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1Quantum Optics and Engineering Division, Institute of Physics

University of Zielona Góra, A. Szafrana 4a, 65-516 Zielona Góra, Poland
2Vinh University, 182 Le Duan str., Vinh, Nghe An, Vietnam

∗E-mail: caolongvanuz@gmail.com

Received: 7 August 2013; accepted: 23 August 2013; published online: 13 September 2013

Abstract: In this paper, using one of the most effective simulation methods, namely the cellular automata formalism, we

simulate the dynamics of a system which is composed of a large number of two-level atoms placed in a two-dimensional

cavity. We suppose additionally that the cavity is confined by four semi-transparent “mirrors”. We show that similarly to the

one-dimensional case, several interesting effects including the molasses effect occur in the considered system.
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I. INTRODUCTION

As it was emphasized by Richard Feynman in [1, 2], per-

forming simulations of quantum dynamics for large systems

is a very difficult task for classical computers. The reason for

this fact is that the number of complex numbers necessary for

describing a given quantum system increases exponentially

with the size of the system (the number of its components).

In consequence, the number of differential equations describ-

ing the considered system becomes too large to be solved

with the use of our current computational resources. This

leads to the idea of quantum computers which have been the

subject of intensive studies over the last twenty years in both:

theoretical and experimental fields. However, the construc-

tion of quantum computers which would be able to perform

the simulations effectively remains technologically difficult.

Consequently, traditional numerical simulations performed

by classical computers are still widely used.

One of the most effective simulation methods are those

based on cellular automata (CA) formalism. It concerns

a class of discrete (spatially and temporally) dynamical sys-

tems which, despite the simplicity of the system’s definition,

have a rich nature (sometimes very complex) of dynamical

behavior. Some relatively simple local interactions might lead

to non-trivial dynamics of the considered system. For this

reason this formalism could be a powerful universal tool for

disorder, noise and dissipation studies of the given dynamical

systems [4], and it can be applied in various fields of physics

and other sciences.

Some time ago we (W.L.) applied the CA formalism to

describe the disorder in a system which is composed of a large

number of two-state subsystems [3, 4] located inside a one-

dimensional cavity. It is well-known that the two-level atom

is a typical “laboratory” in quantum optics [5]. Moreover,

quantum two-level systems are widely used within the quan-

tum information theory as base elements of quantum circuits

and are referred to as qubits. Thus, the gain obtained from the

considerations concerning such two-level systems is twofold.

Firstly, we can see that the CA formalism is a useful tool for

considering the dynamics of various collective optical phe-

nomena. Secondly, results obtained with the use of the CA

formalism might be useful for studies of quantum computer

implementations.

The paper [4] concerns two aspects of the considerations.

The first one concerns the system’s energy dissipation whose

character is influenced by such factors as boundary conditions,
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emission and (or) absorption of individual subsystems etc.

The second aspect is related to the order-disorder transitions

with disorder dynamics. At this point the following question

arise: what is the origin of the disorder for the initially or-

dered system, and how such disorder spreads across the whole

system.

In this paper we extend the model given in [4] to the case

of two-dimensional cavities. Such extended model will be

presented in the next Section. In Section III we shall concen-

trate on the problem of energy losses in the considered model.

In particular, the parameter determining the rate of energy

leakage defined as in [4] will be discussed. The last Section

contains our conclusions.

II. THE MODEL

In our model we consider cavity with a number of two-

level systems placed in it. This model is represented by a two-

dimensional square lattice, in which two-state subsystems are

placed. Every subsystem can be in a ground state or an excited

one, and is treated as a single cell. We assume further that

the probability of emission of quantum energy from a sub-

system in the excited state and the probability of absorption

of the quantum by the cell in its ground state can be chosen

as the parameters of the dynamics simulation. We denote

these probabilities by pe and pa, respectively. We suppose

that these probabilities are identical for all cells and remain

constant during the whole process. This model can be real-

ized physically by a set of two-level atoms [5] whose states

correspond to two directions of Bloch vector “down” and

“up”. The neighbors are chosen according to the so-called Von

Neumann type presented in Fig. 1.

