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Abstract: We study the set S of odd positive integers n with the property 2n/σ(n) − 1 = 1/x, for positive integer x,
i.e., the set that relates to odd perfect and odd “spoof perfect” numbers. As a consequence, we find that if D = pq denotes
a spoof odd perfect number other than Descartes’ example, with pseudo-prime factor p, then q > 1012. Furthermore, we
find irregularities in the ending digits of integers n ∈ S and study aspects of its density, leading us to conjecture that the
quantity of numbers in S below k is ∼ 10 log(k).
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I. INTRODUCTION

Let S denote the set of odd positive integers n with the
property

2n

σ(n)
− 1 =

1

x
,

where σ denotes the sum-of-divisors function and x is a pos-
itive integer. These numbers are interesting for several rea-
sons. For instance, if x is prime, nx is an odd perfect number.
No such number is currently known, and the abundant quan-
tity of restrictions for an odd integer to be perfect (such as
those enumerated by Voight [1] and Nielsen [2]) suggest that
these numbers are either extremely rare or do not exist.

On the other hand, if x is odd but not prime, the num-
ber nx is a spoof odd perfect number, i.e., an odd number
that would be perfect if only x was prime. Conversely, if x is
even, nx is a spoof even perfect number. While many exam-
ples exist of spoof even perfect numbers, the same is not true
for their odd counterparts. These numbers, also referred to as

Descartes numbers after the discoverer of the only currently
known member,

D = 198585576189,

for which we have n = 9018009 and x = 22021, have
been subject to considerable research in light of their con-
nection with odd perfect numbers. Despite this, not many
things are known about such numbers; for instance, it is not
even known if there is an infinite number of positive integers
with this property.

A few results exist, however. Banks, Güloğlu, Nevans
and Saidak [3] showed in 2006 that the only cube-free odd
spoof perfect number with fewer than seven distinct prime
divisors is Descartes’ example. Furthermore, they showed
that cube-free spoof odd perfect numbers not divisible by
3 have over a million distinct prime divisors.

Then in 2014, Dittmer [4] gave a formal definition of
spoof odd perfect numbers and showed that Descartes’ ex-
ample is the only spoof with less than seven distinct quasi-
prime factors. In doing so, he defined a quasi-prime fac-
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torization of a positive integer as a set of pairs X =
= {(x1, α1), . . . , (xk, αk)} such that

n =

k∏
i=1

xαi
i ,

where xi ≥ 2 for all i, but without the condition that the
xi must be relatively prime. He then used this factorization
to define the spoof σ-function, σ̃, whose role is analogous to
σ but is related to X instead of the prime factorization. Un-
der such a factorization we can say that n is spoof perfect
if σ̃(X) = 2n (although the notation used by Dittmer [4] is
slightly different).

Thus we can also define “spoof abundant” and “spoof
deficient” numbers as those having the property σ̃(X) > 2n
and σ̃(X) < 2n, respectively, under the corresponding
quasi-prime factorization X .

I. 1. Scope of this paper
Instead of considering the number of quasi-prime factors

in an odd spoof perfect numberD = pq, like Dittmer did, we
find a new lower bound for q by examining the properties of
the set S. In particular, our results show that:

Theorem 1. LetD denote an odd spoof perfect number such
that D = pq, where q ∈ S and p is the pseudo-prime factor.
Furthermore, D 6= 198585576189. Then q > 1012.

In other words, the non-pseudo-prime component of
a spoof odd perfect number (other than Descartes’ example)
is greater than 1012.

The OEIS sequence A2222631 already contains the first
500 terms of S. Using our results presented in this paper, we
extend this sequence up to 1012 (one trillion), then use this
dataset to examine various properties of S.

In the remainder of this paper, let πS(n) denote the num-
ber of elements in S up to and including n. We define the

asymptotic density of the set S as lim inf
πS(n)

n
and its

Schnirelmann density as the greatest lower bound of
πS(n)

n
.

We examine these densities in the sections below and submit
a few conjectures on their values.

II. COMPUTATIONAL METHODS

The computations were performed on a 6-core Intel
i7-7800X processor @ 3.50GHz and took approximately
8 months to complete. Our algorithm checked each odd n

to with the property
2n

σ(n)
− 1 =

1

x
for some positive inte-

ger x, up to n = 1012. An outline of the algorithm is shown
below.

