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Computer Simulation of Two-Mode Nonlinear Quantum Scissors
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Abstract: We present a simulation method allowing for modeling of quantum dynamics of nonlinear quantum scissors’
(NQS) systems. We concentrate on the two-mode model involving two mutually interacting nonlinear quantum oscillators
(Kerr nonlinear coupler) excited by a series of ultra-short external coherent pulses. We show that despite the simplicity of
the method one can obtain non-trivial results. In particular, we discuss and compare two cases of kicked nonlinear coupler,
showing that the quantum evolution of the system remains closed within a two-qubit Hilbert space and can lead to maximally
entangled states generation.
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I. INTRODUCTION

Quantum states engineering is one of the most interesting
fields in quantum optics. It seems to be very promising, espe-
cially from the point of view of the quantum information the-
ory. Some optical systems, including nonlinear media, allow
for generation of states that are defined in finite-dimensional
Hilbert space, and they are referred to as nonlinear quantum
scissors (NQS) – for a comprehensive discussion of such sys-
tems see for instance [1] and the references quoted therein).
Since such models involve nonlinear subsystems, finding
analytical solutions describing their dynamics can be cum-
bersome. Therefore, for such cases numerical methods could
become only one possible way off solving a given problem.
In this paper we shall show how to model quantum dynamics
of a nonlinear system. In particular, using the kicked nonlin-
ear quantum coupler model we will show that the system’s
dynamics can be closed within a finite set of quantum states.
In consequence, our system can be treated as NQS.

II. THE MODEL AND SIMULATION METHOD

In this paper we shall concentrate on the two-mode model
comprising two mutually interacting quantum nonlinear oscil-
lators labeled by a and b. They are described by the following

Hamiltonian expressed in terms of boson creation and annihi-
lation operators â† (b̂†) and â (b̂), respectively:

ĤNL =
χa
2

(â†)2â2+
χb
2

(b̂†)2b̂2+εâ†b̂+ε∗âb̂†+χabâ
†âb̂†b̂,

(1)
where χa and χb are nonlinearity coefficients corresponding
to two Kerr-like oscillators, ε describes the strength of their
mutual linear interaction whereas χab is a so-called cross-
coupling term. The latter is sometimes omitted by authors
and the discussion of this problem can be found for example
in [2]. The model presented here is an extension of that dis-
cussed in [3]. Thanks to the presence of the cross-coupling
term, it seems to be more realistic. Moreover, it differs from
that considered previously in [4] in fact that we assume here
linear interaction between two oscillators whereas for the
system discussed there nonlinear coupling was assumed.

The system is externally excited in one mode and this ex-
citation is in the form of series of ultra-short coherent pulses.
Such interaction between the coupler and external field can
be modeled with the use of Dirac-delta functions. In conse-
quence, the Hamiltonian corresponding to this interaction can
be written as:

ĤK = (αâ† + α∗â)

∞∑
k=0

δ(t− kT ). (2)
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Parameter α appearing here describes the strength of the
external field - nonlinear system interaction, k enumerates
external pulses, whereas T is a time between two subsequent
pulses.

Since we neglect here all dissipation processes, time-
evolution of the system can be described by wave-functions. It
can be expressed with the use of n-photon states. Our system
is a two-mode model and hence can be defined as

|Ψ〉 =

∞∑
m,n=0

cm,n|m〉a ⊗ |n〉b, (3)

where cm,n are complex probability amplitudes, |m〉a and
|n〉b are n-photon Fock states corresponding to the modes
a and b, respectively, and symbol ⊗ denotes a Kronecker
product. Due to the fact that n-photon states have discrete
representation, they can be easily applied in numerical cal-
culations. In fact, this wave function can be represented by
a m× n element column vector containing complex proba-
bility amplitudes. It can be written as:

|ψ〉 =



c0,0
c0,1
c0,2

...
c0,n
c1,0
c1,1
c1,2

...
cm,n,


(4)

where the normalization condition
m∑
k=0

n∑
l=0

|ck,l|2 = 1 (5)

should be fulfilled.
For non-dissipative models, time-evolution of the system

is described by unitary evolution operators defined on the
basis of the system’s Hamiltonian. Since the interaction with
the external field is represented by ultra-short pulses, the
whole evolution can be divided onto two subsequent stages,
completely different in their nature. The first of them corre-
sponds to the period of time between two subsequent pulses.
During this time the energy of the coupler is conserved and
its evolution is determined by the following unitary operator

