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A b s t r a c t : The paper presents three- and four-stage implicit interval methods of Runge-Kutta type and is 
a continuation of our previous paper [6] dealing with one- and two-stage methods of this kind. It is shown 
that the exact solution of the initial value problem belongs to interval-solutions obtained by both kinds of 
these methods (three- and four-stage). We also present some approximations of the widths of interval-sol-
utions. 

1. INTRODUCTION 

Interval methods for solving the initial value problem are interesting due to interval-solutions 
obtained by such methods which contain their errors. Computer implementations of interval me-
thods in floating-point interval arithmetic together with the representation of initial data in the 
form of minimal machine intervals, i.e. by intervals which ends are equal or neighboring machine 
numbers, yield interval solutions which contain all possible numerical errors. 

In this paper we consider three- and four-stage implicit interval methods of Runge-Kutta type, 
which are presented in Sections 3 and 4. As we proved in [6], the exact solution of the initial 
value problem belongs to interval-solutions obtained by both kinds of these methods. In Sect. 5 
some approximations of the widths of interval-solution are given. 

2. THE INITIAL V A L U E PROBLEM 
A N D C O N V E N T I O N A L RUNGE-KUTTA METHODS 

As is well-known (see e.g. [5]), the initial value problem consists in finding the function 
y - y(x), such that 

where a n d . We will assume that the solution of (1) 
(1) 

exists and is unique. 
To carry out a single step by a conventional, m-stage Runge-Kutta method we apply the for-

mula (see e.g. [1]) 

(2) 
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where 

(3) 

(4) 

and where s = i -1 for an explicit method, and s = m for an implicit one. The set of numbers 

wi , ci , aij are constants which characterize a particular method. 

The local truncation error of step k +1 for a Runge-Kutta method (explicit and implicit) of 

order p can be written in the form (see e.g. [1], [3] or [5]) 

(5) 

where 

(6) 

This error is equal to the difference between the exact value y(tk + h) and its approximation 

evaluated on the basis of the exact value y(tk). The function ψ(t, y(t)) depends on coeffi-

cients w i, c i, a i j, and on partial derivatives of the function f ( t , y) occuring in (1). The form 

of ψ(t, y(t)) is very complicated and cannot be written in a general form for an arbitrary p (see 

e.g. [1], [5] or [8]). 

3. THREE-STAGE IMPLICIT I N T E R V A L METHODS 

Let us denote: 

A, and A - sets in which the function ƒ ( t , y ) is defined, i.e. 

F(T,Y) - an interval extension of f ( l , y ) , 

ψ ( T , Y ) - an interval extension of ψ(t, y) (see (5)), 

and let us assume that: 

• the function F(T,Y) is defined and continuous for all and 

• the function F(T,Y) is monotonic with respect to inclusion, i.e. 
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(7) 

(8) 

(9) 

(10) 

where 

The step-size h of the method (7), where denotes a given number, is calculated 

from the formula 

where and 

In general, for t0 = 0 and 

we define as follows: 

three-stage implicit interval method of Runge-Kutta type 

• for each and for each there exists a constant L > 0 such that 

where d(A) denotes the width of A (if A1,A2,...,AN )T , then the number d(A) is 

defined by 

• the function Ψ ( T , Y ) is defined for all and 

• the function Ψ(T ,Y) is monotonie with respect to inclusion. 

From the theory of conventional Runge-Kutta methods it is known that two-stage implicit 

methods, which are characterized by the set of coefficients wi, ci, a i j , where i, j = 1, 2, 3, can 

have order up to six, and the maximum order condition (p = 6 ) is achieved if (see e.g. [1] or [3]) 
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and the number — from the relation 

(11) 

(12) 

for and 

The interval wedivideinto n parts by the points tk = kh (k = 0,1,.. . , n), and the 

intervals Tk, which appear in the method (7) - (8), we choose in such a way that 

From (8) it follows that in each step of the method we have to solve a (vector) interval 

equation of the form 

X = G ( T , X ) , 

where 

If we assume that the function G is a contraction mapping, then the corresponding iteration pro-

cess follows from the fixed-point theorem. 

