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Are the Stieltjes constants irrational?
Some computer experiments
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Abstract: Khnichin’s theorem is a surprising and still relatively little known result. It can be used as a specific criterion for
determining whether or not any given number is irrational. In this paper we apply this theorem as well as the Gauss-Kuzmin
theorem to several thousand high precision (up to more than 53 000 significant digits) initial Stieltjes constants γn, n =
= 0, 1, 2, . . . , 5000 in order to confirm that, as is commonly believed, they are irrational numbers (and even transcendental).
We also study the normality of these important constants.
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I. INTRODUCTION

The famous zeta function ζ(s) discovered by L. Euler in
1737 and published in 1744 [1] as a function of real vari-
able was investigated by G.F.B. Riemann in the complex do-
main in his famous memoir submitted in 1859 to the Prussian
Academy [2]. It is defined as:

ζ(s) =

∞∑
n=1

1

ns
<(s) > 1. (1)

It is divergent in the most interesting area of the complex
plane, i.e., in the so called critical strip 0 ≤ <(s) ≤ 1 where
all complex zeros of zeta lie. However, as was shown by Rie-
mann, the definition (1) does contain information about the
zeta function on the entire complex plane but the process of
analytic continuation must be used in order to reveal global

behavior of this function. In fact, Riemann in his paper an-
alytically continued Eq. (1) to the whole complex plane ex-
cept s = 1 by means of the following contour integral:

ζ(s) =
Γ(1− s)

2πi

∫
P

(−x)s

ex − 1

dx

x
, (2)

where the integration is performed along the following
path P:
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Till now dozens of integrals and series representing the ζ(s)
function have been known, for collection of such formulas
see, for example, the entry Riemann Zeta Function in [3]
and references cited therein and [4].

Another representation of this function is given by
a power series where certain constants γn appear. These con-
stants are essentially coefficients of the Laurent series expan-
sion of the zeta function around its only simple pole at s = 1:

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)
n

n!
γn (s− 1)

n
. (3)

The primary definition of these fundamental constants was
found by Th.J. Stieltjes and presented in a letter to Ch. Her-
mite dated June 23, 1885 [5, letters no. 71–74]

γn = lim
m→∞

[(
m∑
k=1

(ln k)n

k

)
− (lnm)n+1

n+ 1

]
. (4)

It should be noted that when n = 0 and k = 1 the numer-
ator in the first summand in Eq. (4) is 00 which is an unde-
termined expression. However, if we accept the convention
00 = 1 then in one formula (4) we can also encode the usual
formula for γ0.

Effective numerical computing of the constants γn is
quite a challenge because the formulas (4) converge ex-

tremely slowly. Even when n = 0, which corresponds to
the well-known Euler-Mascheroni constant γ0, in order to
obtain just 10 accurate digits one has to sum up exactly
12 366 terms whereas in order to obtain 10 000 digits
(which is indeed required in some applications) one would
have to sum up an unrealistically large number of terms:
nearly 5 · 104342, which is of course far beyond capabil-
ities of the present day computers. However, various fast
algorithms were found to efficiently compute the specific
value of the zeroth Stieltjes constant γ0, i.e. the fundamental
Mascheroni-Euler constant, see e.g. [6, 7]. For n > 0 the
situation is still worse. Therefore we have to seek for other
faster algorithms. In 1992, J.B. Keiper [8] published an ef-
fective algorithm based on numerical quadrature of certain
integral representation of the zeta function and alternating
series summation using Bernoulli numbers. Keiper’s algo-
rithm was later implemented in a widely used program Math-
ematica. An efficient but rather complicated method based
on Newton-Cotes quadrature was proposed by R. Kreminski
in 2003 [9]. Quite recently, F. Johansson has presented a par-
ticularly efficient method [10].

The Appendix at the end of the present paper describes
yet another method of computing Stieltjes constants which
is perhaps not as efficient as Johansson’s approach, yet it is
by far simpler and may be easily and quickly used in prac-
tical calculations for obtaining γn up to n ∼ 10 000 with

Fig. 1. The plot of the differences between 0.1 and actual frequencies of digits 0, 1, . . . , 9 for all 5001 Stieltjes constants. The data for digit
a is plotted at y value a× 0.1 for clarity. By zooming in the above figure one can easily discern tiny chaotic oscillations
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accuracy ∼ 50 000 significant digits. As far as we know, the
method presented in the Appendix is currently the most ef-
ficient method for very high-precision numerical calculation
of the Stieltjes constants.

