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Smart Cellular Systems with Pressure Dependent Poisson’s Ratios
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Abstract: The Poisson’s ratio behaviour of cellular systems which change their internal features when subjected to pressure
change to become a “re-entrant” or “non-re-entrant” honeycomb was investigated. It was shown, through finite elements
simulations, that these changes in geometry permit the systems to exhibit a wide range of Poisson’s ratios, the magnitude
and sign of which can be controlled through the external pressure. Auxetic behaviour was also shown to be obtainable at
specific pressures with the right combination of design and materials.
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I. INTRODUCTION

The evolutionary process has provided mankind with an
endless source of inspiration for optimisation of systems for
specific applications. From the materials science perspective,
honeycombs and cellular solids, that is “an assembly of cells
with solid edges or faces, packed together so that they fill
space” [1] are probably the best example. Their “cost” to
“properties” ratio is second to none, and their development
has made it possible to fabricate various low-weight/low-
cost products with excellent mechanical properties. More
importantly, they have permitted the advancement of various
industrial sectors in a manner that would never have been
possible without their use. Suffice to mention their extensive
adoption in the transport industry where they are used in the
manufacture of airplanes, boats and other nautical vessels,
automobiles and even bicycles.

The term “mechanical metamaterials” can be used to de-
scribe a wide of range of artificial systems that achieve their
properties from their structure rather than their chemical

compositions and typically exhibit some unusual mechan-
ical response. These include systems exhibiting a negative
Poisson’s ratio (auxetic behaviour, a term which is now in
common usage and translated to many languages including
Maltese, see Appendix A) [1–66] or negative compressibility
[65–77]. The use of honeycombs and other cellular solids in
this field of research is not something new, with several pub-
lications [17–29] originating much before the term “mechan-
ical metamaterials” was actually coined. With time, such
“mechanical metamaterials” in the form of cellular systems
became increasingly more versatile and multifunctional, and
capable to respond to various stimuli [16, 55–64, 78–80].
A particular design of cellular solids which was recently in-
vestigated in detail is the one depicted in Fig. 1, where it was
shown that, through careful choice of various geometric pa-
rameters and the materials used, it is possible to engineer
systems which can exhibit both negative thermal expansion
and temperature-tuneable Poisson’s ratios [59, 60]. These
systems work on the principle that bi-material strips made
from constituent materials A and B bend when subjected to
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changes in temperature [81] as a result of dissimilar thermal
expansion coefficients αA and αB (see Fig. 1). This was, in
fact, verified through the use of finite-element simulations
which has looked at various such e-prototypes made from
common materials such as steel and zinc. It was also shown
that the same systems, if made from materials having suffi-
ciently and appropriately different intrinsic compressibility
βA and βB (due to a differences in stiffness/Poisson’s ratio,
see Fig. 1) [82], could change their shape when subjected
to a change in pressure (e.g. become re-entrant) and in the
process exhibit rather interesting compressibility properties
including negative linear compressibility [59].

The present work will re-investigate the system shown
in Fig. 1, this time with the scope of assessing whether these
systems can be made to exhibit pressure dependent Poisson’s
ratio properties. In particular, an attempt will be made to
propose protocols how the systems can be made to exhibit
tailor-made auxetic behaviour through a change in pressure.
The motivation for this work is that whilst several other stud-
ies have looked at macroscale systems which exhibit temper-
ature tuneable Poisson’s ratio [60–62], less work has been

Fig. 1. The proposed system which can exhibit negative thermal
expansion/negative linear compressibility upon a change of tem-
perature (T )/pressure (p) as it becomes re-entrant or non-re-entrant
[59]. This system was also shown to exhibit temperature dependent
Poisson’s ratio properties [60]. To and po refer to the reference tem-

perature/pressure

done on systems which can be constructed at the macroscale
which can have their geometry and Poisson’s ratio properties
tuned true a change in pressure. This is rather unfortunate
since pressure, like temperature, is one of the rather few en-
vironmental conditions which may be externally controlled
and may need to be taken into consideration when carrying
out experiments.

II. SIMULATIONS

The cellular system depicted in Fig. 1 was studied via Fi-
nite Element (FE) simulations using the software ANSYS as
this was subjected to uniaxial strain at various extents of hy-
drostatic pressure. The aim of these simulations was to study
in a qualitative and quantitative manner the Poisson’s ratio
properties as a function of pressure (or change in pressure).
The boundary conditions applied are as specified in Cauchi
(2020) [59] where a more detailed description of these sys-
tems, including their ability to manifest negative compress-
ibility, as well as negative thermal expansion, is presented.

