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Abstract: In the paper [1], series of upper bounds and two lower ones for the partition function of the Hubbard model have been 
derived. The numerical values of upper and lower approximants have also been calculated for small systems for U > 0 case. Here the 
numeric examination of bounds is continued: the temperature behaviour of approximants is studied and the U < 0 case is considered.
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1. INTRODUCTION

In this paper, the free energy of the Hubbard model is 
studied. The Hubbard Hamiltonian can be written as [2]

larger region of temperatures, and we explore the model 
with U < 0.

HHub(1,U)=-t > (cacjc +h.c.)+UXn,(D
i

IL SUMMARY OF PREVIOUS RESULTS 
FOR UPPER AND LOWER BOUNDS

where: i, j are site indices; we assume that all sites form 
a finite subset of Z". t is the hopping constant and U is the 
Coulomb interaction constant, are creation 
(annihilation) operators for fermion with spin a on the z-th 
site; ni o = cc; a is the particle number operator.

In the paper [1], rigorous upper and lower bounds for 
partition functions of the Hubbard model have been 
derived. These upper and lower bounds are expressible by 
certain objects related to corresponding Falicov-Kimball 
models [3, 4] (partition functions and eigenvectors).

The Hamiltonian of the Falicov-Kimball model with 
mobile particles "+" and immobile particles "" is

FFK.+ (t, U) = -t > (cl+cj,+ + h-c-) + U> nuni,- (2)
(i,j) i

Analogically, HFK is a Hamiltonian of the FKM with 
being mobile particles and "+" being immobile ones.
In [1], the numerical precision of these bounds has been 

examined for small systems. In the present paper we 
continue the numeric examination of upper and lower 
bounds. Our aim is two-fold: we examine the bounds in

The upper and lower bounds for the partition functions 
of the Hubbard model are expressible by certain properties 
of the Falicov-Kimball models (FKM). Upper bounds 
follow [1] from the Golden-Thompson [5, 6] as well as 
Holder [7] inequalities. Upper bounds form a monotonic 
(non-decreasing)) sequence {An}. The first member thereof 
(“zeroth” approximant, Ao) needs the knowledge of parti­
tion function(s) of the FKM only. It is the simplest one, but 
also the least precise. The next approximants A\, A^... (the 
first and higher members of the sequence) are more precise, 
but they need the knowledge of eigenvectors of the FKM.

The lower bounds for the Hubbard model partition 
function have been obtained with the use of so called 
Bogoliubov-Peierls inequality [7].

Detailed exposition and proofs can be found in [1], and 
here we reproduce only formulas for the simplest upper 
bound as well as for the lower bound:

(3)
< ZHub
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where P is the inverse temperature, E", vi are energies 
and eigenvectors of the Falicov-Kimball model with ± 
particles being mobile, and Sy = (v, v} ). ZHub, ZFK denote 

the partition functions of corresponding models with 
parameters given in parentheses. The sum in l.h.s. of (3) is 
taken over all eigenstates of the Falicov-Kimball Hamil­
tonian.

in [1], a preliminary study of precision of these bounds 
has been undertaken. The calculations were done for M = 8 
site systems. The full diagonalization was necessary as all 
energies enter the partition function for non-zero tem­
perature. It has been done by means of the Jacobi method or 
converting the Hamiltonian matrix to tridiagonal form with 
subsequent diagonalization [8]. Even for such small systems, 
the dimension of matrices was up to 4,900 (for half-filled 
systems). The same technique is used in this paper.

The upper bound InAo for t = -1, p = 1 and various 
values of U (ranging from U = 2 to U = 1000) gave an 
estimation of the free energy for the Hubbard model within 
1-20% precision (the logarithms of Ao and ZHub have been 
compared).

The bigger the index n, the better the estimator An. For 
n = 25, In An overestimates the In ZHub by less than one 
promille.

The lower bound is of less but still reasonable precision 
within the whole range of the U parameter (usually 10-25%).

