggest speed-up is observed for particles advec-
tion function which moves the particles over the
computational grid using the linearly interpolated in the
particle's location speed. On GPU, the interpolation is
computed by GPU's hardware in a structure called texture.
The operation is very fast and the required data is cached,
which makes it even more profitable. On CPU, the
interpolation has to be implemented as a part of the
software and thus is much slower. Moreover, the particles
advection function performs very homogeneous compu-
tations and has fever conditional statements than other
functions which represent a desired model of computations
for the GPU architecture.

Figure 1 presents speed-up of total CFD simulation on
GPU over a sequential code on CPU, depending on the
mesh size. The GPU device is designed to compute massive
amounts of data in parallel. When computations are launched

Fig. 1. Speed-up of GPU implementation depending
on the mesh size

over a small (for this architecture) portion of data (domain
size up to 256), the speed-up is not so significant because it
does not take advantage of all available computational
power. For domains smaller than 256, some computational
units have no work assigned and stay idle. Larger domains
use all available computational units, so the growth of
speed-up is much slower. However, it still increases
because the total time becomes less and less affected by
a constant time of launching the code on external device.
The irregularity of the second phase is caused by the fact
that the computational blocks are not decomposed equally
on multiprocessors at the beginning. This fact becomes less
important with the growth of the computational domain and
thus the deployed computational blocks. For the largest
tested domain, the GPU version was up to 75 times faster
than the sequential code.

V. MOTION TRACKING

 Motion tracking is a process of identifying a moving
object (or several ones) in time in a video stream from

Table 1. Speed-up of different functions used in CFD model

Size Total time
Particles
advection

Calculating
divergence

Calculating
Z factor

Calculating
pressure

Calculating
velocity

Recalc. surface
and border

criteria

64 9.72 51.34 1.04 3.94 2.45 4.48 0.3

128 22.2 87.61 3.12 10.83 5.95 17.61 0.82

256 43.16 105.73 26.38 25.18 19.16 28.38 1.78

512 49.35 102.66 37.34 31.95 23.82 35.56 2.64

1024 66.74 131.6 59.37 49.36 32.33 45.85 3.9

1536 74.46 137.75 49.56 63.19 41.67 49.78 3.31

Mesh size

S
pe

ed
 u

p

High Performance Computing on New Accelerated Hardware Architectures 75

a camera. The process of motion tracking can be divided
into two challenging tasks:
1. How to choose the good targets (features) that will be

easy to track.
 Good features to track are generally those parts of an

image which have a high contrast. Therefore, neither
plain regions nor edges are of interest (the former
would be difficult to track in any direction, the latter
can be tracked in only one dimension). The interesting
points are called “corners” - points that are traceable in
two dimensions.

2. How to associate target locations in consecutive video
frames.

 This is especially difficult when the objects are moving
fast relative to the frame rate, the image is blurry, the
objects rotate in third dimension, there are rapid
lighting changes or another object obscures the tracked
object. The most common approach compares features
between consecutive frames as it is considered to be
robust to rotation and lighting changes.

Fig. 2. Feature tracking: Visualization of movement direction

 The information about shifts of the corners between
frames in a video stream can be used for various purposes.
First, speeds of the objects in the scene can be tracked.
Second, by analyzing the direction of movement, features
belonging to the static landscape can be distinguished from
the moving object (see Fig. 2 with our visualization of
movement direction). Another information that can be
retrieved from corner tracking is the depth of an image. If
the video shows a static scenery and the camera constantly
moves along, the depth of a picture can be estimated as the
objects close to the camera move faster than the objects in
a distance. Common applications include sports analysis,

robotics, military tracking, industrial inspection and video
surveillance.

V.1. Algorithm

 To find interesting features in an image to track, the
Harris corner detector is used. This approach is a popular
point detector due to its strong invariance to rotation,
scale, illumination variation and image noise. The Harris
corner detector is based on the local auto-correlation
function of a signal, where the local auto-correlation
function measures local changes of the signal with
patches shifted by a small amount in different directions.
If changes of a signal are significant independently of the
direction of a shift, it means a corner was found.
 To calculate the Harris measure of “cornerness” of
a pixel, first xI and yI derivatives of an image under
a window are calculated. xI and yI derivatives are cal-
culated by convolving the image with two separable
Sobel filters. Then the matrix that captures the intensity
structure of the local neighborhood is computed and its
eigenvalues are determined. By analyzing the eigenvalues

