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Abstract: In this article, we develop two types of asymptotic formulas for harmonic series in terms of single non-trivial
zeros of the Riemann zeta function on the critical line. The series is obtained by evaluating the complex magnitude of an al-
ternating and non-alternating series representation of the Riemann zeta function. Consequently, if the asymptotic limit
of the harmonic series is known, then we obtain the Euler-Mascheroni constant with log(k). We further numerically com-
pute these series for different non-trivial zeros. We also investigate a recursive formula for non-trivial zeros.
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I. INTRODUCTION

The harmonic series is defined by a k-th partial sum of
reciprocals of positive integers as

Hk =

k∑
n=1

1

n
. (1)

It can be shown using Euler-Maclaurin summation formula
that the asymptotic expansion of the harmonic series is

Hk = γ + log(k) +
1

2k
−
∞∑
n=1

B2n

2n

1

k2n
, (2)

where Bn are Bernoulli numbers and γ is the Euler-
Mascheroni constant, it can then be extracted by the limit
as

γ = lim
k→∞

[Hk − log(k)] = 0.577215664901533 . . . , (3)

which is generally slowly convergent, but one can use more
terms of (2) to accelerate the convergence [2]. Also, the Rie-
mann zeta function is traditionally defined by the infinite se-
ries

ζ(s) =

∞∑
n=1

1

ns
, (4)

which is absolutely convergent for <(s) > 1. However,
if one substitutes s = 1, then the formula resembles that
of the asymptotic harmonic series (1) as k → ∞. The Rie-
mann zeta function has many different representations with
different domains of convergence, see [1, 3]. One such rep-
resentation is the Laurent series which extends analytic con-
tinuation of the Riemann zeta function to the whole complex
plane

ζ(s) =
1

s− 1
+ γ0 +

∞∑
n=1

(−1)nγn(s− 1)n

n!
, (5)

having only a simple pole at s = 1. The γn are the Stieltjes
constants defined by

γn = lim
m→∞

{
m∑
k=1

[log(k)]n

k
− [log(m)]n+1

n+ 1

}
, (6)

where γ0 = γ is just a special case. As a reference we give
a few higher order Stieltjes constants: γ1 = −0.072815 . . .
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and γ2 = −0.009690 . . . From (5) one can also extract γ
near the pole as

γ = lim
s→1

(
ζ(s)− 1

s− 1

)
. (7)

The zeros of the Riemann zeta function are of great im-
portance since they are related to the distribution of prime
numbers, and they come in two types. The first type is the
trivial zeros, which occur at negative even integers s = −2,
−4, −6, and so on. The second type is the non-trivial ze-
ros, which are complex numbers, and are constrained to lie
in a critical strip 0 < <(s) < 1. We denote a q-th non-
trivial zero as ρq = σq + itq . The Riemann Hypothesis
asserts that all non-trivial zeros lie on the critical line at
σ = 1/2, which to date remains an unsolved problem; how-
ever, all zeros found so far do indeed lie on the critical line.
Also, Hardy proved that there is an infinite number of ze-
ros on the critical line, and we distinguish these zeros by
ρ

′

q = 1/2 + it
′

q . The first few non-trivial zeros on the criti-
cal line have imaginary components t

′

1 = 14.13472514 . . . ,
t
′

2 = 21.02203964 . . . , t
′

3 = 25.01085758 . . . (shown to
eight decimal places) which are found numerically.

Another common form of the Riemann zeta function is
the alternating series

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n+1

ns
, (8)

whose domain of convergence is valid for <(s) > 0, but
it is not absolutely convergent. One should also note that
this form is not an exact analytical continuation of the Rie-
mann zeta function at <(s) = 1 due to additional zeros of
the constant factor. But if we consider the critical strip re-
gion, then all non-trivial zeros of the Riemann zeta function
are also zeros of (8). Under these conditions we can there-
fore extract the asymptotic formula for harmonic series in
terms of individual non-trivial zeros on the critical line and
which is independent on the validity of the Riemann Hypoth-
esis. We further numerically validate these series by comput-
ing the Euler-Mascheroni constant for different non-trivial
zeros using (3). We apply a similar argument for the non-
alternating series (4) to obtain the second result. A related
formula can be found in [5], where the γ is expressed in
terms of individual zeros of a cosine integral. We will also
investigate a recursive formula for non-trivial zeros.