Fig. 1. Neighborhood of von Neumann type

Thus, the states of every cell will be denoted by 0 (ground

state) and 1 (excited state). Each of the excited cells (atoms)

can emit a quantum of energy (photon) toward the four direc-

tions: left, right, down or up. If such emitted quanta of energy

meet the atom in the ground state, they can be absorbed by

that atom.

In our model the initial conditions are fixed determin-

istically, namely some of considered subsystems are in the

excited state, and they are placed in the heart of the cavity.

To complete our CA we should define the following local

rules governing its dynamics:
• If for the time t a particular atom {i} is in its ex-

cited state, we take some random number rit ∈ 〈0, 1〉.
If rit < pe the atom in the next step (time t+ 1) emits

quantum of energy.

• If the energy is emitted, we take other random numbers

s ∈ 〈0, 1〉 and if:

∗ 0 < s ≤ 0.25 the quantum goes left

∗ 0.25 < s ≤ 0.5 the quantum goes right

∗ 0.5 < s ≤ 0.75 the quantum goes down

∗ 0.75 < s < 1 the quantum goes up

• If the photon meets the excited atom it passes this cell

and goes further (the atom is “transparent for radia-

tion”).

• If the quantum reaches the atom in its ground state, we

take the next random number rjt ∈ 〈0, 1〉. If rjt < pa
the atom in the next step (time t+ 1) absorbs the pho-

ton. For the opposite case the photon goes to the next

cell.

Fig. 2. Initial distribution of excitations

As in every dynamical problem, apart from the initial con-

ditions, the boundary conditions should be specified. In this

paper we shall restrict ourselves to the case of the cavity

confined by four semi-transparent “mirrors” with a common

reflection probability R, whose value is fixed at the begin-

ning of the simulation. If the quantum of energy (“photon”)

reaches the “mirrors” confining the cavity, we take a random
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number rR ∈ 〈0, 1〉. When rR < R the photon remains in-

side the cavity and starts to move in the opposite direction,

whereas for rR ≥ R, the quantum of energy escapes from

the system and the total system energy decreases. In fact we

shall concentrate our attention to the total “energy” of the

considered system. Such “energy” can be calculated as a sum

of all excited cells (atoms) at a given moment of time. Thus,

contrary to the cases of periodic boundary conditions, where

the total “energy” of the system is preserved, this energy can

leak out of the system, which has been recognized in [3, 4].

Fig. 3. Spreading of excitations

The essential property of the CA formalism is their dis-

crete character in both time and position. Therefore, a sin-

gle simulation cannot be used for quantitative consideration

of the system’s dynamics because of the step-like character

of the obtained results. One should take the average over

a large number of individual simulations to obtain sufficiently

smooth results which allow us to draw conclusions concern-

ing dynamics of the considered system. We will perform such

averaging procedure and present its results in Sec. III.

To illustrate exemplary behavior of our automaton, first

we consider the cavity with 600 two-level systems placed

in it. The initial conditions are fixed deterministically, namely

35 of the considered subsystems are in the excited state, and

they are placed from 12 to 18 position in x direction and

from 8 to 12 position in y direction. Fig. 2 presents the initial

condition, where for the time t = 0 we have excitations at the

cells positions nearly in the heart of the system.

During the evolution, the excitations walk randomly right,

left, down, up reaching the borders of the system. At this

position some photons reflected and remained inside the cav-

ity and start to move in the opposite direction, while some

photons overcome the mirrors and escape from the system

– we assume that the reflection probability R is equal 0.25.

In consequence, after some period of time the number of

excited cells decreases from 35 seen in Fig. 2 to 31 for the

situation depicted in Fig. 3.

III. RATE OF ENERGY LEAKAGE

To discuss time evolution of the system’s energy we take

into consideration the cavity with 22500 (150 × 150) two-

level systems placed in it. The initial conditions are fixed

deterministically as in the previous section, but here we as-

sume that 400 of the considered subsystems are in the excited

state. They are placed from 61 to 80 position in x direction

and from 61 to 80 position in y direction.

