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Abstract: Limited-data tomography, to which electromagnetic geotomography belongs, is analyzed in this paper. In this technique, 
a discrete forward projection model may be expressed by a rank-deficient system of linear equations whose the nullspace is non-trivial. 
This means that some image components may fall into the nullspace, and hence the minimal-norm least-square solution, to which many 
image reconstructions methods converge, may be different from the true one. The Algebraic Reconstruction Technique (ART), Simulta-
neous Iterative Reconstruction Technique (SIRT), or Conjugate Gradients Least Squares (CGLS) are examples of such methods. In this 
paper, we deal with the question of how to partially recover the missing image components. First, we analyze the advantages of using 
the iterative Tikhonov regularization and the Maximum A Posteriori (MAP) algorithm with Gibbs prior. Then, we conclude that 
the missing (nullspace) image components can be partially recovered if the MAP algorithm is implemented through a multigrid tech-
nique. The results, which are presented for synthetic noise-free and noisy data, demonstrate the validity of our assumption. The problem 
of estimating the regularization and scaling parameters in the MAP algorithm is also addressed.  
Key words: limited-data tomography, multigrid image reconstruction, hyperparameter estimation, electromagnetic geotomography  
 

 
I.  INTRODUCTION 

 In limited-data tomography, the angular range of rays 
along which an object is probed is limited. This is the case, 
for example, in electromagnetic geotomography [1-6] that 
belongs to a class of borehole imaging techniques. Syn-
thetic data from this type of tomography are used in our 
experiments.  

Assuming some field simplifications, a forward projec-
tion model, which is a limited data Radon transform, is 
linear. The limitation of the angular range of rays makes 
the model underdetermined, and consequently an ill-posed 
problem has to be solved. In a discrete form of the model 
the equivalent system of linear equations is rank-deficient 
and ill-conditioned. This implies a nullspace of the system 
is non-trivial, and the minimal-norm least-square solution 
(xLS) may not be the true solution. In practice, this means 
that many iterative image reconstruction methods such as: 
Algebraic Reconstruction Technique (ART), Simultaneous 
Iterative Reconstruction Technique (SIRT), Conjugate Gra-
dients Least Squares (CGLS), or LSQR, [1, 7-10] which 

are convergent to xLS, reconstruct only a more or less de-
graded version of the true image. Also some direct methods, 
such as the Truncated Singular Value Decomposition 
(TSVD) or Tikhonov regularization (a standard form when 
a discrete regularization operator is expressed by an iden-
tity matrix) [7, 9] give approximative solutions to xLS. Thus, 
some image components, which fall into a nullspace, can-
not be recovered from data without using additional infor-
mation on the true solution.  
 There are many possibilities of tackling this problem. 
One of them is to add some desired image components 
from a nullspace to xLS [11]. A numerical study of a null-
space in inverse problems of borehole tomography was 
thoroughly investigated by e.g. Koltracht et al. [12]. Never-
theless, there are no clear rules how to properly combine 
the vectors spanning a nullspace to form a missing part of 
the solution.  

