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Abstract: We have calculated on the computer the sum BM of reciprocals of first 47 known Mersenne primes with the
accuracy of over 12000000 decimal digits. Next we developed BM into the continued fraction and calculated geometrical
means of the partial denominators of the continued fraction expansion of BM . We get values converging to the Khinchin’s
constant. Next we calculated the n-th square roots of the denominators of the n-th convergents of these continued fractions
obtaining values approaching the Khinchin-Lèvy constant. These two results suggests that the sum of reciprocals of all
Mersenne primes is irrational, supporting the common belief that there is an infinity of the Mersenne primes. For comparison
we have done the same procedures with a slightly modified set of 47 numbers obtaining quite different results. Next we
investigated the continued fraction whose partial quotients are Mersenne primes and we argue that it should be transcendental.
Key words: Mersenne primes, continued fractions, Khinchin’s constant

I. INTRODUCTION

The Mersenne primesMn are primes of the form 2p − 1
where p must be a prime, see e.g. [18, Sect. 2.VII]. The set
of Mersenne primes starts withM1 = 22 − 1,M2 = 23 −
1,M3 = 25−1 and only 48 primes of this form are currently
known, see Great Internet Mersenne Prime Search (GIMPS)
at www.mersenne.org. The largest known Mersenne prime
has the valueM48 = 257885161−1 = 5.819 . . .×1017425169.
In general the largest known primes are the Mersenne primes,
as the Lucas-Lehmer primality test applicable only to num-
bers of the form 2p−1 needs a small multiple of p steps, thus
the complexity of checking primality ofMn isO(log(Mn)).
Let us remark that algorithm of Agrawal, Kayal and Sax-
ena (AKS) for arbitrary prime p works in about O(log7.5(p))
steps and modification by Lenstra and Pomerance has com-
plexity O(log6(p)).

There is no proof of the infinitude ofMn, but a common
belief is that as there are presumably infinitely many even
perfect numbers thus there is also an infinity of Mersenne
primes, see e.g. [9, sect. 16.8]. S. S. Wagstaff Jr. in [26]
(see also [21, §3.5]) gave heuristic arguments thatMn grow
doubly exponentially:

log2 log2Mn ∼ ne−γ , (1)

where γ = 0.57721566 . . . is the Euler-Mascheroni constant.
In Fig. 1 we compare the Wagstaff conjecture with all 48
presently known Mersenne primesMn. Of these 48 known
Mn = 2p − 1 there are 28 with p mod 4 = 1 and 19
with p mod 4 = 3. It is in opposite to the set of all primes
where the phenomenon of Chebyshev bias is known: for ini-
tial primes there are more primes p ≡ 3 (mod 4) than p ≡ 1
(mod 4), [11, 19].

In this paper we are going to exploit two facts about the
continued fractions to support the conjecture on the infinitude
of Mersenne primes: the existence of the Khinchin constant
and Khinchin-Lèvy constant. We calculate the sum of recip-
rocals of the Mersenne primes BM =

∑
n 1/Mn; if there is

infinity of Mersenne primes then this number BM should be
irrational (at least, because it is probably even transcendental,
as it is difficult to imagine the polynomial with some mysteri-
ous integer coefficients whose one of roots should be BM ).
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Fig. 1. The plot of log log(Mn) and the Wagstaff conjecture (1).
The fit was made to all known Mn and it is 0.382n + 0.7229,
while ne−γ log(2)− log log(2) ≈ 0.3892n+ 0.3665. The rather
good coincidence of log log(Mn) and (1) is seeming, as to get
originalMn’s the errors are amplified to huge values by double

exponentiation

There exists a method based on the continued fraction
expansion which allows to detect whether a given number r
can be irrational or not. Let

r = [a0(r); a1(r), a2(r), a3(r), . . .] ≡

≡ a0(r) +
1

a1(r) +
1

a2(r) +
1

a3(r) +
. . .