III. TEMPERATURE DEPENDENCE 
OF BOUNDS

We first examine the precision of bounds as a function 
of temperature. The results are presented in Table 1. It can 
be seen that the precision of estimators is generally better 
for higher temperatures (for =0.1, about 1% in all cases, 
for both lower and upper bounds) and becomes worse in 
lower temperatures (for P = 10, up to 40% for upper bound 
and 70% for lower bound). There are worse cases; in some 
situations (small and large coupling constants, and for half 
filling) the precision of estimators is much better even in 
low temperature region.

Table 1. Some results for 6-site systems with N+ = N_= 3 obtained by exact diagonalisation of matrices of corresponding 
Hamiltonians. Periodic boundary conditions have been imposed. qn = In A,/n ZHub. The behaviour of approximants for low and high 

temperatures is shown

u P qo q\ q2 q3 qa qs l.b.fk LB.#
0 0.1 1.0087 1 1 1 1 1 0.99556 1
1 0.1 1.00892 1 1 1 1 1 0.99527 0.99963
2 0.1 1.00913 1 1 1 1 1 0.994476 0.99848
6 0.1 1.0099 1.00005 1.00005 1 1 1 0.992497 0.98497

20 0.1 1.01115 1.00058 1.00016 1.00004 1.00001 1 0.99065 0.78259
100 0.1 1.00359 1.00217 1.00115 1.0004 1.00011 1.00003 0.99638 <0

1000 0.1 1.00036 1.00035 1.00033 1.0003 1.00025 1.00015 0.99964 <0

0 1 1.16049 1 1 1 1 1 0.7992 1
1 1 1.185 1.00236 1.00058 1.00015 1.00004 1.00001 0.752178 0.98756
2 1 1.2099 1.01061 1.00274 1.0007 1.00018 1.00004 0.696368 0.942664
6 1 1.25394 1.0900 1.03396 1.00975 1.00253 1.00064 0.68815 0.2493

20 1 1.14459 1.11442 1.08576 1.04498 1.01562 1.00433 0.844007 <0
100 1 1.03467 1.03326 1.03186 1.02906 1.02352 1.01425 0.96598 <0
1000 1 1.00359 1.00358 1.00356 1.00353 1.00348 1.00336 0.996403 «0

0 10 1.02829 1 1 1 1 1 0.60394 1
1 10 1.05059 1.01351 1.00716 1.00348 1.00142 1.00047 0.44615 0.98019
2 10 1.08789 1.04629 1.02986 1.01598 1.00674 1.00223 0.36742 0.91777
6 10 1.26911 1.24141 1.21608 1.1717 1.10695 1.04608 0.37515 <0

20 10 1.41014 1.39861 1.38723 1.3649 1.32205 1.24412 0.30041 <0
100 10 1.25046 1.24993 1.2482 1.24595 1.24147 1.23255 0.7101 «0

1000 10 1.03471 1.0347 1.03468 1.03465 1.0346 1.03449 0.96477 «0
10000 10 1.00359 1.00359 1.00359 1.00359 1.00359 1.00359 0.99640 «0
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Table 2. Some results for 8-site systems (lattice 2x4) with U negative. N+ = N_, (3= 1; hopping is allowed only between nearest 
neighbours; periodic boundary conditions have been imposed

-u N+ qo q\ q2 q3 qa qs LB-fk

2 2 1.13687 1.00557 1.00141 1.00036 1.00009 1.00002 0.81914
6 2 1.07567 1.02491 1.00907 1.00257 1.00067 1.00017 0.904238
10 2 1.03759 1.02139 1.01093 1.00373 1.00103 1.00026 0.956917
20 2 1.01131 1.00892 1.00666 1.00347 1.0012 1.00033 0.98780
100 2 1.0005 1.00048 1.00046 1.00042 1.00034 1.00021 0.99949