Another approach for making the reconstruction more 
efficient is to make the dimension of a nullspace smaller by 
changing a layout of measurement points. A nullspace 
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substantially contracts if an examined object is accessible 
for taking measurements from three edges at least [12]. 
This was confirmed in practice by Sanny and Sassa [13].  
 In a statistical approach, the missing components of the 
image can be inferred from, e.g. a distribution of pixel 
values in the images reconstructed in preceding iterations. 
This is the One-Step-Late (OSL) technique which is com-
monly applied in the Maximum A Posteriori (MAP) algo-
rithms (see, e.g. [14-17]), whereby regularization for very 
noisy data is efficient. The inference may be performed on 
the basis of interactions between pixels in a given neigh-
borhood. The information about roughness of the image is 
then incorporated into a probabilistic inverse model under 
the form of prior p(x) (e.g. the Gibbs prior or an entropy 
function). In our considerations, we use the MAP algorithm 
with the Gibbs prior, which was proposed, among others, 
by Geman and McClure [14], Green [15], Hebert and 
Leahy [16].  
 The aim of this paper is to propose a technique for 
better recovering the missing (nullspace) image compo-
nents in limited-data tomography. Such components cannot 
be recovered with typical (well-known) image reconstruc-
tion methods. In the paper, we propose the technique that 
combines the benefits from the above-mentioned last two 
approaches to pursue the goal. Our novel approach uses 
a multigrid implementation of the MAP algorithm with 
the Gibbs prior. The multigrid technique has been widely 
discussed in the context of its application to tomographic 
image reconstruction, but to the best knowledge of the 
author, never as the technique for pursuing such a goal. 
This is the main novelty of this paper.  
 A multigrid implementation of the Expectation-Maxi-
mization (EM) algorithm in Position Emission Tomogra-
phy (PET) was proposed by Ranganath et al. [18]. In this 
technique, the whole iterative process is divided into sub-
processes (grids) in which the image resolution increases 
successively. The first sub-process starts from any initial 
guess. In the next sub-process, the iterations start from the 
final solution of the preceding sub-process, extrapolated to 
a higher resolution. This technique substantially decreases 
the overall computational cost because each successive 
sub-process has a faster convergence rate.  
 Pan and Yagle [19] presented a numerical study of 
some iterative image reconstruction algorithms in multigrid 
implementations applied to PET and SPECT (Single Pho-
ton Emission Computed Tomography). Their analysis is 
limited to two sub-processes: a coarse grid (low resolution) 
and a fine grid (high resolution). They concluded that multi-
grid reconstruction is efficient for images with local smooth-
ness. Otherwise, it may slow down a convergence rate.  
 The results obtained by Pan and Yagle [19] have moti-
vated our present study. However, we used a multigrid 

technique not only for improving a convergence rate of 
reconstruction but also for recovering the missing compo-
nents from a nullspace. Preliminary experiments showed 
that the rank of the discrete linear forward model in- 
creases when the coarse grid has a denser ray-coverage 
[20]. Thus changing the measurement setup, the coarse 
grid’s high-frequency components can be recovered better, 
and then, exported to a fine grid. However, to make the 
reconstruction from noisy data efficient, the standard regu-
larization (basic Tikhonov regularization with an identity 
matrix as a regularization operator), which filters out some 
high-frequency components from the solution, cannot be 
applied here. Thus we suggest using the MAP algorithm 
with Gibbs prior for the reconstruction.  
 The remainder of this paper is organized as follows. In 
the next section, we present the mathematical background 
to our problem. In the third section, the Iterative Tikhonov 
Regularization (ITR) and the MAP algorithm with Gibbs 
prior are characterized. Some simplified tools for estima-
tion of the parameters in this algorithm are proposed in 
Section IV. In the simulations, synthetic noise-free and 
noisy data generated from an original image were used to 
test our propositions. The results are discussed in Sec-
tion V. Finally, the short summary is presented.  
 

 

II.  BACKGROUND 

 In electromagnetic geotomography, the discrete linear 
forward projection model is described by the following 
system of linear equations:  

  Ax = b;  (1)  

where [ ] M N
ijA a ×= ∈\ is a coefficient matrix, x = [x1, ... , 

xN]T N∈\  is an image vector, b = [b1, ..., bM]T M∈\  is 
a data vector, M is a number of rays, N is a number of pixels, 
and M ≥  N. Element xj is the attenuation coefficient of the 
j-th pixel, aij is the length of the i-th ray in the j-th pixel, 
and bi is total attenuation measured along the i-th ray.  
 For a numerical study of the problem, the spectral pro-
perties of matrix A are essential. So let A have the follow-
ing Singular Value Decomposition (SVD) [7]:  

  
1

,
0

N
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i i i
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A U V u vσ
=
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= =⎢ ⎥
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+⎡ ⎤= ∈⎣ ⎦… … \  (3) 
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are matrices with orthonormal columns, where r(A) stands 
for the rank of A. Diagonal matrix Σ = diag(σ1, ..., σr(A), 0, 
..., 0) N N×∈\  has r(A) singular values which are nonnega-
tive and appear in a nonincreasing order. The reciprocals of 
singular values constitute a spectrum of A with high-fre-
quency components corresponding to low singular values 
and low-frequency components corresponding to high sin-
gular values. Vectors {u1, ..., ur(A)} and {vr(A)+1, ..., vN} span 
the orthogonal basis of range R(A) and nullspace N(A), re-
spectively; whereas {v1, ..., vr(A)} and {ur(A)+1, ..., uM} consti-
tute range R(AT ) and nullspace N(AT ) of AT. This holds for 