We proceed as follows. First, we use the algorithm pre-
sented in the Appendix to calculate 5001 γn with accuracies
ranging from about 53 000 significant digits (γ0) to about
24 000 digits (γ5001). Having these numbers we intend to
provide an argument in favor of their irrationality. Then we
consider the question of their normality, as real expansions in
the base equal 10. Finally, in Sec. III, we develop γn’s into
continuous fractions and next use the remarkable theorems
due to Khinchin, Lévy and Gauss-Kuzmin. The obtained re-
sults support the common opinion that γn are indeed irra-
tional.

II. NORMALITY

Let us recall that a number r is normal in base b if each
finite string of k consecutive digits appears in this expansion
with asymptotic frequency b−k. In the usual decimal base we
have that each digit 0, 1, 2, . . . , 9 appears in the expansion
of the number r with limiting frequency 0.1, each 2-digits
string 00, 01, . . . , 99 appears with density 0.01. Having the
first 5001 Stieltjes constants with accuracies as described
earlier we checked that each digit 0, 1, 2, . . . , 9 appears al-
most exactly with frequency 0.1. It is difficult to represent
this 5001×10 data points in one plot. In Fig. 1 we employed
the following artifice: the frequency hn(0) of appearance of
digit 0 in the Stieltjes constant γn is plotted at x-axis value
n with the y value 0.1 − hn(0), i.e. the distance from the
expected value 0.1, which in this case of a = 0 should be
around 0.1. In general, the frequency hn(a) of appearance of
digit a in the Stieltjes constant γn is plotted with the y value
a× 0.1 + (0.1− hn(a)). We also calculated density of 100
strings of two digits 00, 01, . . . , 99 for all 5001 Stieltjes con-
stants γn. Now the result consisted of half a million points,
which is impossible to represent on the plot. Instead, in
Tab. 1 we present for each pattern of digits ab the maximal
difference between calculated frequency of appearance and
the expected value of 0.01 and the number n of the Stieltjes
constant γn for which this discrepancy appeared. The differ-
ence between the actual computed value of the frequency of
two digits patterns and the expected value 0.01 was typically
of a few percent.

III. CONTINUED FRACTIONS EXPANSIONS

Continued fractions often reveal various profound and
unexpected properties of irrational numbers that are nor-
mally hidden in their traditional decimal (or other basis) no-
tation, see e.g. [11].

In this Section we exploit three facts about the continued
fractions: the existence of the Khinchin constant, Khinchin-
Lévy constant and the Gauss-Kuzmin distribution, see e.g.
[12, chapter III, §15], [13, §1.8, §2.17], to support the irra-
tionality of Stieltjes constants γn. The paper [14] presents
the regular continued fraction for the Euler’s-Mascheroni
constant γ0. Let

r = [a0(r); a1(r), a2(r), a3(r), . . .] =

= a0(r) +
1

a1(r) +
1

a2(r) +
1

a3(r) +
. . .

,
(5)

be the continued fraction expansion of the real number r,
where a0(r) is an integer and all denominators ak(r) (“par-
tial quotients”) with k ≥ 1 are positive integers. Let us re-
mark that rational numbers have a finite number of coeffi-
cients ak. Khinchin has proved [12], see also [15], that lim-
its of geometrical means of ak(r) are the same for almost all
real r:

lim
l→∞

(
a1(r) . . . al(r)

) 1
l =

∞∏
m=1

{
1 +

1

m(m+ 2)

}log2m

≡

≡ K0 = 2.685452001 . . .
(6)

The Lebesgue measure of (all) the exceptions is zero and
include rational numbers, quadratic irrationals and some ir-
rational numbers too, like for example the Euler constant
e = 2.7182818285 . . . for which the limit (6) is infinity.