1λ and 2 ,λ we can describe the characteristic of a point.
Three situations can be distinguished:
1. If both 1λ and 2λ are small, it means that the

analyzed point is a part of a plain region.
2. If one eigenvalue is high and the other low, an edge

was found.
3. If both eigenvalues are high, it indicates a corner.
 For more details on this algorithm, see [4].
 Having calculated the cornerness values for each
point in the image, we set a threshold over which we con-
sider a point as a good feature to track. To avoid having
features located very close to each other, we divide an
image into small parts and choose one representative
(best) corner for each region.
 The standard approach to feature tracking is to measure
the correlation between the feature in one image and
a point shifted by some distance in the consecutive frame.
By comparing the correlations in the search region, we
choose the best match as the new position of the tracked
feature. Among the strategies to measure the correspon-
dence between two features under mask, the SSD (sum of
squared differences) is considered to be of good precision,
but very time-consuming and hence applicable only in
non-real-time programs [5]. The cost of computations de-
pends mostly on the range of the search region. Confining
to a small search region saves search time and makes the
search process easier, but runs the risk of the tracked
feature leaving the search region entirely between frames.
The other factor that influences the performance but also

M. Błażewicz, K. Kurowski, B. Ludwiczak, K. Napierała 76

the time of computations is the size of patch which we treat
as a feature and correlate between the images. Again, a
small patch saves time, but is less accurate.

V.2. GPU Implementation

 As the calculations for pixels are mostly local, the
Harris algorithm can be effectively parallelized by dividing
the image into smaller regions and assigning each region to
a different block of threads. Each block calculates the
cornerness for each pixel in its region and sends the
position of the best pixel (representative of the region) back
to host. The image data is saved in a texture memory.
Using a texture provides a fast and cached access to the
data and is especially well suited for image processing. For
example, the methods for accessing the texture provide safe
access to outside-the-border points. On CPU, safe access to
the points behind a picture border must be explicitly
ensured by a programmer. By implementing a more efficient
algorithm on GPU, larger search regions and larger patches
can be chosen, making the algorithm more reliable.
 In feature tracking, the most natural way to parallelize
the algorithm is to let each block calculate the best shift for
one feature. It can be risky if there are only few features to
track (the number of block would be too small) – the best
performance will be achieved if there are more than
30 features, which is usually the case.

V.3. Results

 Performances of the two functions (feature finding
and feature tracking) were analyzed independently.
Results achieved on GPU were compared to the results of
running the analogous serial code on one core on CPU.
We observed the speed-up of 3,66 for feature finding in
an HD image compared to CPU. The Harris corner
detector requires high memory occupancy, which pre-
vents the GPU version from efficient overlapping the
memory transfers with computations, thus the results
were not impressive. The experiments for feature
tracking were run on two video streams, one producing
around 40 corners in feature finding function, and the
other producing around 70 corners. A comparison was
drown to find out how the number of tracked features
influences the performances on CPU and GPU. Here the
differences were more significant, because memory
requirements were lower and the calculations were more
suited to GPU architecture. The data could be stored in
texture memory, which enabled to use built-in manage-
ment of outside-the-border pixels and interpolation of
data. This simplified the code compared to CPU, where

safe access to the points behind a picture border had to be
explicitly ensured by a programmer.
 The results showed that the time on CPU increases
linearly with the number of features while the time on
GPU dos not change. As a result, for 40 features the GPU
version was 45 times faster than CPU, while for 70
features the speedup was of 58. The GPU algorithm is
therefore more scalable and can be applied for real-time
tracking in high-resolution video stream.

VI. JPEG2000

 JPEG2000 is a new standard for picture encoding in
digital movies. A movie with 4K (4096 × 2160) resolution
demands a very fast real time encoding solution to
distribute it, for eexample,. via live broadcasts. Although
there are some hardware implementations that offer real
time encoding, they are costly because specialized hard-
ware is required. Current consumer-level architectures
with software implementations can provide low-cost
alternative to hardware solutions. Therefore, we wanted
to use new hybrid computing architectures, GPGPU and
CELL B.E., to implement low-cost software base alterna-
tive solutions and at the same time to compare these two
architectures.
 The most important and computationally costly part
of the JPEG2000 image compression standard is a Dis-
crete Wavelet Transform (DWT), a signal processing
technique for extracting information based on sub-
coding. It can represent data by a set of coarse and
detailed values in different scales. DWT is frequently
used in many practical applications such as audio
analysis, image compression and video encoding. In
image compression DWT is used to decompose data into
the horizontal and vertical characteristics. It is a one-
dimensional transform in nature, but applying it in the
horizontal and vertical directions forms a two-dimen-
sional transform, which results in four smaller images.
The DWT process can be repeated a number of times and
it is then called a dyadic decomposition (see Fig. 3). The
Cohen-Daubechies-Feauveau wavelet is one of the most
commonly used set of discrete wavelet transforms in
image compression. There are two versions of CDF
wavelets: reversible integer-to-integer (CDF 53) and non-
reversible real-to-real (CDF 97) wavelet transforms. The
reversible transform uses only rational filter coefficients
during compression and no data is lost due to rounding. It
is called lossless compression. The non-reversible trans-
form called lossy compression uses non-rational filter

High Performance Computing on New Accelerated Hardware Architectures 77

coefficients. Both of these transforms are implemented
in the JPEG2000 image compression standard [8],
which has better performance compared to the JPEG
standard [7].