( ) ( )M TR A N A= +\  and ( ) ( ).N TR A N A= +\  
 Let  

  { }2LSS( ; ) : minN
x

A b x Ax b= ∈ −\  (5) 

be the set of all the least-squares solutions to (1) and let xLS 
be the solution of minimal-norm. Thus:  

  LSS(A; b) = xLS + N(A).  (6)  

 If A is a full rank matrix, then N(A) has only the zero-
value vector, and if system (1) is consistent ( ( )),b R A∈  xLS 
is its true solution. In this case, many methods, such as 
ART (based on Kaczmarz method), SIRT (based on Land-
weber iterations), CGLS, LSQR, Tikhonov regularization 
(basic form), and TSVD [7, 9, 10] converge to xLS, pro-
vided that the initial guess (x0) has no components in N(A). 
This explains the fact why the methods work so well in 
some tomographic applications [19, 18] with consistent 
systems of the full rank. In real applications, data are cor-
rupted with noise and the systems of linear equations are 
inconsistent (b ∉  R(A)). In this case, the methods give ap-
proximations which are in a certain distance from xLS, and 
the distance is more or less “controllable”, usually by regu-
larization. A numerical analysis of the distance for ART-
like algorithms is presented in [21].  
 In limited-data tomography, A is usually a rank-defi-
cient matrix, that is, r(A) < min{M, N} and so N(A) is non-
trivial. For any x we have x = xr + xn, where ( )T

rx R A∈  
and ( ).nx N A∈  The forward projection of x onto M\  is as 
follows: Ax = A(xr + xn) = br + 0 = br, where ( ).rb R A∈   
 This proves that we cannot recover all the image com-
ponents from data b without using additional information 
on the true solution.  
 
 

III.  IMAGE  RECONSTRUCTION  METHODS 

 There are many methods for solving systems of linear 
equations, which are commonly applied to image recon-
struction in tomography. However, we focus only on two 

groups of methods: the ones which converge to xLS and the 
others that give a different solution e.g. some statistical 
methods. Among the methods of the first group, we de-
cided to consider only the Iterative Tikhonov Regulariza-
tion (ITR) which is a particular case of the generalized 
Landweber iterations [7, 9, 22]. Its benefits are a high con-
vergence rate, a moderate computational cost, and a good 
control over noisy perturbation – efficient regularization. 
Nevertheless, the results presented in [23] show that this 
method loses its robustness for noisy data in electromag-
netic geotomography. Thus we present here the results 
obtained by the ITR only for a comparison. In the present 
study, the stress is put on one of the statistical methods that 
works very well in tomographic applications [24, 25], par-
ticularly in SPECT and PET, where data are very noisy. 
This is the MAP method with the Gibbs prior.  
 
III.1. Iterative Tikhonov Regularization 

 The iterative formula of the ITR method is as follows:  

  ( ) ( )
12

1 ,T T
k k N kx x A A I A b Axα

−
+ = + + −  (7) 

where xk is the solution after the k-th iteration and 
N N

NI ×∈\  is an identity matrix. The spectral filtration in 
(7) is additionally controlled by tuning regularization pa-
rameter 2.α   
 For noisy data we have: b = br + p, where ( )rb R A∈  
and perturbations p = pr + pn, where ( )rp R A∈  and 

( ).T
np N A∈  Perturbation pn has no effect on the image. 

