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Generalized KdV-type equations versus Boussinesq’s equations
for uneven bottom – numerical study
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Abstract: The paper’s main goal is to compare the motion of solitary surface waves resulting from two similar but slightly
different approaches. In the first approach, the numerical evolution of soliton surface waves moving over the uneven bottom
is obtained using single wave equations. In the second approach, the numerical evolution of the same initial conditions is
obtained by the solution of a coupled set of the Boussinesq equations for the same Euler equations system. We discuss
four physically relevant cases of relationships between small parameters α, β, δ. For the flat bottom, these cases imply the
Korteweg-de Vries equation (KdV), the extended KdV (KdV2), fifth-order KdV, and the Gardner equation. In all studied
cases, the influence of the bottom variations on the amplitude and velocity of a surface wave calculated from the Boussinesq
equations is substantially more significant than that obtained from single wave equations.
Key words: KdV-type equations, Gardner equation, uneven bottom, numerical evolution

I. INTRODUCTION – THE CONCEPT
OF THE STUDY

Nonlinear waves are the subject of a vast number of
studies in many fields of science. They appear in hydrody-
namics, propagation of optical and acoustic waves, plasma
physics, electrical circuits, biology, and many others. These
equations usually appear as approximations of more basic
laws describing the behavior of relevant systems, usually too
complicated for non-numerical analysis. These approxima-
tions assume that some parameters characterizing the sys-
tem are small, and then a perturbative approach can be used.
In this way, one can derive various nonlinear wave equations,
e.g., the Korteweg-de Vries equation (KdV), the extended
Korteweg-de Vries equation (KdV2), 5th-order KdV or the
Gardner equation. All these equations can be derived from
the Euler equations describing the model of the irrotational

motion of an inviscid and incompressible fluid in a container
with a flat, impenetrable bottom.

The real world, however, is not that simple. In particu-
lar, bottoms of oceans, seas, and rivers are non-flat. There-
fore, it would be desirable to find a relatively simple math-
ematical description that would take into account bottom
variations. In the past, there were many attempts to attack
this problem. In this article, we only briefly remind some of
these works. Some first results were obtained by Mei and
Le Méhauté [1], and Grimshaw [2]. Several authors [3, 4]
studied these problems using a variable coefficient nonlin-
ear Schrödinger equation (NLS). Some research groups de-
veloped approaches combining linear and nonlinear theo-
ries [5–7]. The Gardner equation was also extensively in-
vestigated in this context [8–11]. The Hamiltonian approach
was utilized by Van Groeasen and Pudjaprasetya [12, 13].
Another widely applied method consists in taking an ap-
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propriate average of vertical variables, which results in the
Green-Naghdi equations [14–16]. Several authors derived
a variable coefficient KdV equation (vcKdV) [25–29] in at-
tempts to describe the evolution of a solitary wave moving
onto a shelf. To the best of our knowledge, article [30] is the
only one (apart from our approach) in which the authors, be-
sides two small standard parameters, introduce the third one
associated with an uneven bottom. We presented a broader
discussion of some of the current attempts and methods to
account for uneven bottoms in [31].

In the paper [31], we derived equations of the KdV type
for an uneven bottom for various relationships between small
parameters α, β, δ. For a flat bottom, one can always elimi-
nate the w function from the Boussinesq equations and get
a single wave equation for the η function (surface distortion
from the equilibrium state). For an uneven bottom, this can
only be done for the lowest possible order of the perturba-
tion approach, and only if the bottom is a piecewise linear
function. In other cases, there is no w function that makes
the Boussinesq equations compatible. Therefore, for testing
surface waves in the case of an uneven bottom studying the
set of Boussinesq’s equation seems to be more appropriate.
The present work supplements [31] with a comparison of
these two methods, including the study of the Gardner equa-
tion and calculations for much longer evolution times.

In [31], we derived four new wave equations, which gen-
eralize for the case of uneven bottom the Korteweg-de Vries
equation (KdV), the extended KdV (KdV2), the fifth-order
KdV, and the Gardner equation (combined KdV – mKdV).
The first is obtained for α = O(β), δ = O(β), the second for
α = O(β), δ = O(β2), the third for α = O(β2), δ = O(β2)
and the fourth for β = O(α2), δ = O(β2). In all cases, the
generalized wave equations could be derived only for a par-
ticular class of bottom functions, namely the piecewise linear
ones. In order to get these results, we derived corresponding
sets of the Boussinesq equations, which are valid for bottoms
of arbitrary shapes.

However, it seems that in numerical simulations of wave
evolution according to these generalized equations, all of
them can be used for arbitrary bottom functions. The reason
consists in the discretization of numerical codes. The knowl-
edge of the bottom function is needed only in the mesh
points, like when the bottom function is a piecewise linear
one.

In the paper, we numerically test the results of the evo-
lution of the nonlinear waves obtained from the Boussinesq
equations with those obtained from the corresponding sin-
gle KdV-type equations generalized for the uneven bottom
in [31]. We assume that initial conditions correspond to soli-
tons appropriate to the particular case. Such soliton can be
formed in a region of flat bottom, and next enter the region
where the bottom is varying.

The paper is organized as follows. In Sec. II we briefly
remind the reader of the Euler equations for the irrotational
motion of the inviscid, incompressible fluid, which arises for

the shallow water problem. This set of equations can serve as
a starting point for the derivation of both Boussinesq’s equa-
tions and the single wave equation for each particular case of
ordering of small parameters. In Sec. III the case of gener-
alized KdV equation is analyzed. In Sec. IV we discuss the
generalized extended KdV (KdV2). Next, in Sec. V the gen-
eralized fifth-order KdV is studied. Sec. VI is devoted to the
generalized Gardner equation. In Sec. VII, we studied some
examples in which the initial conditions are substantially dif-
ferent from the solitons appropriate for particular equations.
The conclusions are contained in Sec. VIII.

II. EULER EQUATIONS
FOR AN UNEVEN BOTTOM

To make the paper self-contained, we briefly remind the
approach to the shallow water problem in a more general
case when the bottom of the fluid is not even. The model ap-
plies to the waves on both the surface of the liquid and the
interface between two immiscible fluids. A detailed descrip-
tion of the model and methods of deriving relevant nonlinear
wave equations is presented in our work [31].