Algorithm 1 Finding positive integers n ∈ S smaller than k

Input: k
Output: n ∈ S smaller than k
results← {∅}
for all odd i ≤ k do

m← DivisorSigma[1, i]/2n
num← Numerator[m]
den← Denominator[m]
diff ← den− num
if diff = 1 then

results← results ∪ {i}
if num ≡ 0 (mod 2) then

print ’Even spoof perfect number found: i’
else

print ’Odd spoof perfect number found: i’
end if

end if
end for
return results

This algorithm was executed using Wolfram Mathemat-
ica 11.1 and used the built-in DivisorSigma[] function
to compute the sum of digits for each candidate.

Note that this algorithm is naive as it makes no assump-
tions on the admissibility of a candidate before processing it.
However, in the absence of a sufficiently developed theoret-
ical framework there are no practical alternatives to this, to
the best of this author’s knowledge.

III. RESULTS

Our computations revealed no odd spoof perfect number
pq other than Descartes’ example up to q = 1012. On the
other hand, we found many more even spoof perfect num-
bers than listed in the OEIS sequence A222263. Recall that
these correspond to an even pseudo-prime factor p. Tab. 1
shows the distribution of these numbers within intervals of
size 10k, for 1 ≤ k ≤ 12.

Before examining the density of S through the lens of
our result set, we first take a look at some of its character-
istics. We begin with the congruence classes formed by the
n ∈ S , as shown in Tab. 2. Our results seem to indicate that
the n are uniformly distributed into residue classes mod 8.

In hopes of finding an irregularity among the members
of our data set, we examined the distribution of their ending
digits. And indeed, our results show a strong bias in favour
of numbers ending in 5 than those ending in other digits.
The distribution of ending digits is shown in Tab. 3.

III. 1. Density
We pursue our analysis by studying the density of S, i.e.,

the ratio
πS(n)

n
for positive integer n. We have plotted this

1 Source: http://oeis.org/A222263

http://oeis.org/A222263
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density at each n ∈ S on a log-log graph, shown in Fig. 1
below.

Fig. 1. Density of S up to k = 1012

This suggests that the density follows a curve of the type

A(k) =
α log(k)

k
,

with real α > 0. We have found that a value around α = 10
provides a good fit to our experimental data, which we show
in Fig. 2 below on a log-linear and log-log graph.

Fig. 2. Density of S (blue) and A(k) = 10 log(k)/k (orange)
up to k = 1012

If this is true, it would naturally follow that:

Conjecture 1. πS(n) ∼ 10 log(n).

These results suggest several interesting properties of S.
On the one hand, we are tempted to conjecture that:

Conjecture 2. The asymptotic density of S is 0.

On the other hand, even though {1} ∈ S , our data sug-

gests that the fraction
πS(k)

k
tends to 0 as k → ∞, and so

we also conjecture that:

Conjecture 3. The Schnirelmann density of the set S is 0.

Tab. 1. Distribution of integers n ∈ S in intervals of size 10k,
1 ≤ k ≤ 12

k πS(10
k) πS(10

k)− πS(10k−1)

1 2 2

2 3 1

3 7 4

4 15 8

5 28 13

6 48 20

7 81 33

8 143 62

9 227 84

10 319 92

11 459 140

12 692 233

Tab. 2. Congruence of integers n ∈ S up to 1012

Residue class
Amount of integers n ∈ S in
the different residue classes

1 mod 8 149

3 mod 8 183

5 mod 8 175

7 mod 8 185

Tab. 3. Distribution of ending digits of integers n ∈ S up to 1012

l Amount of n ∈ S with l as last digit

1 51

3 46

5 492

7 54

9 49
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IV. CONCLUSION AND FURTHER WORK

Nothing in our results suggests that another spoof per-
fect number exists, or even that there is an infinite number
of positive integers in S. On the other hand, we made a not
entirely unreasonable conjecture that the density of S is 0,
providing further evidence of the scarcity of such numbers.

There are several ways to extend the results in this paper.
First, it is easy to continue computations above 1012 with
sufficient computing resources. Furthermore, one might be
inspired to write a more clever algorithm by taking a look
at the candidate integers before computing their sum-of-
divisors function. This operation is expensive and could be
avoided if we have additional information about such num-
bers. However, this is not currently the case, making it dif-
ficult to escape combing through odd integers up to a given
number. Perhaps the considerable effort already expended

on similar questions regarding odd perfect numbers could be
adapted to spoof odd perfect numbers as well.
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