(2)

be the continued fraction expansion of the real number r,
where a0(r) is an integer and all ak(r) with k ≥ 1 are pos-
itive integers. The quantities ak(r) are called partial quo-
tients or partial denominators. Khinchin has proved [13], see
also [20], that

lim
n→∞

(
a1(r) . . . an(r)

) 1
n =

=

∞∏
m=1

{
1 +

1

m(m+ 2)

}log2m

≡ K ≈ 2.685452001

(3)

is a constant for almost all real r [8, §1.8] (the term a0 is
skipped in (3)). The exceptions are of the Lebesgue mea-
sure zero and include rational numbers, quadratic irrationals
and some irrational numbers too, like for example the Eu-
ler constant e = limn→∞(1 + 1

n )
n = 2.7182818285 . . . for

which the n-th geometrical mean tends to infinity like 3
√
n,

see [10, §14.3 (p.160)]. The constantK is called the Khinchin
constant. If the sequence

K(r;n) =
(
a1(r)a2(r) . . . an(r)

) 1
n (4)

for a given number r tend to K for n→∞ we can regard it
as an indication that r is irrational – all rational numbers have
a finite number of partial quotients in the continued fraction
expansion and hence starting with some n0 will be an = 0 for
all n > n0 . It is possible to construct a sequence of rational
numbers such that the geometrical means of partial quotients
of their continued fraction will tend to the Khinchin constant
(A. Schinzel, private communication).

The Khinchin-Lèvy’s constant arises in the following way:
Let the rational Pn(r)/Qn(r) be the n-th partial convergent
of the continued fraction of r:

Pn(r)

Qn(r)
= [a0(r); a1(r), a2(r), a3(r), . . . , an(r)]. (5)

In 1935 Khinchin [12] has proved that for almost all real
numbers r the denominators Qn of the convergents fulfill:

lim
n→∞

(
Qn(r)

)1/n ≡ lim
n→∞

L(r;n) = L (6)

and in 1936 Paul Levy [14] found an explicit expression for
this constant L:

lim
n→∞

n
√
Qn(r) = eπ

2/12 log(2) ≡ L = 3.27582291872 . . .

(7)
L is called the Khinchin-Lèvy’s constant [8, §1.8]. Again the
set of exceptions to the above limit is of the Lebesgue measure
zero and it includes rational numbers, quadratic irrationals
etc.

We have made all computer calculations for first 47
Mersenne primes, i.e. up to M47 = 243112609 − 1 =
3.1647026933 . . . × 1012978188. Because the new (it is not
known whether there exist undiscovered primes of the form
2p − 1 between M42 and the largest presently known
Mersenne prime) Mersenne prime discovered in January 2013
is about five millions orders larger than M47 to include it
in the computer experiments would require a few additional
months of CPU time.

II. FIRST EXPERIMENT

Let us define the sum of reciprocals of all Mersenne
primes:

BM =

∞∑
n=1

1

Mn
, (8)

which can be regarded as the analog of the Brun’s constant,
i.e. the sum of reciprocals of all twin primes:

B2 =

(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+ . . . . (9)

In 1919 Brun [5] has shown that this constant B2 is fi-
nite, thus leaving the problem of infinity of twin primes not
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decided. Today’s best numerical value is B2 ≈ 1.90216058,
see [16], [22]. Yet it is possible to prove that there is infinity
of twins by showing that Brun’s constant is irrational [27]
(we believe it is even transcendental).

Using PARI [24] we have calculated the sum of recip-
rocals of all known 47 Mersenne primes BM with accuracy
over 12 million digits:

BM = 0.5164541789407885653304873429

715228588159685534154197 . . . .
(10)

This number is not recognized by the Symbolic Inverse Calcu-
lator (http://pi.lacim.uqam.ca) maintained by Simone Plouffe.
The bar over BM denotes the finite (at present consisting of
47 terms) approximation to the full sum defined in (8). It
is not known whether there are Mersenne prime numbers
with exponent 25964951 < p < 43112609–currently con-
firmed by GIMPS is that 225964951 − 1 is the 42-th Mersenne
prime M42 – it is not known whether any undiscovered
Mersenne primes exist between the 42thM42 and the 42th
Mersenne prime M48. We have taken 12000035 digits of
BM – it means that we assume that there are no unknown
Mersenne primes with p < 12000035 log(10)/ log(2) ≈
39863253 (as for June 2013 GIMPS has checked all expo-
nents below 44457869 at least once). Using the incredibly
fast procedure ContinuedFraction[·] implemented in
Mathematica c© we calculated the continued fraction expan-
sion of BM . The result was built from 11645012 partial de-
nominators a1 = 1, a2 = 1, a3 = 14, . . . , a11645012 = 4.
The n-th convergent Pn(r)/Qn(r), see (5), fulfills∣∣∣∣r − Pk