Unless otherwise stated, Materials A and B were as-
sumed to be isotropic and assigned Poisson’s ratios of 0.3
and Young’s moduli of EA = 82.74 MPa and EB =
= 3309.00 MPa, respectively. These values were arbitrar-
ily chosen and assumed to be constant over the whole pres-
sure range applied. Unless otherwise stated, the geometric
parameters related to the vertical ligaments were heff = 10
and th = 2, whilst for the horizontal ligaments tl was set at
0.2 with l = 10, 20, 30. All lengths are in millimetres. These
systems were first solved linearly for pressure changes of
±0.5 MPa, ±1.0 MPa, . . . , ±3.0 MPa in an attempt to sim-
ulate the behaviour over a wide pressure range. The proce-
dure used for these simulations has been well validated as
described in more detail elsewhere [59]. The upgeom com-
mand in ANSYS was then used to update the geometry of
the model to that of its deformed configuration according
to displacement results at the applied pressure. The system
so obtained is taken to be the “original” system used in the
calculation of the Poisson’s ratio at that particular pressure
p as this corresponds to the system at the simulated pres-
sure p with no additional applied mechanical strain.

The effect of uniaxial strain in the horizontal x-direction
on this updated model was then studied by performing an
additional linear FE analysis while the system was subjected
to an additional uniaxial compressive strain of −0.1% in the
x-direction. Note that compressive strains in the x-direction
were applied (rather than tensile) as a compressive strain
is not expected to deform the system in a manner which
would change its re-entrant or non-re-entrant nature. Simi-
larly, to study the effect of loading the vertical y-direction,
a compressive strain of +0.1% was applied in the y-direction
for systems which had a re-entrant geometry (to ensure that
the re-entrant shape was preserved) whilst a tensile strain of
−0.1% was applied in the y-direction for systems which had
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Fig. 2. A quantitative report of the results

Fig. 3. A qualitative report of the results when subjected to an increase in pressure (+ve ∆p) or a decrease in pressure (−ve ∆p)

non-re-entrant geometries (to ensure that the non-re-entrant
shape was preserved). The engineering Poisson’s ratio νxy
and νyx at a given pressure was then calculated using the pro-
tocol described in Grima-Cornish et al. (2020) for a similar
study with temperature as a variable instead of pressure [60].

III. RESULTS AND DISCUSSION

The results of simulations performed in an attempt to
study the effect of pressure on the geometry and Poisson’s
ratio are summarised in Figs. 2 and 3. More specifically,
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Fig. 2 shows the simulated Poisson’s ratio for the various
systems studied as a function of the applied change in pres-
sure. To aid the interpretation of these results, a representa-
tive qualitative result is presented in Fig. 3 in the form of
images of two typical systems as these are first subjected to
a change of pressure and then, with the pressure still applied,
uniaxial loading in the x- or y-direction.

The results in Fig. 2 clearly show that the sign of the
Poisson’s ratio is dependent on whether there is an increase
in pressure or a decrease in pressure whilst Fig. 3 shows
that the systems are essentially behaving like hexagonal re-
entrant (−ve ∆p) or non-re-entrant honeycombs (+ve ∆p).
The Poisson’s ratios can be correlated to whether the system
at a particular pressure is re-entrant on non-re-entrant, with
all the re-entrant systems studied exhibiting a negative Pois-
son’s ratio for loading in both the x and y directions whilst
all the non-re-entrant systems exhibit a positive Poisson’s ra-
tio. Furthermore, it is evident that the exact magnitude of the
Poisson’s ratio is dependent on the geometry of the systems
which in turn is dependent on the pressure at which the Pois-
son’s ratio is measured. A general trend is that the Poisson’s
ratios for loading in the x-direction are much higher in mag-
nitude than those in the y-direction, to the extent that they
can even be called “giant Poisson’s ratio”. These gigantic
values apply for both the auxetic and non-auxetic systems
and are retained over a wide range of pressures.

