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Abstract: In 1922 Hardy and Littlewood proposed a conjecture on the asymptotic density of admissible prime k-tuples.
In 2011, Wolf computed the “Skewes number” for twin primes, i.e., the first prime at which a reversal of the Hardy-
Littlewood inequality occurs. In this paper, we find “Skewes numbers” for 8 more prime k-tuples and provide numerical
data in support of the Hardy-Littlewood conjecture. Moreover, we present several algorithms to compute such numbers.
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I. INTRODUCTION

Let (a1, a2, . . . , ak) denote a monotonically increasing
sequence of positive even integers and let p be a prime num-
ber. Then if the numbers p+ ai for all 1 ≤ i ≤ k are prime,
the sequence P = (p, p+ a1, p+ a2, . . . , p+ ak) is a prime
k-tuple. Moreover, if these numbers do not form a complete
residue class with respect to any prime, P is admissible.
Hardy and Littlewood [5] made several conjectures concern-
ing the infinitude of admissible prime k-tuples. In particular,
they conjectured that their asymptotic density can be calcu-
lated in terms of the (a1, a2, . . . , ak) as follows.

Conjecture 1 (Asymptotic density of prime k-tuples) Let
P = (p, p + a1, p + a2, . . . , p + ak) denote an admissible
prime k-tuple and let πP (n) denote the number of primes p
less than a positive integer n such that for all 1 ≤ i ≤ k,
p+ ai is prime. Then

πP (n) ∼ Ca1,a2,...,ak

∫ n

2

dt

logk+1 t
,

where Ca1,a2,...,ak
is a constant obtained through a prod-

uct over all primes q greater than 2 and the amount of

distinct residues of a1, a2, ..., ak modulo q, denoted by
w(q; a1, a2, ..., ak), as follows:

Ca1,a2,...,ak
= 2k

∏
q

1− w(q;a1,a2,...,ak)
q

(1− 1
q )

k+1
.

For example, when k = 1 and a1 = 2 (i.e., the twin primes),
we have C2 = 2

∏
q

(
1− 1

(q−1)2

)
= 1.320323632 . . .,

called the twin prime constant (although some authors prefer
defining C2

2 as the twin prime constant).
If the density described in Conjecture 1 is true, it im-

mediately implies the infinitude of the corresponding prime
tuple, so any numerical data in its favor is of value. There are
several ways to study this density, for instance by analyzing
the number of sign changes in the difference

δP (n) = πP (n)− Ca1,a2,...,ak

∫ n

2

dt

logk+1 t
. (1)

This is comparable to the study of the so-called Skewes num-
ber, the first positive integer n such that π(n) >Li(n), where

Li(n) denotes the logarithmic integral
∫ n

2

dt

log t
and π(n)

is the usual prime-counting function. The existence of such
a number was shown first by Littlewood [6] and an upper
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bound was given by Skewes ([7] assuming the Riemann Hy-
pothesis, [8] without assuming it). In this paper, we extend
this definition by formally defining the “Skewes number” for
prime k-tuples as follows.

Definition 1 (Skewes number for prime k-tuples)
Let p denote a prime number, k a positive nonzero integer
and let ai for all 1 ≤ i ≤ k be positive integers. Further-
more, let P = (p, p+ a1, p+ a2, . . . , p+ ak) denote an ad-
missible prime k-tuple, πP (n) the counting function for P
and Ca1,a2,...,ak

the associated prime tuple constant. Then
the first prime p ∈ P that violates

πP (n) < Ca1,a2,...,ak

∫ n

2

dt

logk+1 t
,

if such a prime exists, is the Skewes number for P .

The Skewes number for twin primes was already studied
by several authors, including Brent [1] and Wolf [2], which
are particularly interesting. First, define P2 = (p, p + 2)
and let π2(n) denote the number of primes not exceed-
ing n such that n + 2 is also prime. Furthermore, define

Li2(n) =
∫ n

2

dt

log2 t
. Wolf [2] computed the number of sign

changes in δP2 = π2(n) − C2Li2(n) and found that there
are exactly 477118 up to 248 ≈ 2.81 × 1014. Moreover, the
author found the Skewes number for twin primes, 1369391.
Based on numerical data, Wolf then proposed the following
conjecture.

Conjecture 2 (Wolf) The number of sign changes in
d2(n) = π2(n)−C2Li2(n) within the interval n ∈ (1, T ) is
given by

√
T

log T .

