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PACS 62. Mechanical and acoustical properties of condensed matter 

Abstract: Materials with a negative Poisson's ratio exhibit the unexpected property of becoming fatter 
when stretched and narrower when compressed. This counter-intuitive behaviour is known as 'auxetic 
behaviour' and imparts many beneficial effects on the material's macroscopic properties. This paper 
discusses the potential of systems composed of rigid rectangles connected together through flexible 
hinges at their vertices. It will be shown that, on application of uniaxial loads, these rigid rectangles will 
rotate with respect to each other to form, in some cases, a more open structure hence giving rise to a 
negative Poisson's ratio. 
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1 . I N T R O D U C T I O N 

Materials with a negative Poisson's ratio (auxetic) exhibit the very unusual property of 

becoming wider when stretched and thinner when compressed [1]. This unusual behaviour can 

normally be described in terms of models based on the geometry of the system (in the case of 

materials, the geometry of material's internal structure) and the way this geometry changes as 

a result of applied loads (deformation mechanism). 

In recent years, various two and three dimensional theoretical models and structures which 

can lead to negative Poisson's ratio have been proposed including, two and three-dimensional 

're-entrant' systems [1-6], models based on rigid ' f ree ' molecules [7-10], chiral structures [11-

13], systems made from rotating squares and triangles [14-19], composites [20], and fractal 

structures [21]. In all of these systems, the Poisson's ratio does not depend on scale and the 

systems may be constructed at the nano- (molecular), micro- or at the macro- level - the only 

requirement is the right combination of the geometry and the deformation mechanism. 

In fact, some of these two and three dimensional theoretical models are thought to be 

responsible for negative Poisson's ratios in various classes of nano- and microstructured 

materials. For example the negative Poisson's ratio in open cell foams has been explained in 

terms of re-entrant models [22-25] and a chiral model [13], whilst the auxetic behaviour 
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predicted in some zeolites has been attributed to rotation of squares or triangles [14, 17, 26]. In 

this respect, one should mention that the scale independence of the Poisson's ratio has been 

exploited by various researchers in their quest for designing new auxetic materials by first 

proposing auxetic macrostructures which are then downscaled to the molecular level to 

produce nanostructured materials that mimic the auxetic macrostructures (the 'downscaling 

technique'). For example, the downscaling technique has been used to propose theoretical 

nanostructured auxetic polymers which mimic re-entrant honeycomb systems [1] and the 

'rotating triangles' model [15]. 

A particular 'geometry/deformation mechanism' which has attracted a considerable 

amount of interest can be constructed using rigid squares hinged at their vertices [16-18]. It 

has been shown that the Poisson's ratios of such systems where the squares are perfectly rigid 

will exhibit constant Poisson's ratios equal to -1 [17, 26] whilst if the squares are allowed to 

deform, the Poisson's ratio will be dependent on the relative rigidity of the squares with 

respect to the rigidity of the hinges and on the direction of loading [14, 17, 19]. It has also 

been shown that this geometry/mechanism is likely to be responsible for negative Poisson's 

ratios in various classes of nanostructured materials including materials belonging to the 

KH2PO4 family of the D2d point group [18], silicates and zeolites [14, 17, 26]. 

In this work we will present an extension to the rotating rigid squares model, namely one 

where the squares are replaced rigid rectangles. 

2. THE ROTATING RECTANGLES MODEL 

Consider a two dimensional tessellation built with rigid rectangles of side lengths a, b 

hinged at their corners and aligned in the Ox12 plane as shown in Fig. 1. Let the angle between 

Fig. 1. The system composed of hinged 'rotating rectangles' of size (a × b) with a rectangular unit cell of 
dimensions (X1 × X2) 
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Fig. 2. The 'rotating rectangles' structure composed of rectangles of size (a × b) at various values of 'q' 

(1) 

In this model we shall assume that the structure deforms solely by relative rotation of the 

rectangles, then a and b are constants and hence Xi are functions of the single variable θ i.e. 