The constant K0 is called the Khinchin constant, see
e.g. [13, §1.8]. If the quantities

K(r; l) =
(
a1(r)a2(r) . . . al(r)

) 1
l , (7)

for a given number r are close to K0 we can regard it as an
indication that r is irrational.

We developed the fractional parts of Stieltjes constants
(in Sec. II, investigating the normality, we used the whole
number, e.g. γ61 = 111670.9578149410793387893 . . . and
we use in this section only digits after the decimal dot) using
built in PARI/GP [16] the function contfrac(r, {nmax})
which creates the row vector a(r) whose components are the
denominators ak(r) of the continued fraction expansion of r,
i.e. a = [a0(r); a1(r), . . . , al(r)] means that

r ≈ a0(r) +
1

a1(r) +
1

a2(r) +
1

. . .
1

al(r)

. (8)

The parameter nmax limits the number of terms anmax(r);
if it is omitted the expansion stops with a declared precision



80 K.D. Maślanka, M. Wolf

Tab. 1. In columns A, C, E and G the two digits patterns are given, in columns B, D, F and H the maximal differences between 0.01 and
the frequency that a given pattern ab, a, b = 0, 1, . . . , 9 appears among the digits of the γn, n = 0, 1, 2, . . . , 5001

A B (×10−3) C D (×10−3) E F (×10−3) G H (×10−3)

00 2.4914 25 1.7898 50 2.0046 75 1.9586

01 2.0114 26 2.3187 51 2.1064 76 2.0058

02 2.0771 27 2.0847 52 2.2251 77 2.1520

03 2.3235 28 2.5891 53 2.2773 78 2.1413

04 1.8466 29 2.1732 54 1.9028 79 2.2307

05 1.9006 30 1.9310 55 2.2080 80 1.8309

06 1.8525 31 2.0466 56 2.4565 81 2.1083

07 2.4075 32 2.0625 57 1.8966 82 1.8493

08 2.4080 33 2.1236 58 1.9259 83 2.1614

09 2.0118 34 1.9970 59 2.0112 84 2.3112

10 2.1949 35 2.2988 60 1.9846 85 2.6315

11 2.3476 36 2.1588 61 1.9017 86 1.9200

12 1.8161 37 2.2839 62 1.9813 87 2.1604

13 1.9746 38 1.9860 63 2.3341 88 2.4448

14 2.3346 39 2.1897 64 2.2752 89 2.3153

15 2.1317 40 2.1021 65 1.9558 90 1.8766

16 1.8801 41 2.2182 66 2.3915 91 2.2997

17 1.8627 42 2.1976 67 2.3017 92 2.1946

18 2.0085 43 1.9233 68 2.1579 93 1.8714

19 2.3663 44 2.5452 69 1.8103 94 1.8551

20 1.8711 45 1.9193 70 2.0240 95 2.7646

21 2.0741 46 1.9071 71 1.9349 96 1.9379

22 2.2366 47 2.1403 72 1.9635 97 2.0152

23 2.2588 48 1.9612 73 1.9174 98 1.9536

24 2.3669 49 1.9473 74 1.9815 99 2.0863

of representation of real number r at the last significant par-
tial quotient: the values of the convergents Pk(r)/Qk(r)

Pk(r)

Qk(r)
= a0(r)+

1

a1(r) +
1

a2(r) +
1

a3(r) +
. . . +

1

ak

, (9)

approximate the value of r with accuracy at least 1/Q2
k [12,

Theorem 9, p.9]: ∣∣∣∣r − Pk(r)

Qk(r)

∣∣∣∣ < 1

Q2
k(r)

, (10)

hence when 1/Q2
k is smaller than the accuracy of the number

r the process stops.

We checked that the PARI precision set to \p 120000
digits is sufficient in the sense that scripts with larger pre-
cision generated exactly the same results: the rows a(γn)
obtained with accuracy 140 000 digits were the same for all
n as those obtained for accuracy 120 000 and the contin-
ued fractions with accuracy set to 100 000 digits had differ-
ent denominators ak(γn). The number of partial quotients
ak varied from over 110 000 for initial Stieltjes constants to
48 027 for γ5001, i.e. the value of l(n) was roughly twice
the number of digits in the expansion of γn. However, there
have been cases of extremely large values of partial quo-
tients. The largest was a13034(γ2366) = 17 399 017 050 for
γ2366, marked by the red arrow at the top in Fig. 2.