The set of Euler equations written in dimensionless vari-
ables has the following form

βφxx + φzz = 0, (1)

ηt + αφxηx −
1

β
φz = 0, (2)

φt +
1

2
αφ2

x +
1

2

α

β
φ2
z+η − τβ

η2x

(1 + α2βη2
x)3/2

= 0, (3)

φz − βδ (hx φx) = 0. (4)

Eq. (1) is the Laplace equation for the velocity potential
valid for the whole volume of the fluid. Eqs. (2) and (3)
are so-called kinematic and dynamic boundary conditions at
the surface, that is for z = 1 + αη, respectively. Eq. (4)
represents the boundary condition at the non-flat impenetra-
ble bottom, i.e. for z = δh(x). In (3), the Bond number
τ = T

%gh2 , where T is the surface tension coefficient. For sur-
face gravity waves, this term can be safely neglected, since
τ < 10−7 (when the fluid depth is of the order of meters), but
it can be important for waves in thin fluid layers. For abbre-
viation all subscripts in (1)–(4) denote the partial derivatives
with respect to particular variables, i.e. φt ≡ ∂φ

∂t , η2x ≡ ∂2η
∂x2 ,

and so on.
The parameters α, β, δ in the set (1)–(4) have the follow-

ing meaning. Besides standard small parameters α = a
H and

β =
(
H
l

)2
we introduced the third one, defined as δ = ah

H .
Here a represents the wave amplitude, H – average depth
of the basin, l – average wavelength and ah – amplitude of
bottom variations. For the perturbation approach, all of them
should be small, but not necessarily of the same order. There-
fore, for different ordering of these parameters one can de-
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rive different sets of the Boussinesq equations and in conse-
quence different wave equations. The cases with flat bottom
(δ = 0) are presented in [32]. We already introduced the
third small parameter δ = ah

H in [35] in order to generalize
the extended KdV equation (KdV2) for the case of the un-
even bottom. Unfortunately, the derivation presented in [35]
is not fully consistent, and the final equation contains an im-
proper term additionally.

As usual, the velocity potential is seeking in the form of
power series in the vertical coordinate

φ(x, z, t) =

∞∑
m=0

zm φ(m)(x, t), (5)

where φ(m)(x, t) are yet unknown functions. The Laplace
equation (1) determines φ in the form, which involves
only two unknown functions with the lowest m-indexes,
f(x, t) := φ(0)(x, t) and F (x, t) := φ(1)(x, t). Hence,

φ(x, z, t) =

∞∑
m=0

(−1)mβm

(2m)!

∂2mf(x, t)

∂x2m
z2m+

+

∞∑
m=0

(−1)mβm+1

(2m+ 1)!

∂2m+1F (x, t)

∂x2m+1
z2m+1 . (6)

The explicit form of this velocity potential reads as

φ = f − 1

2
βz2f2x +

1

24
β2z4f4x −

1

720
β3z6f6x + · · ·+

+ βzFx −
1

6
β2z3F3x +

1

120
β3z5F5x + · · · (7)

In the next step, one uses the boundary condition at the
bottom (4). For a standard flat bottom case it follows that
Fx = 0 and only f and its even x-derivatives remain in (7).
For an uneven bottom, the situation is more complicated, and
one can express Fx explicitly by f only in some low order.
Precisely this order depends on the relation between β and
δ parameters. Below we show this step explicitly for the case
δ = O(β). For other cases, in which the procedure is analo-
gous, we refer to [31]. Insertion of the velocity potential (7)
into (4) gives (with z = δh(x)) the following complicated
relation between the functions Fx and f

Fx − δ(hfx)x −
1

2
βδ2(h2F2x)x +

1

6
βδ3(h3f3x)x+

+
1

24
β2δ4(h4F4x)x + · · · = 0. (8)

Keeping only terms lower than the third order leaves

Fx = δ(hfx)x , (9)

which allows us to express the x-dependence of the velocity
potential through f, h, and their x-derivatives up to the sec-
ond order. This fact limits the velocity potential to the form

φ = f − 1

2
βz2f2x +

1

24
β2z4f4x + βδz(hfx)x , (10)

valid only up to the second order in small parameters. At-
tempts to go to higher orders would require solving Eq. (8)
for F with arbitrary h, which is impossible to do.

III. CASE α = O(β), δ = O(β)
– GENERALIZATION OF KdV

This case corresponds to shallow water waves. Since the
coefficient of surface tension is very small, one can safely
neglect the appropriate term in the Euler equations.

Fig. 1. Time evolution of the KdV soliton (17) obtained accord-
ing to KdV equation (13) – black lines and that obtained from the
Boussinesq set (11)–(12) – blue lines. Additionally, the evolution of
w(x, t) function is displayed with green lines. Flat bottom (δ = 0)

is assumed

Due to the presence of the term− 1
βφz in (2), the Boussi-

nesq equations resulting from the substitution of (10) into
(2) and (3) are correct only up to the first order in α, β and
δ. They take the following form [see, [31], Eqs. (17)–(18)]

ηt + wx + α(ηw)x −
1

6
βw3x − δ(hw)x = 0, (11)

wt + ηx + αwwx −
1

2
βw2xt = 0. (12)

Elimination of w from (11)–(12) in order to obtain a sin-
gle wave equation for η appears to be possible only when
h2x = 0, that is when the bottom function is the piece-
wise linear one. In such case the system (11)–(12) can be
made compatible, and reduced to the single KdV-type equa-
tion [ [31], Eq. (28)]

ηt + ηx +
3

2
αηηx +

1

6
βη3x −

1

4
δ(2hηx + hxη) = 0. (13)

On the other hand, the Boussinesq equations do not require
the condition h2x = 0, the bottom function h can be ar-
bitrary. From this point of view the Boussinesq equations
(11)–(12) are more general (more fundamental) than the sin-
gle wave equation (13).
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It is worth emphasizing that the above properties are gen-
eral. They are the same for all cases (all wave equations)
discussed in this paper. For more details on the derivation of
nonlinear wave equations generalized for the uneven bottom,
we refer to [31].