For the initial guess the following decomposition is true: 
( ) ( )

0 0 0 ,r nx x x= + where ( )
0 ( )r Tx R A∈  and ( )

0 ( )nx N A∈  Con-
sidering (2), iterations (7) can be expressed in the following 
form: 
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where fi are filter factors defined as:  

  
2

2 21 1 .
k

i
i

i
f

σ
σ α

⎛ ⎞
= − −⎜ ⎟⎜ ⎟+⎝ ⎠

 (9) 

Factors fi /i if σ  and (1 )if−  denote data, noise and initial 
guess gain, respectively.  
 Note that the filter factors in (9) depend not only on the 
regularization parameter α  and the singular values iσ  but 
also on the number of iterations k. This implies that the 
regularization can be controlled by both parameters (α and 
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k), however, the control over the number of iterations, so-
called the truncation of iterations, is very difficult to per-
form, so we restrict only to the regularization with the para-
meter .α  
 Considering the behavior of singular values of A, fac-
tors {fi} form the magnitude characteristics of a low-pass 
filter while factors {(1 –fi)} behave inversely [19]. We can 
then conclude that using a multigrid implementation of the 
ITR method, only high-frequency components of a coarse 
grid can be imported to a fine grid. This implies that a fine 
grid's image can be enhanced by some missing components 
from N(A), provided that they can be recovered in recon-
struction of a coarse grid's image. Unfortunately, for noisy 
data, a higher value of α must be set to minimize perturba-
tion errors (e.g. [9]) and the spectrum from which the im-
age is recovered is strongly limited. In such a case, high 
frequency components in a coarse grid cannot be recovered 
with the ITR method. This explains the fact why we ob-
tained such poor results in [23] for noisy data. Neverthe-
less, the idea presented there has become the motivation for 
the research in the present study.  
 

III.2. MAP Algorithm with Gibbs Prior  

 The MAP algorithm, which is discussed in the present 
paper, uses the Expectation-Maximization (EM) procedure, 
first proposed by Dempster et al. [26], for maximization of 
a likelihood function. Shepp and Vardi [24] were leaders in 
using the EM approach to image reconstruction in emission 
tomography. They maximized the likelihood function ex-
pressed in terms of a joint probability of independent Pois-
son distributions:  

  ( ) 1

11

exp .
!

ib
N

ij j
M Nj

ij j
i ji

a x

p b x a x
b

=

==

⎛ ⎞
⎜ ⎟
⎜ ⎟ ⎧ ⎫⎪ ⎪⎝ ⎠= −⎨ ⎬

⎪ ⎪⎩ ⎭

∑
∑∏  (10) 

As the result the following EM algorithm was derived:  

  
( )

( 1)

( )1

1 1

.
k M

j ij ik
j M N

ki
ij ij j

i j

x a b
x

a a x

+

=

= =

= ∑
∑ ∑

 (11) 

In transmission tomography, algorithm (11) was first ap-
plied by Lange and Carson [25]. Nevertheless, the EM 
algorithm does not recover image components from N(A), 
and moreover, it can be easily shown that it converges to 
xLS for a Gaussian likelihood function.  
 Additional information in a form of some prior p(x) can 
be easily added to likelihood function (10) employing the 

Bayes’ theorem. Thus using the EM procedure, posterior 
function ( )p x b  is maximized. Assuming p(x) is defined 
by the Gibbs statistics  

  
{ }
{ }

exp ( )
( ) ,

exp ( )
x

U x
p x

U x dx

β

β

−
=

−∫
 (12) 

where U(x) is a total energy function, the final form of the 
MAP algorithm with Gibbs prior [14, 16, 15] is as follows:  

  
( )

( ) ( )
( 1)

1

,
( ) k

j j

k k
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j M

ij x x
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x c
x

a U xxβ

+

=
=

=
∂+ ∂∑

 (13) 

where  

  ( )

( )1

1

,
M

ij ik
j N

ki
ij j

j

a b
c

a x=

=

= ∑
∑

 

and β is a regularization parameter. The total energy func-
tion usually has the form:  

  ( ),( ) , ,
j

j n j n
j n N

U x w V x x δ
∈

=∑ ∑  (14) 

where Nj is the nearest neighborhood of pixel j, wj, n is 
a weighting factor between pixels j and n, and ( ), ,j nV x x δ  
is a clique energy dependent on scaling factor δ.  
 Weighting factors {wj, n} are usually defined according 
to the Markov Random Field (MRF), however, taking into 
account a strong limitation of an angular range of rays in 
borehole tomography, we took the same values of {wj, n} as 
the ones experimentally determined in [20]. Thus, we set 