Qk

∣∣∣∣ < 1

QkQk+1
<

1

Q2
kak+1

≤ 1

Q2
k

, (11)

see [13, Theorem 9, p.9]. From this it follows that if r is
known with precision of d decimal digits we can continue
calculation of quotients an up to such n that the denomina-
tor of the n-th convergent Q2

n < 10d. We have checked
that Q11645012 = 4.291385 × 106000016 and apparently
Q2

11645013 > 1012000035 .

The largest partial quotient was a9965536 = 716699617.
We have checked correctness of the continued fraction expan-
sion of BM by calculating backwards from [0; 1, 1, 14, . . . , 4]

the partial convergent. The Mathematica c© has built in the
procedure FromContinuedFraction[·], but we have
used our own procedure written in PARI and implementing
the recurrence:

Pn+1 = anPn + Pn−1, Qn+1 = anQn +Qn−1, n ≥ 1

(12)
with initial values

P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1. (13)

We have obtained the ratio of two coprime 6000018
decimal digits long integers (it means denominator was of
the order 106000018 and hence its square was smaller than
1012000035, see eq.(11)):

6000018 digits︷ ︸︸ ︷
2216304109121123313251143869 . . . 2210
4291385759849224534616716035 . . . 2813

whose ratio has 12000033 digits the same as BM . The dec-
imal expansion of BM = P/Q is obviously periodic (re-
curring), see [9, Th. 135], but the length of the period is
much larger than 1012000000. According to the Theorem 135
from [9] the period r of the decimal expansion of BM is equal
to the order of 10 mod Q, i.e. it is the smallest positive r for
which

10r ≡ 1(mod Q). (14)

Because Q being the product of all 47 Mersenne primes is of
the order 3.509 . . .× 1086789810, we expect that the value of
r is much larger than 1012000000.

Fig. 2. The plot showing the distance to K of the running geomet-
rical averages K(n) = (a1a2 · · · an)1/n for the continued fraction

of BM

From the sequence of partial quotients a1 = 1, a2 =

1, a3 = 14, . . . , a11645012 = 4 we have calculated running
geometrical means

K(n) =

(
n∏
k=1

ak

)1/n

(15)
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for n = 11, . . . , 11645012. The obtained numbers K(n)

quickly tend to the Khinchine constant thus in Fig. 2 we
have plotted the differences |K(n) − K|. The power fit to
the values for n = 1000 . . . 11645012 gives the decrease of
the form |K(n) −K| ∼ n−0.79 and it suggests that indeed
limn→∞K(n) = K and thus BM is irrational. Indices n
for which the geometric means K(n) produce progressively
better approximations to Khinchin’s constant are:

1, 3, 12, 16, 17, 21, 24, 26, 29, 412, 788, 1045,

369625, 369636, . . . , 5137093, 10389989;
(16)

the smallest value of |K(n)−K| was 4.455957 . . .× 10−11.
This sequence can be regarded as the counterpart to the
A048613 at OEIS.org.

Fig. 3. The plot showing the distance to L of the (Q(n))1/n ob-
tained from the partial convergents of the continued fraction of BM

for n = 11, . . . , 11645012

Next we calculated running (i.e. for n = 11, . . . ,

11645012) partial quotients Pn/Qn and then the quantities
L(n) = n

√
Qn, which for almost all irrational numbers should

tend to the Khinchine-Levy constant. The behaviour of n
√
Qn

is shown in Fig. 3. Again we see that these quantities tend
to the limit L; the fitting of the power-like dependence for
n > 10 gives that |L(n)− L| ≈ 175.39n−0.92. The shape of
the plot in this figure is similar to the plot of |K(n)−K| in
Fig. 2.

Both differences K(n)−K and L(n)− L have a lot of
sign changes for n < 11645012. Figures 4 and 5 present the
plots of these differences together with the number of sign
changes.

