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Abstract: The resolution and convergence properties of the Method of Planes (MOP) local pressure tensor method is analyzed
for a slit geometry in which a system of interacting particles is placed between movable walls composed of atoms. Boundary-
driven Molecular Dynamics (BMD) simulations were performed for different situations in which solid or fluid phases
are formed between crystalline or amorphous walls. It is shown that for these inhomogeneous, steady state structures the
total force exerted by a wall atoms on the inside particles is consistent with the normal pressure component obtained from
the MOP method if a sufficiently small integration time step is applied. The work demonstrates that the numerical errors
associated with computing the MOP pressure can be non-negligible and should be a consideration when determining the
BMD algorithm parameters.
Key words: pressure tensor, method of planes, molecular dynamics, computer simulations, inhomogeneous systems,
slit geometry

I. INTRODUCTION

Over the last three decades molecular dynamics methods
to investigate systems of interacting particles under externally
applied pressure or stress components have been developed
in molecular dynamics simulation. These isobaric or isostress
methods, often referred to as “barostats” are routinely used
to study the physical properties of the bulk condensed matter
systems [1]. In the barostat scheme scaling of the molecular
coordinates is used to make strain tensor changes in accor-
dance with the predefined stress component values.

In this way coupling of a physical system to a “pressure
bath” was introduced. Different thermodynamic conditions
can be realized and systems in different thermodynamic en-
sembles be investigated [2-4].

The first pressure control method for molecular dynamics
(MD) simulation was derived by Andersen [5]. The Andersen
barostat is based on an extended Hamiltonian formulation
of the equations of motion for the molecules and the cell
volume, V . The cell volume is driven by a fictitious piston.
Scaling of the molecular coordinates by V 1/3(t) is employed
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to achieve on average a target pressure, Pext via a feed-
back mechanism. The equation of motion for the box vol-
ume is V̈ = (P(t) − Pext)/M , where P is the instantaneous
pressure of the system calculated by the virial formula and
M is the piston “mass”.

Variants on the Andersen method have been developed
since [6]. There are also generalizations to achieve a prede-
fined stress tensor component, P , [4, 8-10]. which employ
a variation of the simulation cell shape and hence strain. An al-
ternative approach (a constraint type of method) forces the
virial P be held constant at a value of Pext and adjusts the
volume, V , to achieve dP/dt = 0 [11]. A weak coupling
barostat was proposed by Berendsen et. al. [12] in which the
volume is scaled by a factor proportional to instantaneous
pressure fluctuations, P − Pext. All of these ‘bulk system’
barostats employ uniform scaling of the molecular coordi-
nates, with the instantaneous pressure calculated using the
virial formula.

There is increasing interest in liquids confined in nano-
sized geometries, either at equilibrium or in flow, where the
gap between the walls may only be a few molecules thick.
In a commonly employed geometry, periodic boundary condi-
tions are applied in two of the cartesian directions, while the
liquid is bounded by walls in the remaining direction. Such
a geometry can be used to represent a liquid lubricant film
or two solid walls in (‘dry’) contact where the walls slide
with respect to each other. The distance between the walls is
allowed to vary with time in response to an applied normal
load or pressure. This situation is quite different and less well
studied than the bulk-system analogues. The barostat requires
a distinct pressure control solution which is not based on the
virial pressure formula [13-17]. The walls cause inhomo-
geneities in the liquid density and other properties (and their
fluctuations). Homogeneous scaling of the coordinates might
therefore cause unphysical states to appear by virtue of a uni-
form coordinate scaling barostat procedure. Furthermore the
equilibrium statistical mechanical form of the pressure tensor
or thermodynamic route is inapplicable away from equilib-
rium. Spatial variations of the stress tensor in an atomistically
inhomogeneous system requires a local pressure tensor defi-
nition.

There are two methods used to determine the local pres-
sure tensor for an atomistic fluid flow in slit geometry which
are valid for highly inhomogeneous, nonequilibrium fluids.

The first is based on a local volume average extension
of the bulk virial pressure formula to a sub-volume or “bin”
of volume [18]. The second, Method of Planes (MOP) route,
is based on an average of the molecular interactions and cross-
ing through a plane [19]. The equivalence between volume
averaging (VA) and MOP definitions of the pressure tensor
at a plane has been proved and demonstrated by MD simula-
tion [20]. In the slit geometry we define z to be the direction
orthogonal to the wall plane.