  { }22
, 3; 1/ 3; 1 3 (1 3)j nw = +  

for pixels adjacent along a horizontal, vertical and diagonal 
line, respectively.  
 There are various suggestions for defining function 

( ), ,j nV x x δ . Some of them are discussed by Lalush and 
Tsui [27] in the context of application to SPECT. An ana-
lytical study of the convergence properties of the MAP algo-
rithm with respect to general properties of clique energies 
was presented by Lange [17]. Considering the results pre-
sented in [20], we decided to select only the following 
Green’s proposal [15] as the most effective in our application:  

  ( ), , ln cosh .j n
j n

x x
V x x δ δ δ

⎡ − ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (15) 

Differentiating (15) with respect to xj, we obtained the sim-
plified function  
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  ,( ) tanh
j

j n
j n

j n N

x x
U x w

x δ
∈

−⎛ ⎞∂ = ⎜ ⎟∂ ⎝ ⎠
∑  

which was then directly applied to (13).  
 

 

IV.  ESTIMATION  OF  PARAMETERS 

 To make reconstruction efficient, regularization pa-
rameters must be estimated prior to reconstruction. For 
regularization methods convergent to xLS estimation of 
the parameter is not so difficult because it leads to finding 
an optimum point in which regularization errors and per-
turbations errors are well balanced. This point corresponds 
to the corner on the L-curve or it is the minimum of the 
Generalized Cross-Validation (GCV) criterion [7, 9]. Pa-
rameter α in (7) can be estimated only for the first iteration, 
thus we can directly employ V(μ) [7, p212] as for the Tik-
honov regularization.  
 For the MAP algorithm with Gibbs prior, the problem is 
much more complicated since the two parameters must be 
estimated and the information about the norm of the solu-
tion is not so useful. This is because the algorithm con-
verges to the solution different than xLS. For rank-deficient 
systems, parameter-choice criteria based only on measure-
ments of the 2-norm of a residual vector are not sufficient, 
and hence, the Ordinary Cross-Validation (OCV) technique 
is useless in our application. Thus only statistical tools, 
which maximize a marginal likelihood, seem to be efficient 
here. There are many statistical methods for estimating 
parameters β and δ, but we mention only two, that seem to 
be generalized versions.  
 Higdon et al. [28] presented the method for fully Bayes-
ian estimation of Gibbs hyperparameters (parameter δ in 
(13)). In this method, the relative values of Gibbs partition 
functions (the denominator in (12)) are estimated through 
Markov Chain Monte Carlo (MCMC) sampling, and then, 
these values are used to sample from joint posterior distri-
butions on the image. Their results show that the method 
works very well in emission tomography, however, the com-
putational cost is rather high.  
 Zhou et al. [29] analyzed another approach. They 
pointed out that the optimum value of β balances the ex-
pectations with respect to the prior and posterior densities, 
that is, it holds ( ) , ( ) .U x y U xβ β⎡ ⎤= ⎡ ⎤⎣ ⎦ ⎣ ⎦E � �E �  However, the 
equation could not be solved so easily and such numerical 
tools like an adaptive quadrature method for numerical 
computation of integrals and the Newton-Raphson algo-
rithm were used. This approach also requires a high com-
putational cost.  

 Since both above mentioned methods are very computa-
tionally expensive, we used in the simulations the parame-
ters which were roughly approximated by very simplified 
computations. Instead of maximizing marginal likelihood 
function ( ),p y δ  we compute the joint pseudo-prior den-
sity  

  
( ) ( )

{ }
1

,

exp ( ) ,

N

j n j
j

p x p x x n N

U x

δ

β
=

= ∈

∝ −

∏  (16) 

where the partition function (the denominator in (12)) is 
canceled. The motivation for such a choice was the Maxi-
mum Pseudo-Likelihood (MPL) function presented by 
Zhou et al. [29] and used for computation of β. In our ex-
periments, we choose such a value of δ which has the high-
est impact on the total energy function U(x) in (14) for 
β = 1. Then, the influence of U(x) on the image is reduced 
by tuning the regularization parameter β. Thus the opti-
mum value of δ is determined by the minimum of the joint 
pseudo-prior density (16) for β = 1.  
 Parameter β was estimated with respect to the curve of 
function U(x) in (14). Our experiments show that its mini-
mum corresponds to the optimum value of β. This happens 
because U(x) measures roughness in the image. For low 
values of β, the solution is dominated by likelihood func-
tion (10) and this implies that the roughness in the solution 
tends to rise in case of noisy data. For high value of β, 
the prior dominates in the solution and the parasite effects 
of oversmoothing may take place. Although U(x) may be 
small in the preceding iteration, a high value of β exces-
sively emphasizes the roughness, and in a current iteration 
the image may be less smooth.  
 