ÛNL = e−iĤNLT . (6)

The second stage corresponds to the interaction with a sin-
gle pulse during infinitesimal short time and the operator
responsible for this interaction can be written as

ÛK = e−i(αâ
†+α∗â). (7)

In consequence, transformation of the wave-function from
that corresponding to the moment just after j-th pulse to that
after j + 1 one, is a result of the action of these two operators

|ψj+1〉 = ÛK ÛNL |ψj〉. (8)

Thus, we can obtain the wave-function for the moment of
time just after k-th pulse by the multiple (k-times) action of
the operator Û = ÛKÛNL on initial state of the system |ψ0〉

|ψk〉 = (Û)k |ψ0〉 = (ÛKÛNL)k |ψ0〉. (9)

Since we are using n-photon basis, we can define the cre-
ation (annihilation) operators as square matrices which in fact
are sparse. For example, if we assume that the dimensions of
Hilbert subspaces, corresponding to each of nonlinear oscilla-
tors are n and m, respectively, matrix ǎ that corresponds to
the operator â can be written as

ǎ =



0 1 0 . . . 0 0

0 0
√

2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0

√
n− 1

0 0 0 . . . 0 0


⊗ Ǐm, (10)

whereas its counterpart for mode b will be defined by

b̌ = Ǐn ⊗



0 1 0 . . . 0 0

0 0
√

2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0

√
m− 1

0 0 0 . . . 0 0


, (11)

where Ǐn(m) represents the unity matrix whose dimension is
equal to n (m), whereas symbol ⊗ denotes the Kronecker
product (the same as in (3)). Analogously, creation operators
for modes a and b can be expressed as matrices:

ǎ† =



0 0 0 . . . 0 0
1 0 0 . . . 0 0

0
√

2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . .

√
n− 1 0


⊗ Ǐm, (12)

and

b̌† = Ǐn ⊗



0 0 0 . . . 0 0
1 0 0 . . . 0 0

0
√

2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . .

√
m− 1 0


, (13)
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respectively. Using such defined matrices we can construct
those for the Hamiltonians ĤNL ĤK and hence, unitary evo-
lution operators ÛNL, ÛK and Û in the matrix form. What
is important, the Hamiltonian ĤNL is diagonal in n-photon
basis. Therefore, the problem of derivation of the matrix
corresponding to ÛNL becomes straightforward. Moreover,
as a result we get a diagonal matrix again and hence the
problem of effectiveness of multiplication the wave-function
(represented by a vector) by such matrix simplifies consid-
erably. Unfortunately, the Hamiltonian ĤK is not diagonal.
In consequence, to find the evolution operator ÛK we need
application of methods usually used for calculation of matrix
exponentials. Nevertheless, one should keep in mind that the
matrices corresponding to annihilation and creation operators
are sparse. It is possible to use appropriate procedures defined
for such sort of matrices, and their application improves the
effectiveness of calculations. Fortunately, standard numerical
procedures for both calculation of matrix exponentials and
manipulation with sparse matrices are already implemented
in various standard packages or libraries. For instance, Mat-
lab computing environment and language [5] (or its free clone
Octave [6]) seems to be suitable for our purposes due to their
simplicity and ease of use. These software packages can be
applied even by computer users who are not very experienced
in numerical calculations.