With the precision set to 120 000 digits we have ex-
panded each γn, n = 0, 2, . . . 5000 into its the continued
fractions ( .= means “approximately equal”)
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γn
.
= [a0(n); a1(n), a2(n), a3(n), . . . , al(n)(n)] ≡ a(n),

(11)

without specifying the parameter nmax, thus the length of
the vector a(n) depended on γn and it turns out that the
number l(n) of denominators was contained between 53 000
for Stieltjes constants with index around 5000 and 110 000
for gammas with smallest index n. The value of the product
a1a2 . . . al(n) was typically of the order 1047000 for begin-
ning Stieltjes constants to 1023000 for the last γn’s. It means
that if these Stieltjes constants are rational numbers P/Q
then Q are larger than those big numbers, for justification
see e.g. [12, Theorems 16 & 17]. Next for each n we have
calculated the geometrical means:

Kn(l(n)) =

l(n)∏
k=1

ak(n)

1/l(n)

. (12)

The results are presented in Fig. 3. Values of Kn(l(n)) are
scattered around the red line representing K0. To gain some
insight into the rate of convergence of Kn(l(n)) we have
plotted in Fig. 4 the number of sign changes SK(n) of
Kn(m)−K0 for each n when m = 100, 101, . . . l(n), i.e.

SK(n) = number of such m that

(Kn(m+ 1)−K0)(Kn(m)−K0) < 0.
(13)

The largest SK(n) was 961 and it occurred for the γ1175
and for 124 gammas there were no sign changes at all. It is
well known that the convergence to Khinchin’s constant is
very slow. In Fig. 4 for each γn we present the closest to the
Khnichin constant K0 value of the “running” geometrical
means

Kn(m) =

(
m∏
k=1

ak(n)

)1/m

, m = 100, 101, . . . , l(n).

(14)
Let the rational Pk/Qk be the n-th partial convergent of

the continued fraction:

Pk
Qk

= [a0; a1, a2, a3, . . . , ak]. (15)

For almost all real numbers r the denominators of the fi-
nite continued fraction approximations fulfill [12, chapter
III, §15]:

lim
k→∞

(
Qk(r)

)1/k
= eπ

2/12 ln 2 ≡

≡ L0 = 3.275822918721811 . . . ,
(16)

where L0 is called the Khinchin-Lévy’s constant [13, §1.8].
Again the set of exceptions to the above limit is of the
Lebesgue measure zero and it includes rational numbers,
quadratic irrational, etc.

Fig. 2. The plot of maximal ak(n) for n = 0, 1, 2, 3, . . . , 5000. The red arrow indicates a13034(γ2366) = 17 399 017 050
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Fig. 3. The plot of Kl(n(l)) for n = 0, 1, 2, 3, . . . , 5000. There are 384 points closer to K0 than 0.001 and 30 points closer to K0 than
0.0001. The largest value of |K0 −Kn(l(n))| is 4.47 × 10−2 and it occurred for the Stieltjes constant number n = 3235 (marked with

the red arrow), the smallest value of |K0 −Kn(l(n))| is 1.02× 10−5 and it occurred for γ1563

Fig. 4. The number of sign changes SK(n) for each n, i.e. the number of such m that (Kn(m+ 1)−K0)(Kn(m)−K0) < 0 (the initial
transient values of m were skipped – sign changes were detected for m = 100, 101, . . . l(n))
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Fig. 5. The plot of the closest to the Khnichin constant K0 values of the “running” geometrical means Kn(m)

Fig. 6. The plot of Ln(l(n)) for n = 0, 1, 2, . . . , 5000. There are 352 points closer to L0 than 0.001 and 38 closer to L0 than 0.0001.
The largest value of |L0 − Ln(l(n))| is 4.503 × 10−2 and it occurred for the Stieltjes constant number l = 3235 (marked with the red

arrow), the smallest value of |L0 − Ln(l(n))| is 2.336× 10−6 and it occurred for the Stieltjes constant number n = 3226
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Fig. 7. The number of sign changes SL(n) for each n, i.e. the number of such m that (Ln(m+ 1)− L0)(Ln(m)− L0) < 0 (the initial
transient values of m were skipped – sign changes were detected for m = 100, 101, . . . l(n))