Fig. 4. The plot of K(n) in black approaching the Khinchine con-
stant K = 2.685452 . . . (in red) with values presented on left y-axis.
In green are presented numbers of sign changes of K(n)−K up to

n-the right y-axis is for this plot

Fig. 5. The plot of L(n) in black approaching the Khinchine-Levy
constant L = 3.27582291872 . . . (in red) with values presented
on left y-axis. In green are presented numbers of sign changes of

L(n)− L up to n – the right y-axis is for this plot

The data presented in Figures 2 and 3 provide the hints
that BM is irrational and hence that there is infinity of
Mersenne primes. But we are convinced BM is in fact tran-
scendental. In favor of this claim we recall here the result of
A. J. van der Poorten and J. Shallit [25] that the following sum
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1

21
+

1

22
+

1

23
+

1

25
+ . . .+

1

2Fn
+ . . . (17)

where Fn are Fibonacci numbers, is transcendental. It is well
known that the Liouville number

1

21!
+

1

22!
+

1

23!
+

1

24!
+ · · ·+ 1

2n!
+ . . . (18)

is transcendental, see [9, Theorem 192]. In BM , assuming the
Wagstaff conjecture, unfortunately the terms decrease slower:

n! > 2n > 2e
−γn for n ≥ 4 but faster than Fn =

⌊
ϕn√
5
+ 1

2

⌋
,

where ϕ = 1+
√
5

2 ≈ 1.6180339887 . . . .

Let ψn(m) denote the number of partial quotients ak with
k = 1, 2, . . . , n which are equal to m:

ψn(m) = ]{k : k ≤ n and ak = m}.

Then the Gauss-Kuzmin theorem (for excellent exposition
see e.g. [10, §14.3]) asserts that

lim
n→∞

ψn(m)

n
=

log
(
1 + 1

m(m+2)

)
log(2)

(19)

for continued fractions of almost all real numbers. In other
words, the probability to find the partial quotient ak = m

is equal to log2(1 + 1/m(m+ 2)). In Fig. 6 we present the
plot of the ψ11645013(m)

11645013 for the continued fraction of BM
and m = 1, 2, . . . 1000 together with prediction given by the
Gauss-Kuzmin theorem finding excellent agreement.

Fig. 6. The plot of the measured for the continued fraction of BM
probability to find the partial quotient ak = m for the continued

fraction of BM

Finally let us notice that the number BM computed with
12000035 digits is normal in the base 10, see Table 1.

Tab. 1. Illustration of the normality of BM : the numbers in the sec-
ond (fifth) row give the number of digits 0, 1, . . . 9 appearing in the
decimal expansion of BM and the third (sixth) rows contain the ratio

of numbers in the second row divided by 12000035

0 1 2 3 4

1200553 1199322 1199420 1200548 1199397

0.1000458 0.0999432 0.0999514 0.1000454 0.0999495

5 6 7 8 9

1198596 1200876 1200056 1201757 1199510

0.0998827 0.1000727 0.1000044 0.1001461 0.0999589

Fig. 7. The plot showing the distance to K of the running ge-
ometrical averages K2(n) for the continued fraction of S for

n = 11, . . . , 10550114

For comparison we have repeated the above procedure
for an artificial set of 47 numbers of the size corresponding
to the known Mersenne primes. We have simply skipped -1
in the Mersenne primes and using PARI we have computed
over 120000000 digits of the sum:

S =
1

22
+

1

23
+ . . .+

1

242643801
+

1

243112609

This number S is the ratio of the form A/243112609, where
gcd(A, 243112609) = 1. From [9, §9.2] we know that S
has terminating decimal expansion consisting of 43112609
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decimal digits, thus calculating 12000000 digits of this sum
makes sens as it does not contain recurring periodic pat-
terns of digits. We have developed S into the continued frac-
tion, which resulted in 10550114 partial quotients. The calcu-
lated quantities for this case we denote with the subscript 2:
Q2(n),K2(n), L2(n) to distinguish them from earlier exper-
iment for BM . We have calculated the running geometrical
averages of the partial quotients K2(n) and the results are
presented in Figure 7. Next we calculated partial convergents
P2(n)/Q2(n), n = 1, 2, . . . , 10550114 and from them the
quantities L2(n) ≡ (Q2(n))

1/n, which should tend to the
Levy constant L. In Figure 8 the differences |L2(n) − L|
are plotted. Obtained plots are completely different from
those seen in Figures 2 and 3 and they suggest K2(n) as
well as L2(n) for number S do not have the limit. In this
artificial case we have encountered the phenomenon of ex-
tremely large partial denominators: there were an of the order
1070548, 1097732 and 10279910. These large partial denomina-
tors are responsible for the smaller number of ak than for
BM , see (11).