2 2 1.1293 1.00577 1.00148 1.00038 1.0001 1.00002 0.82932
6 3 1.06442 1.02173 1.00811 1.00232 1.0006 1.00015 0.9106
10 3 1.03155 1.01823 1.00947 1.00326 1.0009 1.00023 0.96265
20 3 1.00957 1.00756 1.00566 1.00296 1.00103 1.00028 0.98978
100 3 1.00042 1.0004 1.00039 1.00035 1.00029 1.00017 0.99957
2 4 1.13133 1.00545 1.00139 1.00036 1.00009 1.00002 0.841899
6 4 1.05574 1.01842 1.0069 1.00198 1.00051 1.00013 0.92308
10 4 1.026 1.01504 1.00784 1.00271 1.00075 1.00019 0.85879
20 4 1.00778 1.00615 1.00461 1.00241 1.00084 1.00023 0.99183
100 4 1.00035 1.00033 1.00031 1.00028 1.00023 1.00014 0.99966

IV. THE U<0 CASE: MOTIVATION 
AND RESULTS

The second problem examined in this paper is the 
behaviour of lower and upper bounds for negative values of 
U. The physical motivation for such a study is the potential 
applicability of results in the bosonic Hubbard model. If the 
number of both sorts of particles (with up and down spins) 
is equal, and U is large and negative, one can expect that 
fermions are completely paired, form bound states and the 
model is effectively bosonic (with hard-core condition). 
Therefore, it is interesting to examine the bounds in the 
case U < 0.

The results obtained for 8-site systems and various 
fillings are presented in Table 2. It turns out that for |U| 
large, the estimators are very precise for arbitrary filling 
even for simplest estimator Aq. On the ground of existing 
data one can conjecture that for |U]| large, both bounds 
saturate, independently of the filling factor. This is in 
contrast with the U > 0 case, where such a saturation has 
been observed only at half-filling.

V. SUMMARY AND PERSPECTIVES

In the paper, the numerical study of bounds for the 
partition function for the Hubbard model has been per­
formed, extending previous calculations. It has been 
obtained that: i) both (upper and lower) bounds are better 

for high temperatures, and less precise for low tem­
peratures. if) For attracting the Hubbard model (U < 0), 
both bounds are more and more precise with a growing 
value of |U| (for |U| = 20, the precision is about 1%).

As a rule, the observables for the Hubbard model are 
very hard to calculate. There are only very few rigorous 
results or reliable numerical methods. For the Falicov- 
Kimball model, the physical observables are much more 
calculable (although still not easy to obtain!). For instance, 
Monte Carlo calculations can always be performed for the 
Falicov-Kimball model - the fermionic minus-sign prob­
lem does not appear here. The upper (Ao as well as A)) and 
lower bounds studied here are actually calculable by the 
Monte Carlo methods, so the author hopes that they could 
be useful in studies on the Hubbard model.

The interesting question is an estimation of the deriva­
tives of the partition function (magnetization, suscep­
tibilities, specific heat) or, more generally, the correlation 
functions. Estimations obtained in this paper concern only 
the partition function itself (or equivalently the free 
energy). Although the partition function is a fundamental 
object in the statistical mechanics, it is not an object 
measured immediately in experiments (in contrast with 
observables like magnetization, etc.). However, it turns out 
that certain information concerning magnetization can be 
extracted from estimations of partition function! The 
argument goes as follows:

In the paper [9] it has been shown that if we know the 
upper bound fus^ and the lower bound on the 
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convex function j\B\ then one can obtain the upper and 
lower bounds on the derivative M(B) = of/dB. The free 
energy for the Hubbard model is a convex function, so we 
can obtain rigorous upper and lower bounds on magne­
tization as well as of internal energy. Such estimations have 
been done in [10] and [11] for the magnetization in the 
ground state of the HuM. Results of the presented paper 
could give the estimations of magnetization or internal 
energy for finite-temperature HuM. The work towards this 
direction is in progress. One can hope that knowing the 
partition function with one-percent precision, one could 
determine the internal energy or magnetization with 
comparable accuracy. These aspects need further studies.

Some natural areas where estimations obtained in this 
paper are very accurate and could hopefully be more use­
ful, are:
- Investigation of high-temperature aspects of high- 

temperature superconductors (fluctuating stripe phases, 
pseudogap etc.); this region is still poorly understood 
from theoretically point of view [12];

- Simulations as well as theoretical computations on the 
area of the bosonic Hubbard model.

These aspects will be the subjects of further investiga­
tions.
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