Xi = Xi(θ). We shall also assume that the stiffness of the structure (and hence the Young's 

moduli) is a result of the stiffness of the hinges, that is, a stiffness which opposes changes in 

the angles θ. In particular, we shall assume that the hinges satisfy the equation: 

(2) 

where M is the moment applied to the rectangles, δθ is the angular displacement due to M, 

and Kh is the spring constant for the hinge. 

In this system, a 2b 

not all, values of θ. 

These different configurations may be obtained from one another through loading in an Oxi 

direction. Fig. 2 visually suggests that the structure is auxetic in the Ox12 plane for some, but 

two such rectangles be θ. The shape of the structure for various values of θ is shown in Fig. 2. 

As illustrated in Fig. 1, a rectangular unit cell may be used to describe this tessellation 

where the cell sides are parallel to the Ox1 and Ox2 axis. This unit cell contains four a-b 

rectangles (i.e. rectangles of side lengths a and b) with projections in the Oxi directions are 

given by: 
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The rigidity of the rectangles result in a structure which is geometrically constrained not to 

shear. This results in a value of zero for the five elements of compliance matrix which are 

associated with shearing a hence the compliance matrix for this system is hence of the form: 

(3) 

(6) 

(7) 

Differentiating Eq. 1 we obtain: 

and (8) 

i.e. from Eq. 1, Eq. 7 and Eq. 8 the on-axis Poisson's ratios: 

and since X i = X i ( θ ) , 

2.1. T h e Poisson's ratios 

The infinitesimally small strains dε i in the Ox i directions may be defined by: 

where dσ i and dε i are infinitesimally small stresses and strains for loading in the Oxi 

directions respectively. 

i = 1,2, (5) 

whilst E i are the Y o u n g ' s moduli for loading in the Ox i directions given by: 

(4) 

where v i j represent the Poisson's ratios (or more precisely the Poisson's functions) in the Ox i j 

plane for loading in the Ox i direction, defined by: 
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(9) 

which for particular case when a = b (i. e. the rectangle is a square) are given by: 

(10) 

2.2. T h e Y o u n g ' s m o d u l i 

The work done by each unit cell due to the changes in the inter-rectangle angles from θ to 

θ + dθ that accompany a small strain is given by: 

(11) 

where N is the number of hinges per unit cell, which in this case is equal to eight. (One unit 

cell contains four rectangles, each rectangle has four vertices, and two vertices contribute to 

one hinge) and Kh is the stiffness constant of the hinges as defined through Eq. 2. 

Also, since X i = X l ( θ ) , the work done per unit volume due to an infinitesimally small 

strain dε i for loading in the Ox i direction (i = 1, 2) is given by: 

(12) 

Form the principle of conservation of energy: 

(13) 

where V is the volume of the unit cell given by (assuming a unit thickness in the third 

dimension): 

(15) 

and hence the on-axis Y o u n g ' s moduli E i ( i = 1, 2) are given by: 

(14) 

Thus from Eq. 11 to Eq. 14 we have: 
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i= 1 , 2 , (16) 

i.e.: 

(17) 

In the particular case when a = b (i.e. the rectangle is a square), the on-axis Young ' s moduli 

simplify to: 

(18) 

These equations for the Poisson's ratios and Young ' s moduli for both the general case of the 

rectangles and the particular case of the squares satisfy the thermodynamic requirements given 

by: 

(19) 

Plots of E i and v i j vs θ for a rectangle measuring ( a × b ) = (1.5 × 1.0) with Kh = 1 are given 

in Fig. 3. 