Fig. 2. Time evolution of the KdV soliton (17) obtained according
to KdV equation (13) for the bottom given by (18) with δ = 0.2.
Subsequent profiles correspond to times tn = n × 16, with n =
= 0, 1, . . . , 21. The shape of the bottom function is drawn in an

arbitrary scale

In numerical simulations, we can apply the FDM (finite
difference method) with leap-frog, whose stability is well de-
termined for appropriate relation between time step ∆t and
mesh size ∆x.

For Eq. (13) the appropriate algorithm is the following

ηj+1
i = ηj−1

i − 2∆t

(
(ηx)j−1

i +
3

2
αηj−1

i (ηx)j−1
i +

+
1

6
β(η3x)j−1

i − 1

4
(2hi(ηx)j−1

i + (hx)iη
j−1
i )

)
.

(14)

For the Boussinesq set (11)–(12), we have to evolve two
equations simultaneously

ηj+1
i =ηj−1

i −2∆t
[
(wx)j−1

i +α
(
(ηx)j−1

i wj−1
i +ηj−1

i (wx)j−1
i

)
+

− 1

6
β(w3x)j−1

i − δ
(

(hx)iw
j−1
i + hi(wx)j−1

i

) ]
,

(15)

wj+1
i =wj−1

i −2∆t
(

(ηx)j−1
i + αwj−1

i (wx)j−1
i +

−1

2
β(w2xt)

j−1
i

)
. (16)

In (14)–(16) , i = 0, 1 . . . , N−1 is the index of the mesh
point xi and j enumerates time step. Periodic boundary con-
ditions in x are used. Time increment ∆t = (∆x)3

4 assures
stability of the time integration. Setting δ = 0 one obtains
the set of equations corresponding to the Korteweg-de Vries
equation.

In first tests of the code we use initial condition in the
form of the KdV soliton, that is, η(x, 0), where

η(x, t) = A sech2

[√
3α

4β
A
(
x− t

(
1 +A

α

2

))]
=

= A sech2 [B(x− vt)] . (17)

Then the initial condition for w is given by

w = η − 1

4
αη2 +

1

3
βη2x at t = 0.

In Fig. 1, numerical results of the KdV soliton (17) evo-
lution for α = 0.2424, β = 0.2 and δ = 0, that is for
the flat bottom, are shown. The KdV soliton amplitude is
chosen to be A = 1 for comparison with the KdV2 case
shown in Fig. 5. In both Figs. 1 and 3, time separation be-
tween displayed wave profiles is dt = 16. Results shown in
Fig. 1 can be considered as a check of the numerical code.
In the KdV case, the soliton moves with the constant veloc-
ity (v = 1 + α

2A) and a fixed profile. Since initial conditions
are chosen as KdV soliton, the η and w functions evolving
according to Boussinesq’s equations develop very small tails
and move with slightly different velocity, but profiles of their
main parts exhibit a soliton motion.

Fig. 3. Time evolution of the KdV soliton (17) and correspond-
ing w function obtained according to the Boussinesq set (11)–(12)
for the bottom given by (18) with δ = 0.2 and α = β = 0.1.
Subsequent profiles correspond to times tn = n × 16, with n =
= 0, 1, . . . , 21. To avoid overlaps, profiles ofw function are shifted

by 0.3 up and by 8 left

Next, we calculate the case in which the KdV soliton,
formed on a flat bottom area enters the region over an ex-
tended bump of the shape given by the function

h(x) =
1

2
( tanh[0.055(x−50)]+ tanh[0.055(220−x)]) .

(18)
The results of numerical evolution of the KdV soliton

according to Eq. (13) [precisely, according to its discretized
version (14)] for the case α = β = 0.1, δ = 0.2 are pre-
sented in Fig. 2. Time separation between consecutive wave
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profiles is dt = 16. These results show that according to the
generalized KdV equation (13), the uneven bottom implies
only minimal variations of solitons amplitude and velocity
and creates a kind of small tail.

In Fig. 3, we present the sequence of profiles obtained
in numerics for the set of Boussinesq’s equations (11)–(12).
Contrary to results from the KdV generalized for piecewise
linear bottom function (13), in this case, we have almost
ideal soliton shapes without secondary soliton trains. More-
over, both η and w evolve similarly, with relative changes of
w bigger than those of η. These relative changes are magni-
fied in Fig. 4. It should be stressed that the changes in the
surface wave amplitude and velocity obtained from the set
of Boussinesq equations (11)–(12) are substantially greater
than those obtained from KdV equation (13), presented in
Fig. 2. These properties of results remain similar for a wide
range of parameters α, β when the bottom is the same.

Fig. 4. Details of three profiles of η(x, t) and w(x, t) displayed
in Fig. 3 corresponding to time instants t = 0, 128 and 352.
The second and third profile were shifted near the initial one

for comparison

IV. CASE α = O(β), δ = O(β2)
– GENERALIZATION OF KdV2

In this case [see details in [31]], from the boundary con-
dition at the bottom we obtain

Fx = βδ(hfx)x , (19)

valid up to the fourth order in β which inserted into (7) gives
the velocity potential valid up to the fourth order

φ = f − 1

2
βz2f2x +

1

24
β2z4f4x −

1

720
β3z6f6x+

+ β2δz(hfx)x +
1

40320
β4z8f8x +O(β5). (20)

In principle, the Boussinesq equations can be consistently
derived up to the third order [remember term − 1

βφx in (2)].
However, we will proceed to the second order only.