In a strongly confined systems such as a slit geometry
it is most realistic to make the walls of discrete atoms, in part
because the temperature and/or pressure control is imple-
mented directly through the wall atoms [21]. In a slit, the
tensor component Pzz (or normal pressure) must be constant
throughout a stationary fluid and it can be calculated by MOP
with a plane positioned at any z-value in the fluid. Further-
more it must be equal to the total z-force per unit area, exerted
on the fluid particles by the wall atoms. As a result of the com-
bined action of confinement, temperature, pressure and shear,
different non-fluid arrangements of atoms can be realized,
such as a stationary coexistence between a strained crystal
and a sheared liquid by boundary-driven shear flow or plug-
slip state [22, 23]. In these cases, the way in which the MOP
method can be exploited has been less well discussed in the
literature. In particular, the important role of the applied inte-
gration time step has not been fully recognized. In this work
this issue is analyzed by considering the total z-force exerted
by the wall atoms and results obtained from the MOP method
for a model slit pore subject to different physical and numer-
ical conditions. In Sec. II the MOP method is introduced.
Simulation details and the obtained results for different pa-
rameters of a confined atomic film are discussed in Sec. III.
Conclusions are presented in Sec. IV.
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Fig. 1. A schematic diagram of a simulation slit geometry. The outer
atoms in region A and C are tethered to lattice sites with harmonic
springs and form the confining walls. The simulation cell is periodic
in the x and y directions and the walls can translate along x-direction

II. THE MOP METHOD

The geometry of a confined liquid or solid film positioned
between two parallel walls (in the xz plane in the diagram)
is shown in Fig. 1. The atoms in the central region B undergo
classical equations of motion without any externally imposed
body (constraint) forces. In the two outer regions (labeled A
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and C in the figure), external constraints such as uniform trans-
lation or applied normal or shear force can be applied, and the
atoms may be anchored or tethered to sites of an underlying
rigid lattice of sites. The density of the system is defined for
a fixed value of the distance L between the walls.

An expression for the local pressure tensor which is ap-
plicable quite generally to inhomogeneous equilibrium
or nonequilibrium systems suitable for the geometry of
Fig. 1 was derived by Todd et al. [19]. They incorporated
the full Irving-Kirkwood expansion for the pressure tensor
at time, t [19, 25]. The expression is formulated in terms of the
force and momentum transfer across a plane and was named
the Method of Planes (MOP). It is decomposed into kinetic
and potential (or configurational) parts, i.e., P = PK + PU

just like the bulk virial expression. The kinetic component
of MOP is

PKzz (z) =

= lim
τ→∞

1

Sτ

∑
0<ti,m<τ

∑
i

pzi(ti,m)sgn[pzi(ti,m)],
(1)

for a time-average, where τ is the simulation time, S is the
cross section area, ti,m is the set of time events (m = 1, 2, ...)
in which i particle crosses a plane , pzi is the z-component
of momentum of i-particle, and sgn is the signum function.
Thus, the kinetic part of the pressure tensor in MOP is the
time average over a sum of the momenta of particles which
cross the plane located at z, as illustrated in upper frame
of Fig. 2.
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Fig. 2. Illustration of the way the kinetic (upper graph) and poten-
tial (lower graph) components of the normal pressure are evaluated
with the MOP method in Eqs.(1) and (2). Only the pair interactions
marked as the solid arrows contribute to the PU

zz and only particles
which cross the plane within dt contribute to the PK

zz

The interaction or configurational part of the pressure
tensor zz-component in the MOP description is,

PUzz(z) =
1

4S

∑
i

∑
j

FZij [Θ(zi − z)Θ(z − zj)

− Θ(zj − z)Θ(z − zi)],

(2)

where Θ denotes the Heaviside step function and FZij is the
z-component of the force between particles i and j. In the
above expression, the role of the products of the Heaviside
step function is simply to select the intermolecular force com-
ponents which cross the plane and to make the ij term not
change sign on swapping i with j (see the bottom graph
in Fig. 2 for an illustration of this term). Additionally the con-
tribution from the applied external constraints, such as teth-
ering the atoms with springs to sites of an underlying virtual
rigid lattice, is

PTzz(z) = ± 1

S

N∑
i=1

F ez,iΘ(zi − z)Θ(zm − z), (3)

where F ez,i denotes the z component of the external force
acting on i particle, z is the plane position and zm de-
notes the position of the middle of the system. The sign
of the function in the above equation depends on the side
of the system being considered (+ for bottom and - for top).
PMOP denotes the value of the sum of all pressure com-
ponents - the potential, kinetic and constraint part. In what
follows, the sum of the potential and kinetic parts is denoted
by PC(z) = PUzz(z) + PKzz (z).

The components of MOP given in Eqs. (1), (2) and (3)
can be calculated in MD calculations. In this work we explore
some technical aspects of their implementation.