Note that this result was obtained after a number of “trials”
and no heuristic argument is given in support of the conjec-
ture. The author’s results continue the work of Brent [1], who
also studied the difference δP2(n) and examined its maxima
and minima in various intervals [a, b] up to 8×1010 by defin-
ing the functions:

R3(a, b) = max
p∈P2∩[a,b]

δP2(p)

and

ρ3(a, b) = min
p∈P2∩[a,b]

δP2
(p)

(note that we adapted Brent’s notation to ours in the above
definitions). The author also used the numerical data he ob-
tained in order to give an approximation to Brun’s constant.
Nicely [4] considered three additional k-tuples: (p, p+2, p+
+6), (p, p + 4, p + 6) and (p, p + 2, p + 6, p + 8), and
computed the corresponding coefficients in their conjectured
asymptotic density (denoted by C in Conjecture 1) to a high

precision. He did not compute the Skewes number for these
tuples. Moreover, none of the authors mentioned above pro-
vided computer code.

In another paper, motivated by the fact Conjecture 1 im-
plies that some prime tuples have equal asymptotic density,
Wolf [3] investigated the asymptotic densities of the twin and
cousin primes (p, p+ 4). Indeed, we expect that

πtwin(n), πcousin(n) ∼ 2
∏
p≥3

p(p− 2)

(p− 1)2

∫ n

2

dt

log2 t
. (2)

Wolf looked at the relationship between these two densities
by defining the function y(x) as the difference between the
number of twin and cousin primes up to a positive integer x.
Along with a number of numerical computations, Wolf stud-
ied the fractal properties of y(x) by performing a random
walk in which +1 corresponds to a pair of cousin primes
and −1 to a pair of twin primes encountered by the walker.
In particular, Wolf observed that y(x) = 0 for 2823290
primes up to x = 243 ≈ 8.8×1012 and noted that the clusters
of x where y(x) = 0 formed a self-similar set.

I. 1. Scope of this paper
The aim of this paper is threefold; first, to compute the

Skewes number for the prime tuples listed below in Tab. 1,
second, to provide a flexible algorithm for studying and gath-
ering data on the asymptotic density of prime k-tuples and
third, to provide computational data in support of the first
Hardy-Littlewood conjecture.

In the remainder of this paper we shall denote by Lik(n)

the integral
∫ n

2

dt

logk t
and by πP (n) the prime-counting

function related to the prime tuple P . Tab. 1 shows the ad-
missible prime k-tuples we consider in this paper along with
their conjectured asymptotic densities. Note that we include
the twin primes within our study for the sake of complete-
ness and in order to confirm Wolf’s result that the corre-
sponding Skewes number is indeed 1369391.

II. COMPUTATIONAL
AND ALGORITHMIC METHODS

In this section we present the computational and algo-
rithmic methods we used to obtain our results in Section III.
These include finding the Skewes number for the prime k-
tuples listed in Tab. 1 as well as gathering other relevant nu-
merical data in support of Conjecture 1.

Note that the pseudo-code presented in this section, sup-
plemented with code used for plotting purposes and gath-
ering other secondary data was implemented in Wolfram
Mathematica 11.1 and executed on an Intel Core i7-7800X
CPU @3.50 GHz and 16 GB RAM to produce the results in
Section III.
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Tab. 1. Prime k-tuples considered in this paper

Tuple Definition
Conjectured asymptotic
density

P2a (p, p+ 2) 2
∏
p≥3

p(p− 2)

(p− 1)2
Li2(n)

P2b (p, p+ 4) 2
∏
p≥3

p(p− 2)

(p− 1)2
Li2(n)

P3a (p, p+ 2, p+ 6)
9

2

∏
p≥5

p2(p− 3)

(p− 1)3
Li3(n)

P3b (p, p+ 4, p+ 6)
9

2

∏
p≥5

p2(p− 3)

(p− 1)3
Li3(n)

P4a (p, p+2, p+6, p+8)
27

2

∏
p≥5

p3(p− 4)

(p− 1)4
Li4(n)

P4b (p, p+4, p+6, p+10) 27
∏
p≥5

p3(p− 4)

(p− 1)4
Li4(n)

P5a
(p, p+ 2, p+ 6, p+

+8, p+ 12)

154

211

∏
p≥7

p4(p− 5)

(p− 1)5
Li5(n)

P5b
(p, p+ 4, p+ 6, p+

+10, p+ 12)

154

211

∏
p≥7

p4(p− 5)

(p− 1)5
Li5(n)

P6
(p, p+ 4, p+ 6, p+

+10, p+ 12, p+ 16)

155

213

∏
p≥7

p5(p− 6)

(p− 1)6
Li6(n)

The core of our algorithm relies on computing the log-
arithmic integral within successive intervals, the upper and
lower bounds corresponding to consecutive primes of a given
k-tuple. This method was also employed by Wolf [2] to
compute the Skewes number for twin primes. Unfortunately,
he did not give any code in support of his algorithm or con-
sider any special cases that might arise, such as insufficient
computing memory or other extensions that allow recording
additional data. Here we present two algorithms as pseudo-
code. The first outlines our basic methodology while the sec-
ond considers limitations in computing resources. Both of
these algorithms are flexible, i.e., they can be easily modified
to record intermediary data and fine-tune the parameters.