Having recognised that these systems are essentially be-
having like hexagonal re-entrant or non-re-entrant honey-
combs, these trends in the Poisson’s ratio shall first be
interpreted though the model formulated by Gibson and
Ashby for flexing hexagonal honeycombs, or its equivalent,
formulated by Evans et al. (1995) [22] and Masters and
Evans (1996) [26] and for hinging honeycombs. Referring
to Fig. 4a, these models state that, assuming idealised flex-
ing or hinging behaviour, the Poisson’s ratio may be approx-
imated by:

νf,h
xy =

1

νf,h
yx

=
cos θ

sin θ

X

Y
=

l cos2 θ

(h+ l sin θ) sin θ
=

=
cos2 θ

(h/l + sin θ) sin θ
,

(1)

where the parameters h and l may be assumed to be as de-
fined in Fig. 1 whilst, with this combination of materials,
referring to Figs. 3 and 4, the angle the angle θ needs to be
approximated, where:
• θ = 0 when ∆p = 0 (the reference system where the

horizontal ligament is straight);
• θ = −ve (negative) when there is a decrease in pres-

sure (corresponding to a re-entrant honeycomb); θ =
= +ve (positive) when there is an increase in pressure
(corresponding to a non-re-entrant honeycomb).

This simple yet powerful model (assuming flexure/hinging
type of deformation) can explain a number of characteristics
in the behaviour including some trends in Poisson’s ratios
and why νyx assume small values whilst νxy assume gigan-
tic values.

As shown in Fig. 3, the pressure changes applied only
result in small changes in θ, (i.e. θ is close to zero). Thus, ac-
cording to the honeycomb flexing/hinging model, the Pois-
son’s ratio for loading vertically can be approximated by:

νf,h
yx =

[h/l + sin (θ)] sin (θ)

cos2 (θ)
≈ h

l
θ, (2)

since for small angles, sin (θ) ≈ θ, cos (θ) ≈ 1, h/ l >>
>> sin (θ). Through this equation, it is evident that νyx will
assume very small values, close to zero, as θ → 0 (as is the
case in this present work). The same expression can also ex-
plain the trend of a qausi linear relationship between νyx and
p, since if one had to assume that θ in the analytical model
varies quasi linearly with pressure, then a linear relationship
between νyx and pwould follow. All this is further supported

Fig. 4. A “fitting” of the hexagonal honeycomb onto the simulated systems under different pressures
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by the observation that the gradient is highest for the system
when l = 10 (i.e. h/l = 1, the highest from the systems
modelled), then l = 20 (i.e. h/l = 1) and then l = 30
(i.e. h/l = 1/3, the lowest from the systems modelled).

This honeycomb model can also explain some, but not
all, of the results of the simulations for νxy . For example,
recognising that this simplified analytical model (assuming
flexure/hinging type of deformation) suggests that the sys-
tems studied are supposed to follow the relationship:

νf,h
xy =

1

νf,h
yx

≈ l

h

(
1

θ

)
, (3)

it is clear to see why νxy are rather large, since, as discussed
above, in this present work, θ is very small. This simple
model can also explain the decay of the Poisson’s ratio with
changes in pressures at higher magnitudes of pressure, and
why νxy is largest in magnitude when l = 30 (i.e. l/h = 3,
the highest from the systems modelled) when the magnitude
of the largest Poisson’s ratio values exceed 102, then l = 20
(i.e. l/h = 2) and smallest when l = 10 (i.e. l/h = 1,
the lowest from the systems modelled). This simple model
cannot, however, predict the trends in the Poisson’s ratios
for the less extreme pressures where the analytical expres-
sion in eqn. (3) predicts that νxy → ±∞ as θ → 0. Instead,
the results of the simulations are predicting that νxy → 0 as
θ → 0, a result which was obtained consistently. To explain
this behaviour, one needs to look more thoroughly at Fig. 3
to assess more closely the manner of deformation. Here it
becomes evident that as ∆p → 0, the systems are such that
their horizontal ligament is quasi perfectly straight. In such
situations, it is not expected that uniaxial loading would re-
sult in any appreciable flexure/hinging type of deformation
as the component of the force which lies orthogonal to such
ligament would be excessively small. Instead, one would ex-
pect that deformations would be caused by simple stretching
of these horizontal ligaments, which would give a Poisson’s
ratio νs

xy = 0 for an idealised stretching behaviour when the
ligaments are perfectly straight (θ = 0). In fact, the Pois-
son’s ratio from the idealised stretching model as predicted
by the model of Evans et al. (1995) is given by (with repa-
rameterization, and simplification for small values of θ):

νs
xy =

− sin θ

cos θ

X

Y
=

−l sin θ
(h+ l sin θ)

=
− sin θ

(h/l + sin θ)
≈ − l

h
θ.

(4)
When expressions (3) and (4) are taken together, recognis-
ing (3) is expected to dominate at extreme pressures, with
(4) only playing an important role when the horizontal lig-
aments are straight or quasi straight (stretching is generally
a more energy expensive mode of deformation compared to
flexure/hinging), then the trends in the results for νxy will all
be well explained.