II. THE ASYMPTOTIC HARMONIC SERIES
FIRST TYPE

We consider evaluating the complex magnitude of alter-
nating series representation of the Riemann zeta function (8)
for s = σ + it on the critical strip 0 < σ < 1, which results
in a form

| ζ(s) |2= C2(A2 +B2), (9)

where the constantsA andB are the real and imaginary parts
of the infinite sum term of (8) as:

A =

∞∑
n=1

(−1)n+1

nσ
cos[t log(n)],

B = −
∞∑
n=1

(−1)n+1

nσ
sin[t log(n)],

(10)

and C is a constant

C2 =
1

1 + 22(1−σ) − 22−σ cos[t log(2)]
. (11)

We note that since A and B are convergent in the critical
strip, their squares are also convergent, and so the complex
magnitude (9) is convergent. When one expands the sum of
squares of A and B, we have a double sum formed by the
complex magnitude, and using certain trigonometric identity
simplifies the sum of cosine and sine products into a more
compact form

| ζ(s) |2=C2
∞∑
m=1

∞∑
n=1

(−1)m(−1)n

mσnσ
cos{t[log(m)−log(n)]}.

(12)
We then observe that due to the symmetry of the double sum
we have a separation into diagonal (m = n) and off-diagonal
(m 6= n) sums

| ζ(s) |2 = C2

{ ∞∑
n=1

1

n2σ
+

+2

∞∑
n=1

∞∑
m=n+1

(−1)m(−1)n

mσnσ
cos[t log(m/n)]

}
,

(13)
and it is assumed the index variables m and n are positive
integers starting with n = 1 and satisfying m > n. Now we
consider solutions to

| ζ(s) |2= 0, (14)

on the critical strip, which are the non-trivial zeros of the
Riemann zeta function, since the real and imaginary parts
are coupled together by the complex magnitude. It is evident
from (13) that if σ = 1/2 implies the solutions must satisfy
∞∑
n=1

1

n
+ 2

∞∑
n=1

∞∑
m=n+1

(−1)m(−1)n√
mn

cos[t
′

q log(m/n)] = 0,

(15)
since C > 0 for all t, and t

′

q is the q-th imaginary compo-
nent of the non-trivial zero on the critical line. We note that
these sums are divergent, but they must cancel since (12) is
convergent. Therefore, if we treat these divergent sums in
a limiting sense, then we have

lim
k→∞

{
k∑

n=1

1

n
+2

k∑
n=1

k∑
m=n+1

(−1)m(−1)n√
mn

cos[t
′

q log(m/n)]

}
=0.

(16)
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As a result, the first term on the left is the asymptotic har-
monic series Hk, and the second term is the new series.
Hence, the asymptotic relation is

Hk ∼ 2

k∑
n=1

k∑
m=n+1

(−1)m(−1)n+1

√
mn

cos[t
′

q log(m/n)],

(17)
as k →∞, where in this form we absorbed the negative sign
by the alternating sign index n + 1. It then follows that the
Euler-Mascheroni constant is

γ=lim
k→∞

{
2

k∑
n=1

k∑
m=n+1

(−1)m(−1)n+1√
mn

cos[t
′

q log(m/n)]−log(k)

}
.

(18)
The index q of a t′q zero runs from 1 to infinity. Thus the
connection to the harmonic series and individual non-trivial
zeros on the critical line implies an infinitude of such for-
mulas which are independent on the validity of the Riemann
Hypothesis. We summarize numerical computation of this
formula in Appendix A.

III. THE ASYMPTOTIC HARMONIC SERIES
SECOND TYPE

Another similar formula for the asymptotic harmonic se-
ries can be obtained as such. The application of the Euler-
Maclaurin summation formula to the infinite series (4) yields
an expansion

ζ(s) =

k−1∑
n=1

1

ns
− k1−s

1− s
+

1

2
k−s+

B2

2
sk−s−1 + . . . , (19)

for an arbitrary k, but when k → ∞, then it suffices to use
the first term in the expansion, which actually subtracts the
pole and extends the analytical continuation of (4) to a new
domain <(s) > 0 as

ζ(s) = lim
k→∞

k−1∑
n=1

1

ns
− k1−s

1− s
. (20)