4. FOUR-STAGE IMPLICIT INTERVAL METHODS 

Four-stage implicit methods, which are characterized by the set of coefficients wi, ci, aij, 
(i, j - 1, 2, 3, 4), can have order up to eight, and if (see e.g. [3]) 
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where 

then the method is of the maximum order ( p =8). 

(13) 

where 

where 

(15) 

(16) 

(17) 

( 1 8 ) 

and 

The step-size where h0 is given, can be found from the formula 

The numbers should fulfilled the conditions 

and the number should be choosen in such a way that 

for and 

(14) 

For t0=0 and four-stage implicit interval methods are defined by the following 

set of formulas: 
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In [6] we proved (Theorem 1 in Sect. 5) that for one- and two-stage implicit interval methods 
the exact solution of the initial value problem (1) belonged to the intervals obtained by these me-
thods. Since in that theorem there are no restrictions to one- or two-stage methods, the same 
conclusion we get for the methods (7) - (8) and (13) - (14). 

5. WIDTHS OF INTERVAL SOLUTIONS 

First, let us consider the widths of intervals Ki,k(h) given by (8) and (14). From these for-
mulas and properties of the function F (see Sect. 3) it follows that 

(19) 

where m =3, i= 1, 2, 3 for the method (7) - (8), and m =4 , i = 1, 2,3, 4 for the method (13) 
- (14). The inequalities (19) are of the form 

(20) 

For m = 3 we get the following solution of (20): 

where 

and where 

For m = 4 the solution of (20) is of the form 
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where Q, R and S denote some nonnegative constants, and 

we have 

where 

(23) 

(24) 

Using the above results we can est imate the widths of interval solutions for implict three- and 

four-s tage methods presented in the previous sections. 

T h e o r e m 1. If Yn (tk) (k = 0 , 1 , . . . , n) are obtained on the basis of the method (7) - (8), then 

for h0 such that 

and where 
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Proof. From (7) we get 

(25) 

where On the basis of (8) we have 

From (21) it follows that if 

(26) 

(27) 

then the solution of inequalities (26) is of the form 

(28) 

where 

Taking into account the assumption (23), the first six inequalities in (27) are self-evident. The last 

inequality in (27) is also an implication of this assumption, because from the inequality 
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where 

But the lef t -hand side of this inequali ty is equal to the lef t-hand side of the last inequality in (27). 

Taking into account that f r o m (28) we get 

and hence — all the more — 

7 "4 

Since h < 1 (as a consequence of /¡0 < 1 ), then h < h and h < h. Thus , f r om the last in-

equality it fo l lows that 

i t fo l lows that fo r we have 
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Using these estimates, from the inequality (25) we obtain 

where 

(29) 

From (29) it follows that 

Thus, for each k = 1, 2, . . . , n we have 

.......................................................... 
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Taking into account that d ( T 0 ) = 0, f r o m (30) the inequality (24) fo l lows immediately. 

T h e o r e m 2 . I f Y n { t k ) (k = 0 , 1 , . . . , n ) are obtained on the basis of the method ( 1 3 ) - ( 1 4 ) , then 

for h0 such that 

(31) 

where 

Hence 

(30) 

But 
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(32) 

where Q, R and S denote some nonnegative constants, and 

we have 

where 
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(34) 

(35) 

From (22) it follows that if 

where k = 0,1,. . . , n -1. On the basis of (14) we have 

(33) 

Proof. The formulas (13) yield 
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then 

(36) 

where 

and V is given by (35). 

The first fourteen inequalities in (35) are fulfilled from the assumption (31) and because of 

The last inequality in (35) also follows from (31), because for we have 
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where 

Using these est imates, f r o m the inequality (33) we obtain 
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where 

and where 
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Proceeding further, as in the proof of the previous theorem, we get 

(37) 

Since d (T0 ) = 0, the inequality (32) is an obvious consequence of (37). 
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