Before concluding it is important to highlight some of
the strengths and limitations of this work. An obvious limi-
tation is that this work is based on modelling using an ide-

alised representation of a defect-free system where the ma-
terials and systems behave in a “perfect” manner. Should
real prototypes be constructed, such level of perception may
be difficult to attain. For example, real materials could de-
bond at the interfaces, degrade, or exhibit pressure depen-
dent properties. Also, whilst it is known that some plastics
have properties which are similar to the ones used in this
study, Materials A and B are purely hypothetical materi-
als. Further studies are thus recommenced to carefully se-
lect which materials should be used, as well as further stud-
ies to further improve the design. In terms of modelling,
obviously, more complex models, such as the use of non-
linear analysis, or comparison with analytical models where
the vertical elements are replaced by rectangular units [12]),
could also be applied to these system. Nevertheless, the main
strength lies in the fact that the concepts employed are rather
basic and thus not impossible to implement. Furthermore,
by permitting the systems to act as open systems which
can change their mass by exchanging content, the same ef-
fects could be achieved through a “soaking”/“drying” pro-
cess where the fluid exerting the pressure would penetrate
parts of the system, but not others, thus possibly resulting in
bending of ligaments as a result of uneven “growth”. In such
cases of semi-permeable systems, the effects studied here,
including the pressure-dependent Poisson’s ratio could be
even more pronounced. Obviously, this pressure-dependent
Poisson’s ratio could be a desired effect, where the system
is specifically designed to behave in this manner, or an un-
desirable/unavoidable one, which happens due to changes in
environmental conditions that are brought about by neces-
sity (e.g. the unavoidable change in pressure when a sample
is submerged under sea water or other extreme pressure con-
ditions). Irrespective of which scenario it is, it is important
that the effect of pressure is properly accounted for in the
design process.

It must also be mentioned that what was modelled here
represents just one example of many variations how this con-
cept can be employed. For example, by simply reversing the
materials (i.e. use Material A instead of B and vice-versa),
it is expected that the exact opposite trend would be ob-
served where auxeticity is manifested at increased positive
hydrostatic pressure. Other designs could also be used, in-
cluding ones in which the third physical dimension is also
used. It can also be envisaged that this effect could be further
enhanced through other additional stimuli, such as a change
of temperature. It is obviously beyond the scope of this work
to provide such an exhaustive analysis.

IV. CONCLUSION

This work has shown that it is possible to construct sys-
tems which could exhibit pressure dependent Poisson’s ra-
tios through the use of composite honeycombs which re-
spond to changes in pressure by changing their shape. It was
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also discussed that, depending on the construction, the sys-
tem could even exhibit negative Poisson’s ratio of consid-
erable magnitude. Given the practical advantages that such
systems could offer, included but not limited to the bene-
fits normally associated with auxetic behaviour, it is hoped
that the present work would provide an impetus to other
researchers to further develop the concepts presented here.
In particular, it is hoped that this study is extended in a man-
ner which looks in more detail at semi-permeable systems
that can permit fluid to penetrate in parts, but not all, or
the system. Such systems could exhibit an even more pro-
nounced dependency on pressure, making the changes in
Poisson’s ratio even more remarkable.
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Appendix A: The term “auxetic” in Maltese

The term “auxetic” has been translated to various languages, one of which is Maltese, the national language of the au-
thors. Quoting directly from Grima, Gatt & Zammit (2005)∗: “The term auxetic derives from the Greek word αυξετoσ
(auxetos) meaning that may be increased, referring to the width and volume increase when stretched (Evans et al. 1991).
In modern Greek, we also find the word αυξάνω (auxano) meaning to increase. Since no equivalent word is available in the
Maltese language to describe systems which experience a width increase when stretched, we propose that in Maltese, sys-
tems which expand when uniaxiually stretched will be termed awksetiku (singular masculine), awksetika (singular femine)
or awksetiċi (plural). Thus for example, the terms an auxetic material, an auxetic structure, auxetic materials and auxetic
structures will translate to materjal awksetiku, struttura awksetika, materjali awksetiċi and strutturi awksetiċi respectively.”
The contribution of Professor Oliver Friggieri, Professor of Maltese, University of Malta, for his help in coining these terms
in Maltese fifteen years ago is gratefully acknowledged.
∗J.N. Grima, R. Gatt, V. Zammit, A. Alderson, K.E. Evans, On the suitability of empirical models to simulate the mechanical properties
of alpha-cristobalite, Xjenza 10, 24–31 (2005).
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