Therefore, similarly as before, the non-trivial zeros are also
zeros of (20), and if we consider the real and imaginary parts
on the critical line, then we have a set of two asymptotic
equations:

k−1∑
n=1

1√
n
cos[t

′

q log(n)] ∼

∼
√
k

(1/2)2 + t′2q

{
1

2
cos[t

′

q log(k)] + t
′

q sin[t
′

q log(k)]

}
,

k−1∑
n=1

1√
n
sin[t

′

q log(n)] ∼

∼
√
k

(1/2)2 + t′2q

{
1

2
sin[t

′

q log(k)]− t
′

q cos[t
′

q log(k)]

}
,

(21)

as k →∞. Then, by considering solutions to (14), we com-
pute the complex magnitude by squaring and adding both
equations to obtain an asymptotic relationship

k

( 12 )
2 + t′2q

∼
k−1∑
m=1

k−1∑
n=1

1√
mn

cos{t′q[log(m)− log(n)]},

(22)
where we have the same double sum as before, but now with-
out the alternating sign. Hence, by separating the double sum
into the diagonal (m = n) and off-diagonal sums (m 6= n)
in the limit, it follows that the second form of the asymptotic
harmonic series is

Hk ∼
k + 1

( 12 )
2 + t′2q

− 2

k∑
n=1

k∑
m=n+1

1√
mn

cos[t
′

q log(m/n)],

(23)
where we changed the variable k → k + 1, and hence, the
second form of Euler-Mascheroni constant is

γ = lim
k→∞

{
k + 1

( 12 )
2 + t′2q

+

−2
k∑

n=1

k∑
m=n+1

1√
mn

cos[t
′

q log(m/n)]− log(k)

}
,

(24)
for q = 1, 2, 3, . . . Again, this result implies an infinitude
of such formulas. We summarize the numerical computation
of this formula in Appendix A.

IV. ON THE NON-TRIVIAL ZEROS

In the formula (24), the non-trivial zero term is isolated,
and so we can extract it to obtain

t
′2
q = lim

k→∞
(k + 1)

{
γ + log(k)+

+ 2

k∑
n=1

k∑
m=n+1

1√
mn

cos[t
′

q log(m/n)]

}−1
−
(
1

2

)2

.

(25)
In general, if we define a function f(t) as

f(t) = lim
k→∞

√
(k + 1)X−1 −

(
1

2

)2

, (26)

where

X = γ + log(k) + 2

k∑
n=1

k∑
m=n+1

1√
mn

cos[t log(m/n)],

then it has a recursive property that

f(t
′

q) = t
′

q, (27)
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for all q = 1, 2, 3 . . . We verified this function by comput-
ing non-trivial zeros recursively and summarized the results
in Appendix B for several zeros. We note that the zeros can
be extracted as a function of zeros, but like equation (24) is
slow to converge. There is also a similar equation that can
be developed from (21) if we solve for t′q . Using the cosine
representation in (21) we obtain

g(t) = lim
k→∞

cos[t log(k)]×

×

{
(1/2)2 + t2√
k cos[t log(k)]

k−1∑
n=1

1√
n
cos[t log(n)]− 1

2

}
,

(28)
with the same property

g(t
′

q) = t
′

q, (29)

for all q = 1, 2, 3 . . . We next perform a numerical experi-
ment to attempt to compute non-trivial zeros from an initial
value y0 by recursively applying g(t) an n number of times
as

t
′

q ≈ g{g[g(y0)]} . . . n, (30)

which under certain circumstances will converge, but not al-
ways. To illustrate this, we set an initial value y0=14.2 and
then recursively apply g(t), we have

y1 = g(y0) = 14.1989979879525,

y2 = g(y1) = 14.1980396069588,

y3 = g(y2) = 14.1971203252332,

(31)

for k = 107. After a few iterations, the value changed
slowly, but after 1000 iterations we reached t′1 ≈
≈ 14.1346677444012, which is accurate to 3 decimal
places. After a few numerical experiments we note that most
of the time this method will not converge due to being highly

sensitive to k and initial value, which causes a change in sign
in the iteration. We could not reproduce this result with the
f(t) formula above, as it is slowly convergent.

