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where f is the inverse temperature, E,i, v,-i are energies
and eigenvectors of the Falicov-Kimball model with +
particles being mobile, and S, = <v,' Iv;'> Zuub, Zrx denote
the partition functions of corresponding models with
parameters given in parentheses. The sum in Lh.s. of (3) is
taken over all eigenstates of the Falicov-Kimball Hamil-
tonian.

In [1], a preliminary study of precision of these bounds
has been undertaken. The calculations were done for M = 8
site systems. The full diagonalization was necessary as all
energies enter the partition function for non-zero tem-
perature. It has been done by means of the Jacobi method or
converting the Hamiltonian matrix to tridiagonal form with
subsequent diagonalization [8]. Even for such small systems,
the dimension of matrices was up to 4.900 (for half-filled
systems). The same technique is used in this paper.

The upper bound In4, for t = -1, f= 1 and various
values of U (ranging from U = 2 to U = 1000) gave an
estimation of the free energy for the Hubbard model within
1-20% precision (the logarithms of A, and Zy,, have been
compared).

The bigger the index n, the better the estimator 4,. For
n = 2° In A, overestimates the In Zy, by less than one
promiile.

The lower bound is of less but still reasonable precision
within the whole range of the U parameter (usually 10-25%).

III. TEMPERATURE DEPENDENCE
OF BOUNDS

We first examine the precision of bounds as a function
of temperature. The results are presented in Table 1. It can
be seen that the precision of estimators is generally better
for higher temperatures (for £ = 0.1, about 1% in all cases,
for both lower and upper bounds) and becomes worse in
lower temperatures (for 8= 10, up to 40% for upper bound
and 70% for lower bound). There are worse cases; in some
situations (small and large coupling constants, and for half
filling) the precision of estimators is much better even in
low temperature region.

Table 1. Some results for 6-site systems with N. = N.= 3 obtained by exact diagonalisation of matrices of corresponding
Hamiltonians. Periodic boundary conditions have been imposed. ¢, = In4,/In Zy;,,. The behaviour of approximants for low and high
temperatures is shown

u B 90 q1 q2 93 qa qs L.B.rx L.B.y
0 0.1 1.0087 1 1 1 1 1 0.99556 1
1 0.1 1.00892 1 1 1 1 1 0.99527 0.99963
2 0.1 1.00913 1 1 1 1 1 0.994476 0.99848
6 0.1 1.0099 1.00005 1.00005 1 1 1 0.992497 | 0.98497
20 0.1 1.01115 1.00058 1.00016 1.00004 1.00001 1 0.99065 0.78259
100 0.1 1.00359 1.00217 1.00115 1.0004 1.00011 1.00003 0.99638 <0
1000 0.1 1.00036 1.00035 1.00033 1.0003 1.00025 1.00015 0.99964 <0
0 [ 1.16049 [ 1 1 1 1 0.7992 1
1 1 1.185 1.00236 1.00058 1.00015 1.00004 1.00001 0.752178 | 0.98756
2 1 1.2099 1.01061 1.00274 1.0007 1.00018 1.00004 | 0.696368 | 0.942664
6 1 1.25394 1.0900 1.03396 1.00975 1.00253 1.00064 0.68815 0.2493
20 1 1.14459 1.11442 1.08576 1.04498 1.01562 1.00433 0.844007 <0
100 1 1.03467 1.03326 1.03186 1.02906 1.02352 1.01425 0.96598 <0
1000 1 1.00359 1.00358 1.00356 1.00353 1.00348 1.00336 | 0.996403 <<0
0 10 1.02829 1 1 1 1 1 0.60394 1
1 10 1.05059 1.01351 1.00716 1.00348 1.00142 1.00047 0.44615 0.98019
2 10 1.08789 1.04629 1.02986 1.01598 1.00674 1.00223 0.36742 091777
6 10 1.26911 1.24141 1.21608 1.1717 1.10695 1.04608 0.37515 <0
20 10 1.41014 1.39861 1.38723 1.3649 1.32205 1.24412 0.30041 <0
100 10 1.25046 1.24993 1.2482 1.24595 1.24147 1.23255 0.7101 <<0
1000 10 1.03471 1.0347 1.03468 1.03465 1.0346 1.03449 0.96477 <<0
10000 10 1.00359 1.00359 1.00359 1.00359 1.00359 1.00359 0.99640 <<0
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Table 2. Some results for 8-site systems (lattice 2 x 4) with U negative. N, = N_, f= 1; hopping is allowed only between nearest
neighbours; periodic boundary conditions have been imposed