VI.1. Algorithm

 DWT can be realized by the lifting-based wavelet trans-
form proposed by Sweldens [8]. Lifting-based filtering is
done by using four lifting steps, which update alternately
odd or even sample values. Figure 4 shows a basic
scheme of the DWT algorithm. First, in the horizontal
transform a source image data rows using a lifting
procedure are decomposed into a set of even samples and
a set of odd samples. Then, samples are exposed to the

Fig. 3. Dyadic decompression used in JPEG2000

Fig. 4. DWT97 algorithm scheme

deinterleaving procedure and the image data is transposed
to represent rows as columns. The whole process is re-
peated to create a 2-dimensionally transformed image data.

VI.2. Cell B.E. implementation

 The sequential algorithm given in [8] can be
parallelized without any major changes by using the
many – loops approach and computing it in two steps –
horizontally (on all rows) and then vertically (on all
columns or transposed rows). Columns are processed
after rows, so there is a need to synchronize computa-
tions. However this approach does not use the Cell
architecture efficiently, therefore we developed a parallel
algorithm called tiled DWT which decomposes the
problem differently. While the base DWT works on an
image as a whole, the tiled version splits images into
rectangles of the same size and invokes DWT on them
independently. Our experiments showed that using tiled
DWT improved the speed almost twice.

VI.3. GPU implementation

 For GPU implementation, the problem was also
decomposed as in Cell's tiled DWT. An image is divided
into multiple tiles, and the DWT algorithm is applied on
each tile. Each thread block processed one tile in the
image. Compared to the non-tiled version, it resulted in
a reduced number of kernel invocations and calls to the
global memory which optimized the amount of calcula-
tions for a single thread to overlap memory transactions.
It should be stressed that although the concept of
parallelization of the algorithm for both GPU and Cell
B.E. is similar, the optimization details are completely
different.

VI.4. Results

 The most important difference between Cell B.E. and
the GPU is that Cell relies on heavy persistent threads,
whereas GPU paradigm is to use very light-weighted
threads. This has a huge impact on programming style for
those architectures, resulting in the development of
separate approaches. In our opinion the biggest drawback
of GPU computing is a relatively high cost of memory
transfers, which is not a problem in case of Cell B.E.
thanks to the Element Interconnect Bus that allows the
memory transfer and computation to overlap. On the
other hand, the biggest drawback of Cell B.E. seems to be
the PPE which uses a noticeable amount of time to
initialize the threads compared to negligible time of
thread creation in GPUs. The difference is presented in

M. Błażewicz, K. Kurowski, B. Ludwiczak, K. Napierała 78

Table 2. For the JPEG2000 application, heavy thread
creation in Cell B.E. turned out to have a smaller impact
on the overall performance than the long time of memory
copy in GPU. As a result, Cell B.E. implementation
achieved better speedup (see Table 3), although both
implementations were very good compared to the
sequential CPU version. However, in both cases in order
to achieve satisfying results, a considerable number of
optimization techniques had to be applied.

Table 2. Cell QS21 and GPU comparison

Device
Initiali-
zation

Memory copy Computations

Cell B.E. : QS21 10,8 ms
altogether 0.7ms

(using double buffering)

GPU: GTX 280 0.15 ms 16.9 ms 2.29 ms

Table 3. Cell QS21 and GPU comparison: total speedup

Device Time Speedup

x86 1500 ms 1.0x

Cell B.E. : QS21 11.5 ms 130.43x

GPU: GTX 280 19.5 ms 76.92x

External applications and other works

 Apart from the topics described in this paper, we are
involved in many other application areas which are
expected to gain performance increase or computation
quality by porting them to the new architectures. We
cooperate closely with several other application teams and
support them with our expertise in porting the existing
applications to various new architectures, or provide them
with access to experimental testbeds that consist of the
most sophisticated GPU solutions, IBM PowerXCell based
servers or modern FPGA boards.
 Let us mention some of the most interesting application
areas we are active in:

• efficient implementation of DNA alignment algo-
rithms with backtracking routine on multiple GPUs,

• general-purpose quantum-chemical calculations, in-
cluding Hartree-Fock methods in Gaussian basis
sets, DFT in Gaussian basis sets, DFT in Slater-type
basis sets and others,

• medical image processing and analysis,
• complex protein structure simulation in biochemistry

and biotechnology.