As it was mentioned in the previous Section, when the

cavity is confined by “mirrors” with the reflection probability

smaller than unity, escaping quanta of energy (“photons”)

leads to the energy leakage from the system. Since, an indi-

vidual simulation gives us the energy-time dependence in the

step-like form, we perform 1000 simulations and average

their results. Furthermore, we use an additional smoothing

procedure, analogously as in [4].

To discuss the effects of the energy losses in the model

we consider the energy rate parameter r = En+1 − En. It is

defined as a difference between two subsequent total system

energies. What should be emphasized is that we do not di-

vide such difference by the time which is quantized and its

smallest interval is equal to unity. It is a result of the discrete

character of CA in which time is discrete and enumerated by

subsequent natural numbers.

The plots given in Fig. 4 present the results of 1000

individual simulations (points) and their corresponding

average (the continuous line) for various values of R

(R = 0.2, 0.4, 0.6, 0.8). We assume here that the absorp-

tion probability pa = 1.00. Moreover, the probability of

emission is assumed to be equal to 0.25. We see that up to

approx. 10 first steps the rate r is equal to zero. The behavior

is analogous to that discussed in [4] and is related to the fi-

nite speed of propagation of information in our model. More

physically, the quanta of energy need some time, necessary

to travel from the central region of the model to its border.

The closer they are to the “mirrors” at the beginning of the

evolution, the shorter the time when they reach mirrors. More-

over, the duration of that initial period does not depend on

the value of R, which agrees with the behavior of energy

in a real cavity system. After this period the value of r grows

quickly and reaches its maximum before falling down. Just

in the case of the one-dimensional model one can see that for

decreasing values of R, the maximal value of r increases as

for the model discussed in [4].

The rate parameter r decays after it reaches its maxi-

mum and achieves some asymptotic value. Similarly to one-

dimensional models, after the period of time when the system

loses its energy relatively fast and there are very few excited

cells left, the energy of the whole system does not change

drastically.

As it was shown in [3, 4], when the absorption probability

increases, the energy remains in cavity for a long time, even

when the reflectivity is small. Thus, the absorbing cells play

an important role in slowing-down of spreading of excitations
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Fig. 4. Rate of energy leakage from the cavity for various values of the mirror reflection probabilities.
We assume that pa = 1.00 and pe = 0.25
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Fig. 5. The same as in Fig. 3 but for pa = 0.25 and pe = 1.00

inside the cavity. This phenomenon was referred to as the

molasses effect [3]. Fig. 5 shows the results similar to those

given in Fig. 4 but for the probabilities pa = 0.25, pe = 1.

Comparing these two figures we conclude that we can ob-

serve here the same features of the energy leakage as for

one-dimensional models. The molasses effect appears here

and we see that for greater values of pa all processes present

in our system are much slower. For the case shown in Fig. 4

the maximal values of the energy leakage parameter r are

(approximately by two orders) smaller than for the case when

the absorption probability is smaller (see Fig. 5). This means

that the absorption can play a dominant role in our model

as well.

IV. CONCLUSION

In this paper we considered application of the CA for-

malism in simulation of the dynamics of a two-dimensional

extension of the model introduced and discussed in [2, 3].

We showed that similarly to the one-dimensional model, vari-

ous effects including the molasses effect occur for our system.

The presence of all features discussed here lead to the con-

clusion that our model could correctly describe the dynamics

of the real system. We believe that it can be successfully ap-

plied for further investigation of the dynamics of large sets of

two-level systems.

The model considered here and its representation in the

CA formalism are probabilistic in their character. Therefore,

the method discussed in this paper seems to be a promis-

ing tool for investigation of noisy and chaotic behaviors of

the systems involving many two-level subsystems. For such

cases it is necessary to use quantities allowing for a quanti-

tative description of the character and a degree of disorder

present in the system. For instance, the entropic parameters

introduced in [3, 4] or recurrence diagrams considered in [6]

could be applied for those purposes. Such considerations will

be the subject of our future paper.
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