Keeping only terms up to the second order (for consis-
tency with the order of approximation used in the bottom

boundary condition) one arrives at the second order Boussi-
nesq set [see, [31], Eqs. (37)–(38)]

ηt+wx+α(ηw)x−
1

6
βw3x−

1

2
αβ(ηw2x)x+

1

120
β2w5x+

− δ(hw)x = 0, (21)

wt + ηx + αwwx −
1

2
β w2xt +

1

24
β2 w4xt+

+
1

2
αβ (−2(ηwxt)x + wxw2x − ww3x) = 0. (22)

In the case of the flat bottom, that is when δ = 0, an
appropriate form of w, precisely

w = η − α1

4
η2 + β

1

3
η2x + α2 1

8
η3+

+ αβ

(
3

16
η2
x +

1

2
ηη2x

)
+ β2 1

10
η4x , (23)

makes Eqs. (21)–(22) identical. The resulted equation is
known as the extended KdV [34] or KdV2 [36]

ηt + ηx + α
3

2
ηηx + β

1

6
η3x − α2 3

8
η2ηx+

+ αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+ β2 19

360
η5x = 0. (24)

We have recently proved that the extended KdV equa-
tions (24), despite its nonintegrability, possess three kinds
of analytic solutions of the same form as the correspond-
ing KdV solutions, with slightly different coefficients.
In [35], we found single soliton solution of the form
η(x, t) = A sech[B(x − vt)]2. This form is the same
as the form of the KdV soliton (17), but the coeffi-
cients are slightly different. In [37], we found cnoidal
solutions of the form η(x, t) = A cn[B(x − vt)]2 +
+D whereas in [38, 39] we found so called ‘su-
perposition’ periodic solutions of the form η(x, t) =
= A

2 ( dn2[B(x− vt)]±
√
m cn[B(x− vt)] dn[B(x− vt)]),

where cn, dn are Jacobi elliptic functions. It is worth em-
phasizing that, contrary to the KdV case, exact multi-soliton
solutions to the KdV2 do not exist [40].

Fig. 5. The same as in Fig. 1, but for the extended KdV (KdV2)
equation (24) and second order Boussinesq’s set (21)–(22) with

δ = 0
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Eqs. (21) and (22) can be made compatible only for when
h2x = 0. In such case, the generalization of the KdV2 (24)
contains additional terms originating from the bottom varia-
tions [the bottom term is the same as in (13)]

ηt + ηx + α
3

2
ηηx + β

1

6
η3x − α2 3

8
η2ηx+

+ αβ

(
23

24
ηxη2x +

5

12
ηη3x

)
+ β2 19

360
η5x+

− 1

4
δ(2hηx + hxη) = 0. (25)

In numerical calculations we use the same FDM method
as that described by Eqs. (14)–(16), extended by including
appropriate terms, second order in small parameters. As the
initial condition for η(t = 0) the KdV2 solitons are used,
whereas the initial condition for w is given by (23) with sub-
stitution η = η(t = 0). So, for the evolution shown in Fig. 5
the initial condition has the same form (17) but with coef-
ficients: A ≈ 0.2424

α , B ≈
√

0.6 α
βA and v ≈ 1.11455.

The parameter α = 0.2424 assures the amplitude equal one.
Now, we will compare the time evolution of the

KdV2 soliton obtained according to second order equations
(KdV2 or extended KdV). In Fig. 6, we display profiles of

Fig. 6. The same as in Fig. 2, but for the extended KdV (KdV2)
equation (24) and δ = 0.15

Fig. 7. The same as in Fig. 3, but for the second order Boussinesq’s
set (21)–(22)

KdV2 soliton which enters the region of the uneven bottom.
The time evolution is obtained from the generalized KdV2
equation (25). The behavior of solutions, despite different
values of small parameters, remains very similar to that pre-
sented in Fig. 2 for the first order equation.

In Fig. 7, the initial KdV2 soliton evolves according to
second order Boussinesq’s equations (21)–(22). In this case,
as in Fig. 3, one observes much greater influence of the bot-
tom variation on changes of the soliton’s amplitude and ve-
locity.

V. CASE α = O(β2), δ = O(β2)
– GENERALIZATION

OF FIFTH-ORDER KdV EQUATION

In this case, since δ = O(β2), the forms of the func-
tion Fx and the velocity potential are given by (19)–(20).
Keeping only terms up to the second order one arrives at the
second order Boussinesq system [see, [31], Eqs. (61)–(62)]

ηt+wx−
1

6
β w3x+α(wη)x+

1

120
β2w5x − δ(hw)x = 0,

(26)

wt+ηx−β
(

1

2
w2xt + τη3x

)
+αwwx+

1

24
β2w4xt = 0.

(27)

Here, one has to keep terms from surface tension τ 6= 0.
These terms are important because for the flat bottom
(δ = 0), Eqs. (26)–(27) can be made compatible leading
to a so-called fifth-order KdV equation derived by Hunter
and Sheurle in [41] as a model equation for gravity-capillary
shallow water waves of small amplitude.

As in the previous sections for uneven bottom, Eqs. (26)–
(27) can be made compatible only when the bottom function
is piecewise linear. The resulting wave equation, a gener-
alization of the fifth-order KdV equation has the following
form [see, Eq. (68) in [31]]

ηt+ηx+
3

2
αηηx+β

1−3τ

6
η3x + β2 19−30τ −45τ2

360
η5x+

− 1

4
δ(2hηx + hxη) = 0. (28)

Eq. (28) differs from the fifth-order KdV equation by the last
term only.

In numerical simulations, we again want to compare the
time evolution of surface waves obtained from the single
wave equation (28) with time evolution obtained from the
Boussinesq set (26)–(27).

It is well known, see, e.g. [42, 43], that the fifth order
KdV equation has a soliton solution in the form

η(x, t) = A sech4[B(x− vt)]. (29)
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For the fifth order KdV equation in the form (28) one obtains
the following values of the coefficients:

A =
700(1− 3τ)2

169(−19 + 30τ + 45τ2)α
,

B =

√
15(1− 3τ)

13(−19 + 30τ + 45τ2)β
, (30)

and

v =
−2851 + 2910τ + 10845τ2

169(−19 + 30τ + 45τ2)
. (31)

Real solutions require τ > 1
3 . Using τ = 0.35 we

obtain A ≈ −0.00346612/α, B ≈ 0.0193112/β and
v ≈ 0.998217. To begin evolution according to the Boussi-
nesq equations one needs the initial condition for w function
which has the following form

w(x, t) = η+β
2−3τ

6
η2x−

1

4
αη2 +β2 12−20τ−15τ2

120
η4x .