III. RESULTS

For our purposes we have assumed that the field was
initially in the vacuum states for both modes, i.e. we have
photons neither in mode a nor in b:

|ψ0〉 = |0〉a ⊗ |0〉b (14)

Obviously, it is possible to assume that the system was ini-
tially in another quantum state. For instance, very often con-
sidered quantum-optical systems are assumed to be initially
in the coherent state |α〉 [7]. Such state can be expressed in
n-photon basis as

|α〉 = exp(−|α|2/2)

∞∑
n=0

αn√
n!
|n〉, (15)

where α appearing in (15) denotes there a complex variable,
and is related to the mean number of photons by the following
relation 〈â†â〉 = |α|2. Nevertheless, for our considerations
we shall consider weak field limits and assume that initially
we have practically no photons in the system. For such cases
the condition |α|2 � 1 is fulfilled and hence the initial field
can be approximated by the product of vacuum states defined
for each mode. That means that only one probability ampli-
tude appearing in the vector (4) describing the initial state
will be different from zero, i.e. c0,0 = 1.

Applying a multiple action of the unitary evolution op-
erator Û on the initial state |ψ0〉 we obtain vectors com-
prising probability amplitudes for all considered basis states
|n〉a ⊗ |m〉b corresponding to the moments of time just after
subsequent external pulses. For our purposes we define the
matrices for wave-function and operators where 10 n-photon
states are involved for each mode. Moreover, we assume that
χab = 1 and χa = χb = 1. As it was mentioned earlier,
we deal here with the cases of weak external excitation and
internal coupling (α = 1/25 and ε = 1/100) – all energies
and strengths of interactions are expressed here in units of
nonlinearity constants.

We start our considerations from the case when cross-
coupling is taken into account. From Fig. 1 we see that only
few states |n〉a ⊗ |m〉b are involved in the system’s evolu-
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Fig. 1. Probabilities for the states: |0〉a ⊗ |0〉b (solid line), |0〉a ⊗ |1〉b (dashed-dotted line) and |1〉a ⊗ |0〉b (dashed line). The parameters
are: T = π, α = 1/25, ε = 1/100 and χa = χb = χab = 1.
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Fig. 2. Deviation from the unity of the sum of probabilities shown in Fig. 1
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Fig. 3. Probabilities for the states: |0〉a⊗ |0〉b (solid line), |0〉a⊗ |1〉b (dashed-dotted line), |1〉a⊗ |0〉b (dashed line) and |1〉a⊗ |1〉b (dotted
line) when χab = 0. Remaining parameters are the same as for Fig. 1

tion and the system behaves as NQS [1] (examples of such
models were discussed for instance in [8-11]). For the mod-
els discussed here it is an effect of resonant coupling by the
zero-frequency component of external excitation between
some eigenstates generated by the Hamiltonian ĤNL. We
here assume that cross-coupling is present and hence only

three states are involved in the evolution. They are: |0〉a⊗|0〉b,
|0〉a ⊗ |1〉b and |1〉a ⊗ |0〉b. All these states correspond to
the same eigenenergy equal to zero. Fig. 1 shows the time-
evolution for the probabilities corresponding to these states.
In fact, the sum |c0,0|2 + |c0,1|2 + |c1,0|2 ' 1 and hence the
probabilities corresponding to other states can be neglected
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within our approximation. We see from Fig. 2 that deviation
of this sum from the unity oscillates and the amplitude of
these oscillations is ∼ 10−4. In consequence, the truncation
of the wave function involving only three states can be ob-
served with high accuracy. From the point of view of the
quantum information theory, one can say that our system
behaves as a qubit-qubit one (0, 1)a, (0, 1)b, because for two
modes we have two possibilities: the vacuum or one-photon
state.

One can see from Fig. 1 that for some moments of time
the probabilities for the states |0〉a ⊗ |0〉b and |1〉a ⊗ |0〉b
are simultaneously equal to .5. As a result, for such cases
we get separable states 1/

√
2(|0〉a ⊗ |0〉b + |1〉a ⊗ |0〉b) =

1/
√

2(|0〉a + |1〉a) ⊗ |0〉b. What is more interesting, there
are other moments of time for which both probabilities cor-
responding to the states |0〉a ⊗ |1〉b and |1〉a ⊗ |0〉b are
equal to .5, as well. This situation corresponds to the gen-
eration of maximally entangled states – Bell states. For
our model they are |B1〉 = 1√

2
(|0〉a|1〉b + i|1〉a|0〉b) and

|B2〉 = 1√
2
(|1〉a|0〉b − i|0〉a|1〉b).