Fig. 8. The plot showing the distance to L of the (Q2(n))
1/n ob-

tained from the partial convergents of the continued fraction of S for
n = 11, . . . , 10550114

III. SECOND EXPERIMENT

Let us define the supposedly infinite and convergent con-
tinued fraction uM by taking an =Mn:

uM = [0; 3, 7, 31, 127, 8191,

131071, 524287, 2147483647, . . .]
(20)

Using 33 Mersenne primes 3, 7, 31, . . . , 2859433 − 1 in
a couple of minutes we have calculated uM with the precision
of 10000000 digits; first 50 digits of uM are:

uM = 0.318248158405844869425962

02748140694243806236564 . . .
(21)

This number is not recognized by the Symbolic Inverse Cal-
culator (http://pi.lacim.uqam.ca). Because 1/Q2

47(uM) ≈
1.84313 × 10−173579621 it follows from (11) that theoreti-
cally it is possible to obtain the value of uM from presently
known 47 Mersenne primes with over 170,000,000 decimal
digits of accuracy. Obviously uM is the exception to the
Khinchin and Levy Theorems in view of the very fast growth
ofMn – see the Wagstaff [26] conjecture (1). We will present
below conditional arguments that uM is transcendental.

There is vast literature concerning the transcendentality
of continued fractions. For example, the continued fraction

[0; 21!, 22!, 23!, . . . , 2n!, . . .] (22)

is transcendental, see [9, Theorem 192], [23, Example 4].

The Theorem of H. Davenport and K.F. Roth [7] states
that if the denominators Qn of convergents of the continued
fraction r = [a0; a1, a2, . . .] fulfill

lim sup
n

√
log(n) log(log(Qn(r)))

n
=∞ (23)

then r is transcendental. This theorem requires for the tran-
scendence of r very fast increase of denominators of the
convergents: at least doubly exponential growth is required
for (23). The set of continued fractions which can satisfy
the Theorem of H. Davenport and K.F. Roth is of measure
zero, as it follows from the Theorem 31 from the Khinchin’s
book [13], which asserts there exists an absolute constant B
such that for almost all real numbers r and sufficiently large
n the denominators of its continued fractions satisfy:

Qn(r) < eBn. (24)

The paper of A. Baker [4] from 1962 contains a few
theorems on the transcendentality of Maillet type continued
fractions [15], i. e. continued fractions with bounded partial
quotients which have transcencendental values. Besides Mail-
let continued fractions there are some specific families of
other continued fractions of which it is known that they are
transcendental. In the papers [2, 17] it was proved that the
Thue-Morse continued fractions with bounded partial quo-
tients are transcendental. Quite recently there appeared the
preprint [6] where the transcendence of the Rosen continued
fractions was established. For more examples see [3].
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Fig. 9. Illustration of the inequality (26) for 3 ≤ n ≤ 47. Al-
though the last points seem to coincide in fact Q47 = 2.32928 . . .×
1086789810, while 2c2

48e−γ
= 1.21513 . . .×1082034318 – hundreds

of thousands of orders of difference!

In the paper [1] B. Adamczewski and Y. Bugeaud, among
others, have improved (23) to the form: If

lim sup
n

log(log(Qn(r)))

n2/3 log(n)2/3 log(log(n))
=∞ (25)

then r is transcendental.
Assuming the Wagstaff conjectureMn ∼ 22

ne−γ

men-
tioned in the Introduction we obtain that for large n

Qn(M) > 2c2
(n+1)e−γ

, c =
1

2e−γ − 1
= 2.101893933 . . .