(32)
The numerical results of the time evolution of 5th-order

KdV soliton according to Eq. (28) are presented in Fig. 8.
The evolution of the same initial 5th-order KdV soliton ac-

Fig. 8. The same as in Fig. 2 but for the 5th order KdV equation (28)

Fig. 9. Profiles of functions η and w obtained from the second or-
der Boussinesq set (26)–(27). In order to avoid overlaps profiles of

w function are shifted by 0.005 up and by 8 left

cording to Boussinesq’s equations (26)–(27) is displayed in
Fig. 9. As in the previous section, the impact of the bottom
variation on the surface wave manifests more evidently in
the case of Boussinesq’s equations.

VI. CASE β = O(α2), δ = O(α2)
– GENERALIZATION

OF THE GARDNER EQUATION

In this case, the leading parameter is parameter α.
The boundary condition at the bottom requires

Fx − δ(hfx)x +
1

2
βδ2(h2F2x)x +O(α8) = 0.

Neglecting higher order terms we can use

Fx = δ(hfx)x +O(α6), (33)

which ensures the expression of φ through only one un-
known function f and its derivatives. Now, the Boussinesq
set (up to second order) is given by [see, Eqs. (85)–(86)
in [31]]

ηt + wx + α(ηw)x −
1

6
β w3x − δ(hw)x = 0, (34)

wt + ηx + αwwx − β
(
τη3x +

1

2
w2xt

)
= 0. (35)

Formally, Eqs. (34)–(35) are identical to Eqs. (11)–(12)
obtained for the case α ≈ β ≈ δ, that is 1st order equations
that lead to the KdV equation when δ = 0. This suggests that
the solutions η, w of the system of Eqs. (34)–(35) may have
an identical functional form to those from the equation KdV.

As in the previous sections for the uneven bottom,
Eqs. (34)–(35) can be made compatible only when the bot-
tom function is piecewise linear. The resulting wave equa-
tion, a generalization of the Gardner equation has the fol-
lowing form [see, Eq. (91) in [31]]

ηt + ηx +
3

2
αηηx + α2

(
−3

8
η2ηx

)
+

1− 3τ

6
β η3x+

− 1

4
δ(2hηx + hxη) = 0. (36)

Setting δ = 0 gives the well-known Gardner equation (com-
bined KdV-mKdV equation)

ηt + ηx +
3

2
αηηx + α2

(
−3

8
η2ηx

)
+

1− 3τ

6
β η3x = 0.

(37)

In this case the w function, limited to second order terms is,
[see, e.g. [32, Eq. (A.1)]]

w = η − 1

4
αη2 +

1

8
α2η3 +

2− 3τ

6
βη2x . (38)
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It is well known, e.g. [44, 45], that for the Gardner equa-
tion (37) there exists one parameter family of analytic solu-
tions in the form

η(x, t) =
A

1 +B cosh[(x− v t)/∆]
. (39)

Eq. (37) imposes three conditions on coefficients A,B, v,∆
of solutions. So, three of them can be expressed as functions
of the single one. Choosing ∆ as the independent parameter
one obtains the following relations

A =
2β

3α

1

∆2
, B = ±

√
1− β

6

1

∆2
, V = 1 +

β

6

1

∆2
.

(40)
Soliton’s amplitude is then

η0 =
A

1 +B
=

2β

3α∆2

(
1±

√
1− β

6
1

∆2

) .

For B ∈ R, ∆2 ≥ β
6 . Assuming B ≥ 0 one has limiting

values of B as B = 0, when ∆2 = β
6 , and B = 1, when

∆2 → ∞. So, the corresponding limiting values of the am-
plitude are η0 = 4

α and η0 = 0, respectively. Eqs. (40) are
obtained by setting τ = 0 in (37), which is a fair approxima-
tion for surface gravity waves.

VI. 1. Gardner equations for shallow water waves
Let us recall that the Gardner equations (36) and (37)

have been derived under assumptions that parameter α is
small and parameters β and δ are of one order smaller, that
is β ≈ δ ≈ O(α2). Therefore, for numerical simulations we
take α = 0.3, β = 0.09, δ = 0.09. These values of α, β

imply A = 0.2/∆2, B =
√

1− 0.015
∆2 , and V = 1+ 0.015

∆2 .
In Fig. 10 we display profiles of Gardner’s soliton obtained
during the motion according to the Gardner equation (37).
These results can be compared with the evolution of the same
initial Gardner’s soliton according to the Boussinesq equa-
tions (34)–(35), shown in Fig. 11. In the last case the initial
condition for the w function is taken in the form (38).

Fig. 10. The same as in Fig. 2 but for the Gardner equation (37).
Parameters α = 0.3, β = δ = 0.09, τ = 0 of the equation were

used. The value ∆2 = 1 was chosen for the initial soliton (39)

Fig. 11. Profiles of functions η and w obtained from the second or-
der Boussinesq’s set (34)–(35), the precursors of the Gardner equa-
tion. Parameters are the same as in Fig. 10. In order to avoid over-

laps, profiles of w function are shifted by 0.005 up and by 8 left

VI. 2. Gardner equation for thin liquid layers
In this case we have to take into account that the Bond

number τ can be greater than 1/3. Then the coefficient
1−3τ

6 β in Eq. (37) can become negative and the parameter
B can be greater than 1. The parameters of the solution (39)
are now

A =
2(1− 3τ)β

3α∆2
, B = ±

√
1− (1− 3τ)β

6 ∆2
,

V = 1 +
(1− 3τ)β

6 ∆2
, (41)

with soliton’s amplitude given by

η0 =
A

1 +B
=

2(1− 3τ)β

3α∆2

(
1±

√
1− (1−3τ)β

6 ∆2

) .

The examples of time evolution of Gardner’s soliton for the
uneven bottom are displayed in Figs. 12 and 13. In Fig. 12
we present results obtained from the Gardner equation (37),
whereas in Fig. 13 those which result from Boussinesq’s set
(34)–(35). The time step between subsequent profiles is 16.