VII. CONCLUSIONS

 The use of new accelerated hardware (such as GPUs and
Cell B.E.) for high performance computing is in line with
the current trend of “green computing” – increasing the
computational power by using a lot of low power com-
puting cores instead of using singular cores of high
complexity. These architectures require tight application to
hardware mapping. In this paper we have presented the
characteristics of each architecture and several proof-of-
concept applications from different domains, to demon-
strate how to efficiently exploit the computational capabili-
ties of this hardware.
 Using three case studies (CFD, Motion Tracking and
JPEG2000) we have showed a number of important
guidelines which should be considered while porting new
applications to accelerated hardware. The most important
learned lessons are:

• the proportion of computations to memory opera-
tions should allow to overlap costly data transfers
with massively parallel computations;

• applications with structured accesses to memory and
local computations are naturally suited for these
architectures;

• calculations are efficient only for the datasets large
enough to make use of all computational cores;
otherwise the overheads, such as threads launching
time, may degrade the performance;

• although codes will generally be more complex than
for standard CPU, proper use of different memory
structures can even simplify the code and program-
ming effort;

• accelerated hardware architectures have different
characteristics (concerning e.g. thread allocation and
memory structures); it should be taken into account
when choosing the most appropriate architecture for
a given application.

 All things considered, the use of the new accelerated
hardware requires a considerable programming effort.
However, if applied properly, it can satisfy very demanding
computational requirements. The computations are done at
lower cost, solutions are more scalable and/or more precise,
and can reach impressive speed-ups, enabling for example
an advanced real-time video processing or physical
simulations. Considering fast development of new hard-
ware architectures, dedicated languages and R&D com-
munities arising around them to help end users with their
applications, we envision that many-core, hybrid solutions
using new accelerated hardware are an important point in
the development of e-Infrastructure.

High Performance Computing on New Accelerated Hardware Architectures 79

References

 [1] A.J. Chorin, J.E. Marsden, A Mathematical Introduction to

Fluid Dynamics (2000).
 [2] F.H. Harlow, J.E. Welch, Numerical Calculation of Time-

Dependent Viscous Incompressible Flow of Fluid with Free
Surface (1965).

 [3] M. Matyka, Computer Simulations in Physics (2002).
 [4] K.G. Derpan, The Harris Corner Detector (2004).
 [5] J.P. Lewis, Fast Normalized Cross-correlation, Industrial

Light & Magic (1995)
 [6] Nov. 2000. ISO/IEC 15444-1: Information technology, JPEG

2000 image coding system – Part 1: Core coding system,
2000.

 [7] ISO/IEC 10918-1: Information technology, Digital com-
pression and coding of continuous still images: Require-
ments and guidelines, 1994.

 [8] W. Sweldens, The lifting scheme: a new philosophy in
biorthogonal wavelet constructions, in: proceedings of the
SPIE. Wavelet Applications in Signal and Image Process-
ing III, 2569, 68-79S (1995).

MAREK BŁAŻEWICZ has graduated Computer Science at Poznań University of Technology. He works in
Applications Department at Poznań Supercomputing and Networking Center. His research is focused on new
hardware architectures and designing efficient and computationally intensive applications for them.

KRZYSZTOF KUROWSKI holds the PhD degree in Computer Science and he is leading now Applications
Department at Poznań Supercomputing and Networking Center, Poland. He was involved in many EU-funded
R&D projects in the areas of Information Technology and Grids over the last few years, including GridLab,
inteliGrid, HPC-Europa, or QosCosGrid. He was a research visitor at University of Queensland, University of
Wisconsin, University of Southern California, and CCT Louisiana University. His research activities are
focused on the modeling of advanced applications, scheduling and resource management in HPC and networked
environments. Results of his research efforts have been successfully presented at many international conferences
and workshops.

BOGDAN LUDWICZAK graduated from Poznań University of Technology in Computer Science. He is a member
of Applications Department at Poznań Supercomputing and Networking Center, Poland and now he is a leader
of New Architectures Lab. He was involved in many EU-funded R&D projects in the areas of Information
Technology and Grids over the last few years, including GridLab, ACGT or OMII-Europe. His research
activities are focused on the modelling of advanced applications for modern hybrid computer architecture and
advanced visualisations.

KRYSTYNA NAPIERAŁA is a PhD student at Poznań University of Technology in the Institute of Computing
Science, Laboratory of Intelligent Decision Support Systems. Her PhD research concerns learning strategies
from imbalanced data. She also works in Applications Departament at Poznań Supercomputing and Networking
Center on GPU accelerated applications.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2010, 71-79

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