V. CONCLUSION

We presented a simple asymptotic formula for harmonic
series in terms of individual non-trivial zeros on the critical
line using the alternating and non-alternating series repre-
sentation of the Riemann zeta function, from which γ fol-
lows. The numerical computation of these series shows that
the convergence is very slow. We note that equation (18) for
γ is converging faster than equation (24). It is also more sta-
ble across the non-trivial zeros on the critical line. Also, we
investigated recursive formulas for non-trivial zeros, which
were verified numerically; however, they are not practical.
Perhaps this method could be improved to compute non-
trivial zeros.
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Appendix A

In this section, we numerically compute Euler-Mascheroni constant by equation (18) and (24) for different parameters in
the Matlab software package. We used non-trivial zeros from LMFDB database [4]. We report the following results. In Tab. 1,
we used the first zero t′1 and k as powers of 10 from 1 to 5, and note that the convergence for equation (18) is approaching
to the correct value and getting better for higher k, but very slowly. For equation (24), the convergence is much slower, even
for high k.

In Tab. 2 we run the first 10 zeros at k = 105, and in Tab. 3 we run zeros as powers of 10 from 2 to 5 at k = 105 and
note that for (18) the convergence is remarkably stable and accurate to five decimal places, even for high zeros. However,
for (24) the convergence is very slow for lower zeros, compared with (18), but starts improving for high zeros. The number
of off-diagonal elements of these double sums is k2/2 − k, so for k = 105, that is almost 5 billion. We also tried even
higher-order zeros, but eventually these series fail to converge to a first digit, and so more terms are required.
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Tab. 1. Evaluation of γ by Eq. (18) and (24) for t
′
1

k γ Eq. (18) γ Eq.(24)

101 0.588166547527396 0.624430642787654

102 0.579707476081083 0.583918804120366

103 0.577465694084099 0.580132200473009

104 0.577240665308434 0.579756829762655

105 0.577218164898902 0.579719325600715

Tab. 2. Evaluation of γ by Eq. (18) and (24) for k = 105

q t
′
q γ Eq.(18) γ Eq.(24)

1 14.1347251417347 0.577218164898902 0.579719325600715

2 21.0220396387716 0.577218164886766 0.578350602290223

3 25.0108575801457 0.577218164913269 0.578018818257371

4 30.4248761258595 0.577218164961156 0.577759833545594

5 32.9350615877392 0.577218164938410 0.577680674428317

6 37.5861781588257 0.577218164922645 0.577573695815113

7 40.9187190121475 0.577218164911756 0.577518411665233

8 43.3270732809150 0.577218164859838 0.577486145253191

9 48.0051508811672 0.577218164927322 0.577436775219061

10 49.7738324776723 0.577218164882106 0.577421632805789

Tab. 3. Evaluation of γ by Eq. (18) and (24) for k = 105

q t
′
q γ Eq.(18) γ Eq.(24)

102 236.52422966581 0.577218164909381 0.577228769071846

103 1419.42248094599 0.577218164787256 0.577220079724956

104 9877.78265400550 0.577218158790689 0.577219836266831

105 74920.827498994 0.577217778781408 0.577219808522806

Appendix B

In this section, we validate equation (26) for non-trivial zeros. Similarly as before, in Tab. 4, we compute the first zero
t′1 and use k as powers of 10 from 1 to 5. We note that convergence is approaching to the true value. In Tab. 5 we compute
the first 10 zeros at k = 105, and in Tab. 6 we compute zeros as powers of 10 from 2 to 5 at k = 105. We note that the high
zeros begin to have more error; as a result, more terms are required to improve convergence.

Tab. 4. Evaluation of t
′
1 by Eq. (26) for different k

k t′1 Eq. (26)

101 30.2497502548065

102 14.2290157794652

103 14.1388506664484

104 14.1350848277514

105 14.1347605815184
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Tab. 5. Evaluation of t
′
q by Eq. (26) for k = 105

q t
′
q t′q Eq. (26)

1 14.1347251417347 14.1347605815185

2 21.0220396387716 21.0220924170205

3 25.0108575801457 25.0109204581271

4 30.4248761258595 30.4249527952168

5 32.9350615877392 32.9351446884539

6 37.5861781588257 37.5862732468959

7 40.9187190121475 40.9188227512751

8 43.3270732809150 43.3271833072802

9 48.0051508811672 48.0052732114747

10 49.7738324776723 49.7739594934774

Tab. 6. Evaluation of t
′
q by Eq. (26) for k = 105

q t
′
q t′q Eq. (26)

102 236.52422966581 236.52509664502

103 1419.42248094599 1419.48561150748

104 9877.78265400550 9897.94562749923

105 74920.827498994 85523.0271275466
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