Fig. 12. The same as in Fig. 2 but for the Gardner equation (37).
Parameters α = 0.3, β = δ = 0.09, τ = 1 of the equation were

used. The value ∆2 = 1 was chosen for the initial soliton (39)
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Fig. 13. Profiles of functions η and w obtained from the second or-
der Boussinesq’s set (34)–(35), the precursors of the Gardner equa-
tion. Parameters are the same as in Fig. 10. In order to avoid over-

laps, profiles of w function are shifted by 0.005 up and by 8 left

In both cases we used the same initial condition in the form
of Gardner’s soliton (39) with parameters A,B, V given by
(41). For the Boussinesq system (34)–(35) the initial condi-
tion for the w function is taken in the form (38).

Comparing Figs. 10–13 we recognize the same qualita-
tive properties as in previous sections. The impact of bottom
changes on surface waves is more prominent when the evo-
lution proceeds according to the Boussinesq equations than
in the case of the single Gardner equation.

VII. NON-SOLITON INITIAL CONDITIONS

In all examples presented in previous sections, the ini-
tial conditions were chosen in the form of soliton solutions
to particular wave equations. Such initial conditions appear
to be extremely resistant to disturbances introduced by vary-
ing bottom. This means that a bottom with a small ampli-
tude introduces only small changes of soliton’s amplitude
and velocity, leaving the shape almost unchanged. On the
other hand, in all considered cases the impact of the bottom
variations on the changes of surface waves is distinctly more
significant when calculated from the Boussinesq equations
than when calculated from single wave equations.

Now, we study some examples of the time evolution of
initial waves (elevation or depression) whose shapes are dif-
ferent from solitons of particular equations. We study these
evolutions taking the initial shape of the wave in the form of
a Gaussian with the amplitude equal to soliton’s amplitude
but with the width providing the volume of the deformation
being substantially greater than that of a soliton. In particu-
lar, we focus on the case which, for the flat bottom, leads to
the extended KdV equation (KdV2). In all other cases the be-
havior of the evolution of wave profiles appears qualitatively
to be very similar.

VII. 1. KdV case
In Figs. 14 and 15 we show the profiles of the

time evolution of waves calculated according to equations

[31, Eq. (29)] (KdV generalized for an uneven bottom) and
[31, Eqs. (17)–(18)] (the corresponding Boussinesq equa-
tions), respectively. In both cases the initial condition was
taken as the Gaussian profile moving with the KdV soliton’s
velocity, the same amplitude but with the triple volume of the
fluid distortion from equilibrium. The parameters of wave
equations are α = β = δ = 0.15.

The results show that the time evolution is dominated by
splitting the initial wave into (at least) three main solitons.
It seems that in long time evolution one can expect more dis-
tinct emergence of the fourth one. In Fig. 15 one can notice
the increase of the amplitude of the highest soliton during its
motion over the bottom bump, which is almost unnoticeable
in Fig. 14.

In Figs. 16 and 17 we present the cases of the time evo-
lution with equation parameters as in Figs. 14 and 15 but as-
suming that the initial distortion has an inverse form than the
appropriate soliton (depression instead elevation). In these
cases the waves behave in an entirely different way.

Fig. 14. Time evolution obtained according to the KdV equation
[31, Eq. (29)]. Initial Gaussian profile with the triple volume of the
KdV soliton, the same velocity and amplitude. Here, time step be-

tween the consecutive profiles is dt = 32

Fig. 15. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (17)–(18)]. Initial Gaussian profile with the triple
volume of the KdV soliton, the same velocity and amplitude. Here,

time step between the consecutive profiles is dt = 32
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Fig. 16. Time evolution obtained according to the KdV equation
[31, Eq. (29)]. Initial Gaussian profile with the triple volume of
the KdV soliton, the same velocity but the inverse amplitude. Here,

time step between the consecutive profiles is dt = 64

Fig. 17. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (17)–(18)]. Initial Gaussian profile with the triple
volume of the KdV soliton, the same velocity but the inverse am-
plitude. Here, time step between the consecutive profiles is dt = 64

VII. 2. KdV2 case
In Figs. 18 and 19 we show the profiles of the

time evolution of waves calculated according to [31,
Eq. (42)] (KdV2 generalized for an uneven bottom) and
[31, Eqs. (37)–(38)] (the corresponding Boussinesq equa-
tions), respectively. In both cases the initial condition was
taken as the Gaussian profile moving with the KdV soliton’s
velocity, the same amplitude but with the triple volume of the
fluid distortion from equilibrium. The parameters of wave
equations are α = β = δ = 0.15. Since the equations de-
scribe the macroscopic shallow water case, the parameter τb
is set equal to zero.

The results displayed in Figs. 18 and 19 show that the
time evolution is dominated by splitting the initial wave into
(at least) four solitons. It seems that in long time evolution
one can expect more distinct emergence of the fifth one.
In Fig. 18 this splitting is accompanied by forwarding radia-
tion of fast oscillations with tiny amplitude (the effect which
also appeared in our earlier papers [35, 36, 46]). In Fig. 19
one can notice the increase of the amplitude of the highest

soliton during its motion over the bottom bump, which is
difficult to see in Fig. 18.

In next Figs. 20 and 21 we present the time evolu-
tion with the same parameters as those in Figs. 18 and 19.
The only difference is that now the initial condition is taken
as inverse of that in Figs. 18 and 19. This means that the
initial condition has the form of depression instead of ele-
vation (normal for KdV2 equation). Surprisingly, time evo-
lution obtained directly from the generalized KdV2 equa-
tion ( [31, Eq. (42)]) displayed in Fig. 20 differs substan-
tially from the time evolution obtained from the appropri-
ate Boussinesq’s equations ( [31, Eqs. (37)–(38)]). The time
evolution of w function presented additionally in Fig. 22
is qualitatively very similar to the evolution of η function.
In contrast to these results obtained from the Boussinesq’s
equations, the time evolution resulting from the generalized
KdV2 equation [31, Eq. (42)] looks chaotic. This behavior
may have the following cause. The KdV2 equation is the
only one of those considered in this paper, whose analyt-
ical solution is the so-called embedded soliton. This point
deserves further study.