Fig. 3. Plots of (a) the Poisson's ratios and (b) Young's moduli of the rotating rectangles structure where 
(a × b) = (1.5 × l) and Kh= 1 
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3. DISCUSSION 

(20) 

or: (21) 

or: 

The expressions derived above suggest that for systems composed of hinged rigid 

rectangles connected together as shown in Fig. 1 and Fig. 2, the Poisson's ratios are dependent 

on the geometry of the system and that the same structure can exhibit both positive and 

negative Poisson's ratios. Also, since a finite strain in any of the two Oxi directions has to be 

accompanied by a change in the angle θ, and since Eq. 9 suggests that for a given system of 

a × b rectangles where a b , the Poisson's ratio is dependent on θ, then the Poisson's ratio 

will also be strain dependent and will change when uniaxial loads are applied. In particular, it 

is also possible that the Poisson's ratio will change sign as the system is being loaded. For 

example, referring to Fig. 3a, loading in the Ox2 direction of a system made from rectangles of 

size (a × b) = (1.5 × 1) with θ init ial = 4 0 ° will initially exhibit auxetic behaviour but then start 

exhibiting conventional after the θ will become greater than 67.4°. In fact, for systems such as 

the one discussed here where the geometry is dependent on a single variable (=θ), the 

Poisson's ratios v i j are given by: 

i,j = 1,2 

and for negative Poisson's ratios, we require: 

Since the unit cells are always positive (i.e. > 0 to all values of θ), this requirement 

reduces to the requirement that the two derivatives and have the same sign (both 

positive or both negative), i.e. for this particular case, for negative Poisson's ratios it is 

required that either: 



This means that irrespective of the size of the rectangle, if we load the fully closed struc-

ture (θ = 0) the structure is initially auxetic until θ reaches the value of 2tan - 1 [min(a/b, b/a)] 

where the Poisson's ratio becomes positive and remains positive until θ is 

2tan - 1 [max(a/b, b/a)] when it becomes negative again and remains negative until θ = π, a 

conformation were the structure is once again fully closed. 

All this, is in sharp contrast to the system constructed from rigid squares where the 

Poisson's ratios were strain independent and always equal to -1 [16]. In this respect it should 

be noted that the region of negative Poisson's ratio for the 'rotating rectangles model' may be 

increased by decreasing the difference between a and b, and in the limit when a = b (i.e. the 

rectangle is a square), the Poisson's ratio will be negative for all values of θ and equal to - 1 . 

However, this increase in the range will occur on the expense of a decrease in the magnitude 

of the negative Poisson's ratios (the rotating rectangles can exhibit Poisson's ratios which are 

less than -1) . Also, it is important to realise that unless a = b, the extent of auxeticity will be 

dependent on the direction of loading. (The off-axis mechanical properties may be obtained 

may be obtained by using standard axis transformation techniques [28].) 

Finally, it should also be noted that in this discussion we have assumed that the rectangles 

in the systems are perfectly rigid. As for in the case of the rotating squares, the values of the 

Poisson's ratios for real systems are likely to be effected by the relative rigidity of the 

rectangles with respect to the rigidity of the hinges [9, 13, 19] and the auxetic behaviour may 

become less pronounced as the rectangles loose their rigidity. 

4. C O N C L U S I O N 

In this paper we have shown that auxetic behaviour may be achieved from rigid rectangles 

which rotate relative to each other. This new model of fers the advantage over the earlier 

model constructed using squares since: 

- This model is more general (all squares are special rectangles, but not vice-versa) and 

may hence it be applied to a wider range of systems. 

- Systems constructed from rectangles can exhibit both positive and negative Poisson's 

ratios (depending on the angle between the rectangles). Rotating squares can only exhibit 

negative Poisson's ratios. 

The Poisson's ratios are positive for the other values of θ 

(22) 

(23) 
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( 0 , π ) , i.e.: 
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- Systems constructed from rectangles can exhibit Poisson's ratios which more negative 

than -1 that can be obtained from rotating squares. 

We have shown through analytical modelling that in this case of 'rotating rigid rectangles', 

the extent of auxeticity depends, amongst other things, on the actual geometry of the system 

and the strains the system is being subjected to. It also argued that for real systems, the extent 

of auxeticity will also be dependent on the direction of loading and relative rigidity of 

rectangles when compared to the hinges. All this is very significant and different from more 

particular case when the system is constructed from rigid squares [16] and can provide us with 

a clearer understanding of the potential of rotating rigid units for generating auxetic behaviour. 
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