-U N, 90 9 93 q4 gs L.B.rx
2 2 1.13687 1.00557 1.00141 1.00036 1.00009 1.00002 0.81914
6 2 1.07567 1.02491 1.00907 1.00257 1.00067 1.00017 0.904238
10 2 1.03759 1.02139 1.01093 1.00373 1.00103 1.00026 0.956917
20 2 1.01131 1.00892 1.00666 1.00347 1.0012 1.00033 0.98780

100 2 1.0005 1.00048 1.00046 1.00042 1.00034 1.00021 0.99949
2 2 1.1293 1.00577 1.00148 1.00038 1.0001 1.00002 0.82932
6 3 1.06442 1.02173 1.00811 1.00232 1.0006 1.00015 0.9106
10 3 1.03155 1.01823 1.00947 1.00326 1.0009 1.00023 0.96265
20 3 1.00957 1.00756 1.00566 1.00296 1.00103 1.00028 0.98978

100 3 1.00042 1.0004 1.00039 1.00035 1.00029 1.00017 0.99957
2 4 1.13133 1.00545 1.00139 1.00036 1.00009 1.00002 0.841899
6 4 1.05574 1.01842 1.0069 1.00198 1.00051 1.00013 0.92308
10 4 1.026 1.01504 1.00784 1.00271 1.00075 1.00019 0.85879
20 4 1.00778 1.00615 1.00461 1.00241 1.00084 1.00023 0.99183

100 4 1.00035 1.00033 1.00031 1.00028 1.00023 1.00014 0.99966

IV. THE U <0 CASE: MOTIVATION
AND RESULTS

The second problem examined in this paper is the
behaviour of lower and upper bounds for negative values of
U. The physical motivation for such a study is the potential
applicability of results in the bosonic Hubbard model. If the
number of both sorts of particles (with up and down spins)
is equal, and U is large and negative, one can expect that
fermions are completely paired, form bound states and the
model is effectively bosonic (with hard-core condition).
Therefore, it is interesting to examine the bounds in the
case U <0.

The results obtained for 8-site systems and various
fillings are presented in Table 2. It turns out that for |U]
large, the estimators are very precise for arbitrary filling
even for simplest estimator 4y. On the ground of existing
data one can conjecture that for [U] large, both bounds
saturate, independently of the filling factor. This is in
contrast with the U > 0 case, where such a saturation has
been observed only at half-filling.

V. SUMMARY AND PERSPECTIVES

In the paper, the numerical study of bounds for the
partition function for the Hubbard model has been per-
formed, extending previous calculations. It has been
obtained that: i) both (upper and lower) bounds are better

for high temperatures, and less precise for low tem-
peratures. i) For attracting the Hubbard model (U < 0),
both bounds are more and more precise with a growing
value of |U| (for |U] = 20, the precision is about 1%).

As a rule, the observables for the Hubbard model are
very hard to calculate. There are only very few rigorous
results or reliable numerical methods. For the Falicov-
Kimball model, the physical observables are much more
calculable (although still not easy to obtain!). For instance,
Monte Carlo calculations can always be performed for the
Falicov-Kimball model — the fermionic minus-sign prob-
lem does not appear here. The upper (4 as well as 4;) and
lower bounds studied here are actually calculable by the
Monte Carlo methods, so the author hopes that they could
be useful in studies on the Hubbard model.

The interesting question is an estimation of the deriva-
tives of the partition function (magnetization, suscep-
tibilities, specific heat) or, more generally, the correlation
functions. Estimations obtained in this paper concern only
the partition function itself (or equivalently the free
energy). Although the partition function is a fundamental
object in the statistical mechanics, it is not an object
measured immediately in experiments (in contrast with
observables like magnetization, etc.). However, it turns out
that certain information concerning magnetization can be
extracted from estimations of partition function! The
argument goes as follows:

In the paper [9] it has been shown that if we know the
upper bound fy5(B) and the lower bound f;5(B) on the