Fig. 8. The plot of the closest to the Khinchin-Lévy constant L0 values of the “running” values of m
√
Qn(m), n = 0, 1, 2, . . . , 5000
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Let the rational Pl(n)(γn)/Ql(n)(γn) be the l-th partial
convergent of the continued fractions (11) of γn:

Pl(n)(γn)

Ql(n)(γn)
= a(n)

.
= γn. (17)

For each Stieltjes constant γn we calculated the partial con-
vergents Pl(n)(γn)/Ql(n)(γn) using the recurrence:

P0 = a1, Q0 = 1, P1 = 1 + a1a2, Q1 = a1,

Pk = akPk−1 + Pk−2, Q k = akQk−1 +Qk−2, k ≥ 2.
(18)

Next from these denominatorsQl(n)(γn) we have calculated
the quantities Ln(l(n)):

Ln(l(n)) =
(
Ql(n)

)1/l(n)
, n = 0, 1, 2, . . . , 5000. (19)

The obtained values of Ln(l(n)) are presented in Fig. 6.
These values scatter around the red line representing the
Khinchin-Lévy’s constant L0 and are contained in the in-
terval (L0 − 0.053, L0 + 0.053). Again this plot is some-
how misleading because there are Stieltjes constants γ(n)
for which there appear sign changes of L0 − Ln(m), m =
= 1, 2, . . . , l(n). As in the case of Kn(m) Fig. 7 presents
the number of sign changes of the difference Ln(m)−L0 of
the denominator of the m-th convergent Pm/Qm

SL(n) = number of such m that

(Ln(m+ 1)− L0)(Ln(m)− L0) < 0.
(20)

The maximal number of sign changes was 922 and appeared
for the Stieltjes constant γ771 and there were 117 gammas
without sign changes.

Finally, we looked into the distribution of the values
of partial quotients al(n). The Gauss-Kuzmin theorem [12,
chapter III, §15] asserts that the density d(k) of the denomi-
nators am, m = 1, 2, . . . l, with the value k is given by

lim
l→∞

]{m : am = k}
l

= log2

(
1 + 1

k

1 + 1
1+k

)
, (21)

for almost all real numbers. In Fig. 9 the results are presented
for the Stieltjes constants.
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Appendix:
Obtaining high precision numerical values

of Stieltjes constants

In 1997, it was shown by one of the authors of the present
note [17] (K.M.) that the Riemann zeta function may be ex-
pressed as

ζ(s)=
1

s−1

[
A0+

(
1−s

2

)
A1+

(
1−s

2

)(
2−s

2

)A2

2!
+...

]
= (A1)

=
1

s−1

∞∑
k=0

Ak
k!

k∏
i=1

(
i− s

2

)
= (A2)

=
1

s−1

∞∑
k=0

Γ
(
k + 1− s

2

)
Γ
(
1− s

2

) Ak
k!
, s ∈ C\{1}, (A3)

where

Ak =

k∑
j=0

(−1)
j

(
k

j

)
(2j + 1)ζ(2j + 2) = (A4)

=
1

2

k∑
j=0

(
k

j

)
(2j + 1)

(2π)
2j+2

B2j+2

(2j + 2)!
. (A5)

Here Bn denotes the nth Bernoulli numbers. However, the
particular choice of nodes in s = 2, 4, 6, . . . , albeit the most
natural, is by no means the only one. One only requires
that the prescribed points be strictly equally spaced. For the
purpose of present calculations we choose the following se-
quence of points:

1 + ε, 1 + 2ε, 1 + 3ε, . . . ,

where ε is a certain real, not necessarily small number.
More precisely, define certain entire function ϕ as:

ϕ(s) := (s− 1)ζ(s), s 6= 1,

together with ϕ(1) = 1 which stems from the appropriate
limit. Then, instead of Eq. (A1), we have

ϕ(s) =

∞∑
k=0

Γ
(
k − s−1

ε

)
Γ
(
− s−1ε

) αk
k!