 

V.  RESULTS 
 
 The results were assessed by means of quality and quan-
tity criteria. The former concerns displaying the solution on 
a 2D patch plot. The later measures the following relative 
error: exact exact2 2 ,x x x− where x is the reconstructed so-
lution and xexact is referred to as an original image.  
 Synthetic data were generated for the original image 
shown in Fig. 1 (left). Its resolution is 32 × 32 pixels and 
hence a total number of pixels is 1024. The smooth-edge 
objects in the image imitate possibly real inhomogeneities 
in an examined area, e.g. voids, cracks, etc. in rocks. The 
smoothness is due to the assumption that the density to be 
reconstructed (e.g. attenuation coefficient, phase shift) does 
not change abruptly. The sharp-edge objects are useful only 
in simulations to show interactions between adjacent pix- 
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els. The image was considered as a fine grid. To monitor 
a relative error of a coarse grid, the fine grid was trans-
formed into an image of 16 × 16 pixels, which is illustrated 
in Fig. 1 (right). A total number of pixels in a coarse grid is 
256. The transformation was performed by averaging 
a square of four pixels.  
 Let us assume that the original image is associated with 
a typical electromagnetic geotomographic area which is 
a 32 m square, thus a pixel is 1 × 1 m or 2 × 2 m for a fine 
grid or a coarse grid, respectively. The area is probed along 
multiple straight-line rays that are traced between transmit-
ter points regularly spaced along one borehole and receiver 
points regularly spaced along the other borehole. Let us 
also consider three measurement setups which differ in 
the density of ray-coverage. There are 16, 32 and 64 trans-
mitter and receiver points for the first, second and third 
measurement setup, respectively. Thus the corresponding 
total numbers of rays are 256, 1024 and 4096. The coef-
ficient matrices associated with the coarse grid are 
denoted as follows: (1) 256 256

normal ,A ×∈\  (1) 1024 256A ×∈\  
and (1) 4096 256

dense .A ×∈\  For the fine grid only the second 
measurement setup was adopted and (2) 1024 1024A ×∈\  is a 
coefficient matrix associated with it.  
 The singular values of the above coefficient matrices 
associated with the coarse grid are plotted in Fig. 2. Singu-
lar values of rank-deficient problems [9] can be separated 
into two groups: large singular values and very small ones. 
Increasing the density of ray-coverage, we observe that the 
former cluster is more and more numerous. This implies 
that the numerical rank of the system (1) increases and its 
nullspace contracts. Thus the second approach for the 
treatment of a nullspace discussed in the Introduction is 
met. We can also conclude that for practical reasons 1024 
rays are sufficient for a considerable improvement in the 
reconstruction of the missing components, especially as the 
difference in the rank of matrices A(1) and (1)

denseA  is slight.  

 

 
 

Fig. 2. Singular values of the coefficient matrices  
with various ray-coverages 

 
 Figure 3 presents solutions xLS which were computed as 
follows:  

  range range exact ,T
LSx V V x=  (17) 

where ( )
range 1 ( )[ , ..., ] N r A

r Av v v ×= ∈ \  for corresponding 
matrix A. Figures 3 (left), (middle) and (right) are associ-
ated with matrices (1)

normal ,A  A(1) and A(2), respectively. 
There is a big difference between the figures referred to as 
(left) and (middle). Figure 3 (middle) is nearly the same as 
the original one (Fig. 1 (right)). This proves the efficiency 
of using the second measurement setup.  
 In the experiments, noisy data were generated as fol-
lows: bnoisy = bexact + N(μ0, σ2), where bexact = Axexact ∈  R(A), 
N(μ0, σ 2) is a Gaussian noise with mean μ0 = 0 and vari-
ance σ 2 chosen in this way to obtain noisy data with a 
desired value of the Signal-to-Noise Ratio (SNR), where 

exact noisy exact2 2SNR 20log ( ).b b b= −  We used the noisy 
data for which SNR = 25 dB and SNR = 30 dB.  