Fig. 18. Time evolution obtained according to the KdV2 equa-
tion [31, Eq. (42)]. Initial Gaussian profile with the triple volume of
the KdV soliton, the same velocity and amplitude. Here, time step

between the consecutive profiles is dt = 16

Fig. 19. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (37)–(38)]. Initial Gaussian profile with the double
volume of the KdV soliton, the same velocity and amplitude. Here,

time step between the consecutive profiles is dt = 16
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Fig. 20. Time evolution obtained according to the KdV equation
[31, Eq. (42)]. Initial Gaussian profile with the triple volume of
the KdV soliton, the same velocity but the inverse amplitude. Here,

time step between the consecutive profiles is dt = 64

Fig. 21. Time evolution of the surface wave η(x, t) obtained ac-
cording to Boussinesq’s equations [31, Eqs. (37)–(38)]. Initial
Gaussian profile with the triple volume of the KdV soliton, the
same velocity but the inverse amplitude. Here, time step between

the consecutive profiles is dt = 64

VII. 3. 5th-order KdV case
Let us recall, that analytic soliton solutions to the 5th-

order KdV equation in the form η(x, t) = A sech[B(x +

−vt)]4 exist only when 1
3 < τ < 2

√
30−5
15 ≈ 0.39696. Prop-

erties of wave motion when τ is close to 1
3 and when τ is

close to 0.397 differ substantially from each other. There-
fore, we present examples of time evolution of waves de-
scribed by 5th-order KdV equation for two cases of τ .

VII. 3. 1. Small τ , close to lower limit

Begin with τ = 0.35, as in [31, Sec. 8]. In Figs. 23 and
24 we show the profiles of the time evolution of waves cal-
culated according to [31, Eq. (68)] (5th-order KdV gener-
alized for an uneven bottom) and [31, Eqs. (61)–(62)] (the
corresponding Boussinesq equations), respectively. In both
cases the initial condition was taken as the Gaussian pro-
file moving with the KdV soliton’s velocity, the same am-
plitude but with the triple volume of the fluid distortion

Fig. 22. Time evolution of the function w(x, t) obtained accord-
ing to Boussinesq’s equations [31, Eqs. (37)–(38)]. Initial Gaussian
profile with the triple volume of the KdV soliton, the same velocity
but the inverse amplitude. Here, time step between the consecutive

profiles is dt = 64

Fig. 23. Time evolution obtained according to the generalized 5th-
order KdV equation [31, Eq. (68)]. Initial Gaussian profile with the
triple volume of the KdV soliton, the same velocity and amplitude.

Here, time step between the consecutive profiles is dt = 16

Fig. 24. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (61)–(62)]. Initial Gaussian profile with the triple
volume of the KdV soliton, the same velocity and amplitude. Here,

time step between the consecutive profiles is dt = 16

from equilibrium. The parameters of wave equations are
α = 0.2424, β = 0.3, δ = 0.15.

Surprisingly, in this case the wave profiles remain al-
most unchanged during the evolution, with only a slight in-
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crease of the amplitude when the wave travels over the bot-
tom bump. As in most other cases, the impact of the varying
bottom in the surface wave is more significant in Boussi-
nesq’s equations.

In Figs. 25 and 26 we present the cases of the time evo-
lution with equation parameters as in Figs. 23 and 24 but
assuming that the initial distortion has an inverse form to
the appropriate soliton (elevation instead of depression). It is
again surprising that in these cases the profiles look like in-
verted profiles shown in Figs. 23 and 24.

Fig. 25. Time evolution obtained according to the KdV equation
[31, Eq. (68)]. Initial Gaussian profile with the triple volume of
the KdV soliton, the same velocity but the inverse initial distortion.

Here, time step between the consecutive profiles is dt = 16

Fig. 26. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (61)–(62)]. Initial Gaussian profile with the double
volume of the KdV soliton, the same velocity but the inverse ini-
tial distortion. Here, time step between the consecutive profiles is

dt = 16

VII. 3. 2. Large τ , close to upper limit

Now, we use τ = 0.38. Figs. 27 and 28 present analo-
gous time evolution as Figs. 23 and 24. To avoid profile over-
laps we displayed profiles at larger time intervals dt = 64.
The profiles of w function are shifted by 32 left and by 0.1
up. It is clear that in these cases the time evolution is domi-
nated by the process of splitting the initial wave into at least
four solitons (during the time of calculation). Results ob-
tained with a single equation [31, Eq. (68)] and Boussinesq’s
equations [31, Eqs. (61)–(62)] are very similar. In the former

Fig. 27. Time evolution obtained according to the generalized 5th-
order KdV equation [31, Eq. (68)]. Initial Gaussian profile with the
triple volume of the KdV soliton, the same velocity and amplitude.

Here, time step between the consecutive profiles is dt = 64

Fig. 28. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (61)–(62)]. Initial Gaussian profile with the triple
volume of the KdV soliton, the same velocity and amplitude. Here,

time step between the consecutive profiles is dt = 64

Fig. 29. Time evolution obtained according to the KdV equation
[31, Eq. (68)]. Initial Gaussian profile with the triple volume of
the KdV soliton, the same velocity but the inverse initial distortion.

Here, time step between the consecutive profiles is dt = 64

case the impact of the bottom bump is almost unnoticeable,
while in the latter it is visible but also small.

In Figs. 29 and 30 we present cases analogous to those
shown in Figs. 25 and 26 but for τ = 0.38. The initial con-
dition is taken as the Gaussian with the volume three times
greater than the volume of the soliton. However, the initial
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condition is inverse to the ‘normal’ one. It is elevation in-
stead of depression. In Fig. 30 only η function is displayed.
In these cases the behavior of the wave evolution is quali-
tatively similar to corresponding cases (with inverse initial
conditions) for different equations.