Fig. 3. depicts the time-evolution of probabilities for four
states: |0〉a ⊗ |0〉b, |0〉a ⊗ |1〉b, |1〉a ⊗ |0〉b and |1〉a ⊗ |1〉b,
when the cross-term is neglected i.e. χab = 0. The fact of
vanishing of the last term in Hamiltonian (1) changes the situ-
ation considerably. Although our system still behaves as NQS,
for this case the energies of eigenstates of ĤNL become dif-
ferent from those discussed above, and hence state |1〉a⊗|1〉b

becomes involved in the system’s evolution as well. This state
corresponds to the eigenenergy which is the same as for other
three states. Analogously to the previous case, the sum of
probabilities corresponding to the four states considered here
is close to the unity. Fig. 4 shows that the deviation of this
sum from the unity is sufficiently small and hence other than
the four states mentioned above can be neglected. It is seen
that time-evolution of the probabilities shown in Fig. 3 is
more complicated than that depicted in Fig. 1. Nonetheless,
the system behaves as a qubit-qubit one, similarly as that with
the cross-coupling term. Again, only two states in each mode
are involved – the vacuum and one-photon states.

It is seen from Fig. 3 that crossing of the pairs of prob-
abilities, leading to the Bell states generation (here, for the
pairs (|1〉a ⊗ |0〉b, |0〉a ⊗ |1〉b) or (|0〉a ⊗ |0〉b, |1〉a ⊗ |1〉b))
does not appear here. For the case when cross-coupling is ne-
glected, such crossing effects exist only for the pairs of states:
(|0〉a⊗|0〉b, |1〉a⊗|0〉b) and (|0〉a⊗|1〉b, |1〉a⊗|1〉b) – it leads
to the product states generation. Nonethelesss, one should
keep in mind that it is potentially possible to find maximally
entangled states for the values of parameters different from
those considered here. However, since this paper is devoted
rather to the presentation of the method for numerical simula-
tion of the dynamics of two-mode NQS than discussing the
properties of nonlinear coupler, considerations concerning
entangling possibilities of such couplers will be a subject of
a separate article.
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Fig. 4. The same as in Fig. 2 but for the probabilities from Fig. 3
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IV. SUMMARY

We presented here a simulation method that allows to
model quantum dynamics of kicked nonlinear quantum scis-
sors’ (NQS) systems. The discussed method is based on the
application of the unitary evolution operators on the wave-
function describing the considered quantum system. Pre-
sented considerations concern two-mode systems. We showed
how to construct both: the wave function and operators de-
scribing two-mode fields expressed in n-photon basis. It can
be easily done with the use of matrix-orientated programming
languages such as Matlab or its free clone Octave.

In this paper we applied the discussed method for finding
time-evolution of the model involving two mutually interact-
ing nonlinear quantum oscillators (Kerr nonlinear coupler)
excited by a series of ultra-short external coherent pulses. In
particular, we discussed and compared two kicked nonlinear
coupler models. For one of them cross-coupling was present
whereas for the second model this coupling was omitted. We
showed that despite the simplicity of the considered method
one can obtain non-trivial results. In particular, it was shown
that the quantum evolution of the system remains closed
within a two-qubit Hilbert space if external excitation is weak.
This result is true for both discussed models. Moreover, for
the coupler with cross-coupling two maximally entangled
states (Bell states) can be generated.
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[3] A. Miranowicz, W. Leoński, Two-mode optical state trunca-
tion and generation of maximally entangled states in pumped
nonlinear couplers. J. Phys. B: At. Mol. Opt. Phys. 39, 1683-
1700 (2006).
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