III. SIMULATION DETAILS AND RESULTS

MD simulations were performed for the atomic system
shown in Fig. 1. In the calculations, interactions between
all particles were assumed to be of the repulsive pairwise
Weeks-Chandler-Anderson (WCA) potential form which has
a well-defined cut off at rcut = 21/6σ, being a shifted
Lennard-Jones potential u(r) = 4ε((σ/r)12 − (σ/r)6) + ε
up to this separation [1]. The potential parameters σ and ε
specify the interaction range and energy, respectively. Addi-
tionally particles in the walls (the regions A,C) were teth-
ered to fixed positions or lattice sites with the harmonic
potential, 1

2k2(ri − r0i)
2, where r0i is the equilibrium lat-

tice site of atom i and the spring constant was, k2 = 57.15
[19]. It was verified that these values ensured that displace-
ments from equilibrium points of the wall atoms were less
than 10 percent of mean distance between the wall parti-
cles, which helped to prevent particles diffusing from re-
gion B into regions A and C. All quantities in this work
are in the conventional reduced units i.e., length in σ, time
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in (mσ2/kBT )0.5, energy in ε and atomic mass, m, has been
set to unity. kB is the Boltzmann’s constant. All calculations
were for T ∗ = kBT/ε = 1 and the walls were thermostated
with the velocity scaling scheme. Simulations were performed
with the number of atoms in each region, NA = NC = 144
and NB = 252. In what follows the reduced quantities are
without an asterisk. The region B was (initially) a solid con-
structed out of a face-centered cubic (FCC) lattice (with the
[100]-axis along the x-direction). The walls (regions A, C)
were amorphous solids or parts of an FCC crystal structure
made up of 4 FCC(100) planes [3 × 3 × 4] which were com-
mensurate with the FCC structure in the B-region (formed
from basic FCC blocks 3 × 3 × 7). The equations of mo-
tion were integrated with the leapfrog Verlet algorithm using
mostly a time step, dt = 0.0005 for reasons discussed below.
To each well equilibrated system at two densities correspond-
ing to the fluid (ρ = 0.8) and solid (ρ = 1.1) phase the shear
was applied. The shear rate was gradually increased and cal-
culations (after an equilibration period) were performed for
steady states with vx = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5. Aver-
ages of quantities of interest were taken from simulations
of 2 × 106 time steps duration.

In Fig. 3, an example of the calculated MOP local pres-
sure and all its components are shown. As may be seen, the
form of each separate component is fairly structured function
of z, but which sum up to a constant value, PMOP . Note,
in the slit the contribution from the external field (springs),
PT , is negligible and the total pressure PMOP , is in prac-
tice equal to the sum of the kinetic and interaction terms,
PC = PK + PU . Also, it is expected that the calculated
value of the total pressure PMOP (z) is equal to the normal
pressure produced by average total force exerted by the wall
on the particles inside the gap i.e., PW =< Fz > /S (and
vice versa by Newton’s third law).
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Fig. 3. Illustration of the components in Eqs. (1), (2) and (3) of the
local normal pressure, PMOP (z), calculated by the MOP method
Calculations are for fluid phase (ρ = 0.8, vx = 0) in the slit geome-

try shown in Fig. 1

There is a potentially important technical point regard-

ing the implementation of the MOP expressions. In the MD
simulations the equations of motion are integrated with the al-
gorithms which routinely apply a constant time step, dt. The
potential and kinetic parts of a quantity are calculated at dis-
crete time intervals, ndt where n = 1, 2, .... However, parti-
cles cross the plane at discrete times, ti,m which are typically
between rather than at integer multiples of dt. Localization
of the time events ti,m can considerably slow down the cal-
culations. Nevertheless, it might reasonably be expected that
the approximation that the plane crossings for the kinetic part
be associated with ndt events may become irrelevant on tak-
ing a sufficiently small dt. This issue is explored in Figs. 4
and 5 which show the difference between the PMOP and the
normal pressure value PW for different sizes of the time step,
for fluid and solid phase in the slit, respectively. The wall
parts of the system are not shown in these two figures.
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Fig. 4. Difference between the normal pressure calculated by the
MOP method for fluid phase (ρ = 0.8, vx = 0) in the slit geom-
etry and the normal pressure value PW calculated from the total
force exerted by the wall on the system. The solid lines are for
different integration time steps used in MD simulations (in each
case the long total integration time was the same of τ = 1000).
The accuracy of the lines at any z is about 0.01. The fluid extends