 
 

Fig. 1. Original images with resolution of: a fine grid (left), a coarse grid (right) 
 



Multigrid Regularized Image Reconstruction for Limited-Data Tomography 73

  

 
 

Fig. 3. Projections of the original images onto R(AT) for: (1) 256 256
normalA ×∈\ (left), (1) 1024 256A ×∈\  (middle);  

(2) 1024 1024A ×∈\  (right) 
 
 
 

 
 
Fig. 4. Tikhonov regularization: relative error  versus α 2 for noisy data with SNR = 30 dB (left); the image reconstructed for α 2 = 40 

and SNR = 30 dB (right) 
 
 
 

 
 

Fig. 5. Estimation of δ with: relative error (left); prior probability (right) 
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Figure 4 illustrates the results obtained with the Tik-
honov regularization (x0 = 0 and k = 1 in (7)). Parameter 
α 2 = 40, which minimizes the relative error (Fig. 4 (left)) 

for the noisy data with SNR = 30 dB, was used for the 
reconstruction of the image shown in Fig. 4 (right). We 
checked that for more iterations, a higher value of α 2 

 
 

Fig. 6. Estimations of β : relative errors (top row); U(x) (bottom row); for a coarse grid (left); for a fine grid (right) 
 

 
 

 
 

Fig. 7. Relative errors for: a coarse grid (left); a fine grid (right) 
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should be taken, but the final image remained almost un- 
changed. Thus this is the best result we could obtain with 
the standard Tikhonov regularization. However, note that 
we use only a basic form of the Tikhonov regularization, 
i.e. where the regularization operator is defined by an iden-
tity matrix. In general, the regularization term can be ex-
pressed, e.g. by a Total Variation (TV) functional which may 
include the information on local smoothness. In this case, 
the generalized Tikhonov regularization may give a competi-
tive solution to the MAP algorithm with Gibbs prior.  
 The results reconstructed with the MAP algorithm with 
Gibbs prior are presented in Figs. 5-8. The superscript (1) 
or (2) refers to the coarse or fine grid, respectively. The 
initial guess for the coarse grid was defined as x0 = ,Neς  
where ( ) ,( )i i i j i jb aς = Σ Σ Σ  and [ ]1, ..., 1 .T N

Ne = ∈\  We 
checked that 0 ( ).x R A∈  Let us label such an initial guess 
as “uniform”. The reconstructions of the fine grid started 
from either the extrapolated final solution of a coarse grid 
or the uniform initial guess (defined as above). In case of 
the later, a single grid only was taken into consideration.  

 Figure 5 refers to the estimation of δ for the coarse grid. 
The optimal parameters determined by means of the rela-
tive error criterion (Fig. 5 (left)) correspond to the parame-
ters inferred from the plots of prior probability (16) illus-
trated in Fig. 5 (right). The plots show that the optimum 
does not depend considerably on the SNR and a number of 
iterations, therefore, the same value of δ was used for the 
fine grid.  
 The curves of the relative error versus β are delineated 
in Fig. 6 (top) for both grids. The corresponding curves of 
U(x) are plotted in Fig. 6 (bottom). In this case, we also 
obtained a very good agreement in matching the respective 
minima of the curves for all kinds of data.  
 For parameters δ and β determined in this way, the 
relative errors versus iterations are presented in Fig. 7 for 
the coarse grid (left) and the fine grid (right). The images 
reconstructed within 100 iterations are shown in Fig. 8 in 
the following layout: the coarse grid's images are in the left 
column, the single grid's images with the resolution of the 
fine grid (for “x0 = uniform”) are in the middle column and 

 
 