(26)
and thus the transcendence of uM will follow from the
Davenport-Roth Theorem (23):√

log(n) log(log(Qn(M)))

n
∼
√
log(n)→∞. (27)

We illustrate the inequality (26) in Figure 9 – the values
of labels on the y-axis give an idea of the order of the
fast growth of Qn(uM): the largest for n = 47 is of the
order Q47 = e1.9984...×10

8

= 2.32928 . . . × 1086789810,
see also Tab. 2.

One of the transcendence criteria is the Thue-Siegel-Roth
Theorem, which we recall here in the following form:

Thue-Siegel-Roth Theorem: If there exist such ε > 0
that for infinitely many fractions An/Bn the inequality∣∣∣∣r − An

Bn

∣∣∣∣ < 1

B2+ε
n

, n = 1, 2, 3, ..., (28)

holds, then r is transcendental.

Tab. 2. A sample of values of inverses of the squares Qn giving
an idea of the speed of convergence of [0;M1,M2, . . . ,Mn]

to uM

n 1/Q2
n

3 2.131173743× 10−6

4 1.320662319× 10−10

5 1.968416969× 10−18

6 1.145786956× 10−28

7 4.168364565× 10−40

8 9.038699842× 10−59

9 1.699990496× 10−95

...
...

17 9.32543401× 10−4439

18 1.38891910× 10−6375

19 3.81534516× 10−8936

20 4.67942175× 10−11599

...
...

40 4.50116310× 10−31553835

41 5.02100786× 10−46025300

42 3.36434042× 10−61657758

43 3.38166968× 10−79961861

44 2.17906011× 10−99578575

45 5.32688381× 10−121949118

46 1.84595823× 10−147623244

47 1.84313029× 10−173579621

Let us stress that ε here does not depend on n – it has to
be the same for all fractions An/Bn. We can test the criterion
(28) for uM using as the rational approximations An/Bn the
convergents Pn/Qn of the continued fraction (20).

In [23] J. Sondow has given the formula for irrationality
exponent of an irrational number r in terms of the continued
fraction expansion of r = [a0; a1, a2, . . .] and convergents
Pn/Qn. For our purposes we state his result as the estimation
for ε:

ε ≤ lim sup
n→∞

log an+1

logQn
. (29)

Let us denote δ ≡ 2 + ε. From the Wagstaff conjecture we
obtain that the exponent δ of Bδ appearing on the r.h.s. of
(28) should be of the order

δ ≈ 2 + 2e
−γ
− 1 = 2.47477 . . . (i.e. ε ≈ 0.47477 . . .)

(30)
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implying transcendence of uM. In Fig. 10 we present ac-
tual values of δ(uM;n) = − log |uM − Pn/Qn|/ log(Qn)
for n = 3, 4, . . . , 45 and indeed the values oscillate around
1 + 2e

−γ
= 2.47477 . . ..

Fig. 10. The plot of − log |uM − Pn/Qn|/ log(Qn) fluctuating
around the estimation (30)

First we have calculated uM using all 47 Mersenne primes
with accuracy 140000000 digits and for n = 3, 4, . . . , 45
we have calculated convergents Pn/Qn and next the differ-
ences |uM−Pn/Qn|with accuracy 1/Q2

n (see Table 2), from
which we determined the δ(uM;n). The arithmetic average
of 43 values δ(uM;n) is 2.5002 . . ., quite close to the esti-
mated value (30). It took a few months of CPU time to collect
data presented in Fig. 10: It took 12 days of CPU time on the
AMD Opteron 2700 MHz processor to collect data for n ≤
40; the point n = 40 needed precision of almost 40,000,000
digits, as |uM − P40/Q40| = 1.5033 × 10−38789567, while
1/Q2

40 = 4.501 . . . × 10−31553835. To calculate the differ-
ence |uM − Pn/Qn| for n = 41, 42, 43 the precision of
100000000 digits was needed. For n = 44 and n = 45 the
difference |uM − Pn/Qn| was calculated with the precision
130000000 digits (see Table 2 for n = 44 and n = 45) and it
took about one month of CPU time for each point.

Conclusion

The performed experiments provide arguments in favour
of the common belief that there is an infinity of Mersenne
Primes.
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