from z ≈ −6 to 6

The local pressure value should be the same within sta-
tistical uncertainly as the calculated value of PW . For a fluid
central phase, Fig. 4 reveals that for small dt < 0.001, the
difference PMOP −PW tends to zero within the simulation’s
statistical uncertainty i.e., is less than 0.01, which means
that the sequence of ndt assumed crossings are practically
equivalent to the true ti,m set. For dt = 0.001 the correct flat
dependence is obtained for almost the entire slit width but its
departure from PW (or a shift from zero) is only marginally
within the error bar. The application of larger time steps leads
to the shifts which are outside statistical uncertainties. Addi-
tionally, as seen for dt = 0.005, the line is not horizontal but
there is some noticeable and unphysical oscillatory structure
in the local pressure profile. To summarise, for the type of sim-
ulated system and imposed conditions consider in this work
an integration time step of order 0.001 is sufficient to obtain
statistically consistent results for calculated quantities. Fig. 5
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shows that in the case in which the solid (crystal structure)
is in the central B-region, the influence of dt may be more
pronounced. In particular a noticeable structure in PMOP (z)
(and PC(z)) persists even for small time steps, dt < 0.001.
In this case only dt = 0.0005 gives results which are only
marginally within the error bar (i.e., 0.05). The oscillations
in the local pressure correlate with the oscillations in the den-
sity distribution structure, ρ(z) (which are shown in Fig. 7).
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Fig. 5. As for Fig. 4 but the results are for the solid phase in the gap
(ρ = 1.1, vx = 0). The accuracy of the lines at any z is about 0.05.

The inset shows an enlargement of the central part

The time step tests whose results are shown in Figs. 4
and 5, indicate that the approximation in the numerical cal-
culation of the kinetic part of the local pressure can be made
statistically irrelevant by a reduction of the time step. A fur-
ther reduction by a factor two to dt = 0.0005 was used so that
we could be confident we had achieved the satisfactory limit
in regard to this effect.
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Fig. 6. The normal pressure calculated by the MOP method for
ρ = 0.8 and vx = 0 marked as the solid line (red). The (dashed
green) horizontal line represents the value of the normal pressure
calculated as the average total force exerted by the wall on the
system, PW . The upper solid lines represent the total, ρ(z), and
between walls or the inside, ρinside(z), particle density distribu-
tions across the slit. In the top, a typical configuration of fluid phase

between the FCC walls is shown

The calculated normal pressure, PMOP , in fluid phase
is shown in Fig. 6. In the calculations the inter plane res-
olution separation was equal to 0.05. The horizontal line
represents the normal pressure value obtained as total z-force
per unit area PW . Both quantities agree very well anywhere
within the liquid. On the figure the liquid is characterized
by the density distribution, ρinside(z) (middle frame) and il-
lustrated by a snapshot configuration between the FCC walls
(top frame). Thus an accurate evaluation of the normal pres-
sure can be achieved through PMOP , averaged over an arbi-
trary number of planes placed anywhere within the slit, which
also applies for wall-driven sheared confined fluids.
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Fig. 7. As for Fig. 6 except that there is a solid phase in the gap
(ρ = 1.1)
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Fig. 8. As for Fig. 7 except that the wall speed was vx = 0.5.
In the slit the formation of the central localization (CL) phase [22]
or boundary-driven shear flow is observed. The magnitude of the scil-
lations in the density profile distribution damp out towards the center
indicating liquid-like character of the system in this part of the slit

The situation in which there is a solid or partially solid
structure between static or movable slit walls is shown
in Figs. 7 and 8. Also in this case the expected agreement



172 Sz. Maćkowiak, D.M. Heyes, D. Dini, A.C. Brańka

between PMOP and the PW is achieved well within the sim-
ulation statistical uncertainty. However, the numerical errors
associated with computing the kinetic and configurational
parts of MOP can be non-negligible and should be a consider-
ation when determining the algorithm parameters, especially
when there is a solid phase in the gap between the walls.
In particular, our calculations indicate that attention should
be paid in situations in which densely packed structures are
investigated for which ρ(z) displays strong oscillations.

IV. CONCLUSIONS

These calculations confirm that the MOP method is a valu-
able method for determining the local pressure tensor for
highly inhomogeneous particle systems in a slit geometry and
steady states conditions at equilibrium as well as away from
equilibrium. In our MD simulations, the MOP’s kinetic part
is evaluated up to the time step resolution. It was found that
a reduction of an integration time step to a still practical value
is sufficient to give an accurate limiting estimation of this
quantity. In numerical calculations using the MOP expres-
sions, a study of the influence of the magnitude of the time
step is therefore recommended as a routine preliminary task.
Finally, our results suggest that calculation of the instanta-
neous normal pressure involved in barostat schemes is more
conveniently performed with the total force formula than with
the MOP scheme.
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