Fig. 8. Images reconstructed within 100 iterations from: noise-free data (top row); noisy data with SNR = 30 dB (middle row); 
noisy data with SNR = 25 dB (bottom row); a coarse grid (left column); a single grid with resolution of a fine grid (middle 
                                                                          column); a fine grid (right column) 
 
 



R. Zdunek 76

the fine grid’s images are in the right column; the images 
reconstructed from noise-free, less noisy, and more noisy 
data are presented in the first, second, and third row.  
 All the algorithms were implemented in MATLAB with 
using vectorization as much as possible. We assess the 
computational cost taking into consideration elementary 
flops. The computational cost of a single iterative step in 
the EM algorithm (for )M NA ×∈\  can be expressed as 
follows: (2MN + N)M + (M + N)D + (2MN)A, where sub-
scripts M, D and A stand for elementary multiplications, 
divisions and additions. Hence we obtain 4MN + 2N + M 
elementary flops. For the MAP algorithm with Gibbs prior, 
the computational cost can be roughly determined as (2MN 
+ 10N)M + (M + 9N)D + (2MN + 9N)A + (8N)S + (8N)F, 
where subscripts S and F denote substractions and evalua-
tions of build in function tanh( ⋅ ). Unfortunately, this algo-
rithm cannot be fully vectorized and some loops must be 
used. This prolongs the computational time of a single 
iteration, and moreover, the evaluation of function lasts 
much longer than the computation of the other flop. Thus 
only the measurements of elapsed times may be more 
credible, however, they are strongly hardware-dependant. 
The elapsed times measured in milliseconds per one itera-
tion on the computer with a dual core 3 GHz CPU are as 
follows: 4.3 and 21.2 for the EM algorithm with respective 
A(1) and A(2), and 23.2 and 92 for the MAP-Gibbs algorithm 
with A(1) and A(2), respectively.  
 
 

VI.  CONCLUSIONS 

 The paper demonstrates an additional benefit of the 
multigrid technique for limited-data tomography besides its 
a high convergence rate, i.e. a possibility of exporting some 
image components from a coarse grid to a fine grid, 
whereby a high resolution image can be enhanced by some 
missing components from a nullspace, provided that they 
are recovered by a coarse grid. To meet this condition, 
a coarse grid must be reconstructed using the same set of 
data as for a fine grid (dense ray-coverage) and the MAP 
algorithm with Gibbs prior should be used to increase resis-
tance of reconstruction to noisy perturbations.  
 The benefits from covering the examined object with 
rays more densely is demonstrated in Figs. 2 and 3 (com-
pare the left and middle images in Fig. 3).  
 The superiority of the MAP algorithm with Gibbs prior 
over, e.g. the Tikhonov regularization is also easily notice-
able (compare the image in Fig. 4 with the images in Fig. 8 
(second row)).  
 The phenomena of passing on some missing image 
components from the coarse grid to the fine grid is well 
illustrated in Fig. 7 (right). The curves referred to as “x0 = 

coarse grid” reach lower values of the relative error than 
the curves plotted for “x0 = uniform”, except for the very 
noisy data with SNR = 25 dB. Thus we can conclude that 
for the very noisy data, the multigrid implementation of 
this algorithm does not recover the missing image compo-
nents. Nevertheless, the general results obtained for the 
very noisy data (Fig. 8 (third row)) are satisfactory and are 
much better that the ones obtained with the standard Tik-
honov regularization. Figure 8 also suggests that in the fine 
grid’s images (right column) the parasite smearing effects 
from inhomogeneities are less visible than in the images 
reconstructed for “x0 = uniform grid” (middle column). 
These effects, which appear also in Fig. 3 (left and right), 
result from a lack of high-frequency (nullspace) image 
components.  
 Figures 5 and 6 show that the proposed simplified tools 
for estimation of the hyperparameters in the MAP algo-
rithm with Gibbs prior work well for all the kinds of data.  
 Summing up, the results presented in this paper have 
confirmed our theoretical considerations and have demon-
strated that the multigrid implementation of the MAP algo-
rithm with Gibbs prior is very efficient in limited-data 
tomography. This can be considered as a new and impor-
tant argument for using a multigrid implementation of the 
MAP algorithms (beside of its fast convergence properties) 
for image reconstruction in limited-data tomography.  
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