,

with

αk =

k∑
j=0

(−1)
j

(
k

j

)
ϕ(1 + jε). (A6)

Note that coefficients αk depend on ε but for simplicity we
shall temporarily drop this dependence in notation.

As mentioned in the Introduction, the Stieltjes constants
are essentially coefficients of the Laurent series expansion of
the zeta function around its only simple pole at s = 1:

ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)
n

n!
γn (s− 1)

n
. (A7)

Now directly from Eq. (A7) we have:

γn =
(−1)n

n+ 1

dn+1

dsn+1
ϕ(s)

∣∣∣∣
s−1

.

Then, after some elementary calculations, we get the follow-
ing useful result:

γn =
(−1)nn!

εn+1

∞∑
k=n+1

(−1)k

k!
αkS(k, n+ 1), (A8)

where S(k, i) are signed Stirling numbers of the first kind.
Note that in the literature there are different conventions con-
cerning denotation and indices of Stirling numbers which
can be confusing. Here we shall adopt the following con-
vention involving the Pochhammer symbol:

(x)k≡
Γ(k + x)

Γ(x)
=

k−1∏
i=0

(x+ i)=(−1)k
k∑
i=0

(−1)iS(k, i)xi.

Denoting

βnk ≡ (−1)n+k
n!

k!

S(k, n+ 1)

εn+1
,

we can rewrite Eq. (A8) as formally an infinite matrix
product

γn =

∞∑
k=n+1

βnk αk . (A9)

The summation over k starts from n + 1 since βnk ≡ 0 for
k ≤ n. Accuracy of α1 is equal to accuracy of precomputed
values of ϕ(s) in equidistant nodes. When k grows the ac-
curacy of consecutive αk quickly tends to zero. Thus there
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always exists a certain cut-off value of k = k0. Therefore the
summation in Eq. (A9) may be performed to this value:

γn =

k0∑
k=n+1

βnk αk . (A10)

Numerical experiments confirm that adding more terms does
not affect the value of the sum in Eq. (A10). As pointed ear-
lier, ε need not be small, while choosing smaller ε greatly
accelerates convergence of the series. However, it also turns
out that smaller ε implies smaller k0. What is really impor-
tant is that all significant digits of γn obtained from the finite
sum in Eq. (A10) are correct.

Obviously, γn eventually does not depend on ε although
αk as well as the rate of convergence of Eq. (A8) does.
In fact, series in Eq. (A8) converges for any value of ε > 0
but the rate of convergence becomes terribly small for ε �
1. On the other hand, the smaller ε, the faster the rate of con-
vergence. However, since αk also depends on ε, choosing
smaller value for ε requires higher accuracy of precalculated
values of ϕ(s), which in turn may be very time-consuming.
Hence, an appropriate compromise in choosing ε is needed.

Formula (A8) is particularly suited for numerical calcu-
lations. As already pointed above, one has to choose parame-

ter ε in order to optimally perform the calculations. Typically
the algorithm has three simple steps:

1. Tabulating ϕ(1 + jε), j = 0, 1, 2, . . . This requires
an appropriate choice of parameter ε (see below) and
is most time-consuming. The program which seems
most convenient for this purpose is a small but ex-
tremely efficient program PARI/GP which has im-
plemented the particularly optimal zeta procedure.
The first of the authors used the Cyfronet ZEUS com-
puter in Cracow, where calculating a single value of
ϕ(s) with 51 000 significant digits requires about 13
minutes. Since this procedure may easily be paral-
lelized, in order to compute 10 000 values of ϕ 20
independent routines were performed (each calculat-
ing 500 values of ϕ) which took nearly one week.

2. Calculating αk using Eq. (A6) and the precomputed
values.

3. Calculating Stieltjes constants using Eq. (A8).

Contrary to the above step 1 which requires a powerful
computer, steps 2 and 3 can be quickly performed on a typi-
cal PC. Several properties concerning accuracies may be ob-
tained experimentally. It should be stressed out that given αk
calculating single γn with accuracy of about 50 000 digits
requires several minutes on a very modest PC machine.
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