Fig. 30. Time evolution obtained according to Boussinesq’s equa-
tions [31, Eqs. (61)–(62)]. Initial Gaussian profile with the double
volume of the KdV soliton, the same velocity but the inverse ini-
tial distortion. Here, time step between the consecutive profiles is

dt = 64

VII. 4. Gardner equation
VII. 4. 1. Case corresponding to shallow water (τ = 0)

In Figs. 31 and 32 we show the profiles of the time
evolution of waves calculated according to [31, Eq. (91)]
[The Gardner equation generalized for an uneven bottom
(36)] and [31, Eqs. (85)–(85)] [the corresponding Boussi-
nesq equations (34)–(35)], respectively. In both cases, the
initial condition was taken as the Gaussian profile moving
with the KdV soliton’s velocity, the same amplitude but with
the triple volume of the fluid distortion from equilibrium.
The parameters of wave equations are α = 0.3, β = δ =
= 0.09. Since the equations describe the macroscopic shal-
low water case, the parameter τb is set equal to zero. The pa-
rameter ∆ = 1 is chosen for the Gardner soliton.

The results displayed in Figs. 31 and 32 show that in
these cases the time evolution is dominated by splitting the
initial wave into (at least) two solitons. The last displayed
profiles suggest that in long time evolution one can expect
more distinct emergence of the third one. This property is
slightly better pronounced in Fig. 32, but the time evolution
of the surface wave is almost the same for both figures.

In Figs. 33 and 34 we present the time evolution with the
same parameters as those in Figs. 31 and 32. The only dif-
ference is that now the initial condition is taken as inverse to
that in Figs. 31 and 32. This means that the initial condition
has the form of depression instead of elevation (normal for
shallow water case). The time evolution shown in these fig-
ures is entirely different from when initial displacement has
a ‘normal’ sign. On the other hand, results obtained from the
generalized Gardner equation and the corresponding Boussi-
nesq’s system are almost identical.

VII. 4. 2. Case corresponding to thin fluid layers (τ > 1
3)

When (τ > 1
3 ) surface tension plays an important role.

Such a situation appears when the fluid layer is very thin.
In the following examples, we set τ = 1.

In Figs. 35 and 36 we show the profiles of the time
evolution of waves calculated according to [31, Eq. (91)]
[The Gardner equation generalized for an uneven bottom
(36)] and [31, Eqs. (85)–(85)] [the corresponding Boussi-
nesq equations (34)–(35)], respectively. In both cases the
initial condition was taken as the Gaussian profile moving
with the KdV soliton’s velocity, the same amplitude but with
the triple volume of the fluid distortion from equilibrium.
The parameters of wave equations are α = 0.3, β = δ =
= 0.09. The parameter ∆ = 1 is chosen for the Gardner
soliton.

As in Figs. 31 and 32, the time evolution is dominated
by the splitting of the initial wave into several solitons, at
least three. The fourth one seems to emerge in the last calcu-

Fig. 31. Time evolution obtained according to the Gardner equation
generalized for the uneven bottom (36) with τ = 0. Initial Gaus-
sian profile with the triple volume of the Gardner soliton, the same

amplitude and velocity, dt = 16

Fig. 32. Time evolution obtained according to Boussinesq’s equa-
tions, generalized for the uneven bottom (34)–(35) with τ = 0.
Initial Gaussian profile with the triple volume of KdV2 soliton,
the same amplitude and velocity. Only surface wave η(x, t) is dis-

played, dt = 16
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Fig. 33. Time evolution obtained according to the Gardner equation
(36) with τ = 0. Initial Gaussian profile, representing an elevation,
with the triple volume of the Gardner soliton, the same velocity but

the inverse amplitude, dt = 32

Fig. 34. Time evolution obtained according to Boussinesq’s equa-
tions (34)–(35) with τ = 1. Initial Gaussian profile, representing an
elevation, with the the triple volume of Gardner soliton, the same

velocity but the inverse amplitude, dt = 32

Fig. 35. Time evolution obtained according to the Gardner equation
(37) with τ = 1. Initial Gaussian profile with volume three times
greater than that of the Gardner soliton, the same amplitude and

velocity, dt = 32

Fig. 36. Time evolution obtained according to Boussinesq’s equa-
tions (34)–(35) with τ = 1. Initial Gaussian profile with volume
three times greater than that of the Gardner soliton, the same am-

plitude and velocity, dt = 32

Fig. 37. Time evolution obtained according to the Gardner equation
(37) with τ = 1. Initial Gaussian profile, representing an elevation,
with the triple volume of the Gardner soliton but the same ampli-

tude and velocity, dt = 32

Fig. 38. Time evolution obtained according to Boussinesq’s equa-
tions (34)–(35) with τ = 1. Initial Gaussian profile, representing
an elevation, with the the triple volume of Gardner soliton but the

same amplitude and velocity, dt = 32
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lated profiles as well. Here, the lowest solitons move faster
than the higher ones, contrary to usual cases. As with τ = 0,
the results obtained with the Gardner equation and the corre-
sponding Boussinesq equations are almost the same. In the
latter case the impact of the bottom bump is slightly more
pronounced.

In Figs. 37 and 38 we used the same parameters as in
Figs. 35 and 36, reversing only the sign of the initial dis-
placement. The initial condition is then the elevation instead
of depression. Again, the results obtained with the Gardner
equation and the corresponding Boussinesq equations are al-
most the same. They are, however, entirely different from
those in Figs. 35 and 36.

VIII. CONCLUSIONS

In all considered cases for the uneven bottom, the non-
linear wave equations (13), (25), (28), and (36) are non-
integrable. Therefore, the influence of the bottom variations
on surface waves has to be analyzed numerically. It must be
remembered that the validity of the derived equations is lim-
ited to parameters α, β, δ that are small enough.

The main property of the results is the fact that the in-
fluence of the uneven bottom on the surface wave η(x, t)
obtained from the Boussinesq equations is always substan-
tially greater than that obtained from single KdV-type wave
equations. It is worth emphasizing that using the Boussinesq
equations does not need any conditions imposed on the form
of the bottom function, whereas the compatibility condition,
necessary for the existence of single KdV-type wave equa-
tions, requires d2h

dx2 = 0.
The results of all simulations performed according to the

Boussinesq equations reveal the fact that the relative changes
of w(x, t) functions are substantially more prominent than
that of η(x, t) functions.

In all cases discussed above, when the initial conditions
were chosen in the form of soliton solutions to particular
wave equations, the wave profiles appear extremely resistant
to disturbances introduced by varying bottom.
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