We will now follow with a short presentation of the main
algorithm. We begin by defining our inputs. These are:
• An array of primes in the prime k-tuple P in the range
[2, n],
• The corresponding prime tuple constant C, shown in

Tab. 1,
• The corresponding logarithmic integral function

LiP[].
The main program loop then computes the logarithmic in-
tegral within successive intervals and stores the cumulated
value in a variable. This value is then multiplied by C and
compared to the current value of πP , which conveniently is
the index of the current prime in P. The program contin-

ues until a reversal of the sign in the difference between πP
and C times the cumulated logarithmic interval is reached.
At this point, the Skewes number is returned. Algorithm 1
illustrates this method. Please note that the first prime is de-
noted by p1 in the algorithm below.

Algorithm 1 Finding the Skewes number for a prime k-tuple

Input: Prime k-tuple P within the range [2, n], prime tu-
ple constant C, LiP[ ] function
Output: Skewes number S
cumulLogInt← 0
currentSign← Sign[−1]
for all pi ∈ P do

if i = 1 then
intLBound← 2

else
intLBound← pi−1

end if
intUBound← pi
cumulLogInt← LiP[intLBound, intUBound]
diff ← (i− C× cumulLogInt)
newSign← Sign[diff ]
if currentSign 6= newSign then

return pi
end if

end for

A number of non-essential features were omitted from
Algorithm 1. For instance, it is desirable to record some of
the intermediary values computed within the main loop such
as the differences between πP (i) and its conjectured density.
For instance, the last if clause can be enlarged with a block
of code allowing to count the number of sign changes in-
stead of returning the Skewes number. Our Mathematica im-
plementation of the algorithm does just that, and some plots
showing this data are presented in Section III.

Obviously the biggest challenge in Algorithm 1 lies in
providing the input to the algorithm, i.e., a list of primes
within a given prime k-tuple up to a very high numerical
limit. We note that the advantage of pre-computing such
a list of primes instead of iterating through integers and test-
ing for primality of other potential members of the tuple
lies in the fact that highly efficient algorithms already exist
within most mathematical software packages that are able
to yield such an array in a computationally short amount of
time. For instance, Wolfram Mathematica has the following
one-line solution (taking the example of cousin primes):

cousinPrimes=Select[Prime[Range[PrimePi[
upperLimit]]], PrimeQ[# + 4] &];

with upperLimit replaced by any numerical upper bound.
Of course, the average computer will quickly begin to strug-
gle with the above code as larger values of upperLimit
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require generous amounts of memory to hold all the primes.
For this reason, we present a modified version of Algorithm
1 such that, when a large enough upper bound is reached,
we discard the contents of the current prime array and fill it
with another “chunk” of equally large size; the current lower
bound thus becomes the previous upper bound. We then use
an offset in order to compensate for the prime counts in
previous chunks. This revised version of the algorithm is
presented in Algorithm 2.

Algorithm 2 Finding the Skewes number for a prime k-
tuple, taking into account memory limitations

Input: chunkSize: the number of primes within a chunk,
prime tuple constant C, LiP[ ] function
Output: Skewes number S
offset← 0
for chunk ← 2, increment chunkSize, do

P ← prime k-tuple within the range
[chunk, chunk+chunkSize]

cumulLogInt← 0
currentSign← Sign[−1]
for all pi ∈ P do

if i = 1 then
intLBound← 2

else
intLBound← pi−1

end if
intUBound← pi
cumulLogInt←LiP[intLBound, intUBound]
diff ← (i+ offset− C× cumulLogInt)
newSign← Sign[diff ]
if currentSign 6= newSign then

return pi
end if

end for
offset← offset+ Length[P]

end for

We will now present the results obtained by imple-
menting and running our algorithm in Wolfram Mathemat-
ica 11.1.

III. RESULTS

Using the methods described in Section II. we found
Skewes numbers for 8 new prime k-tuples. Tab. 2 shows
these numbers.

Various other results emerge from the above com-
putations. First, we find that the inequality πP (n) <

Ca1,a2,...,ak

∫ n

2

dt

logk+1 t
only holds within a short interval

for all of the prime tuples that have been considered. Tak-
ing for instance P4a, it appears that the reversal of this in-

equality remains true after merely the 9th sign change of

πP4a(n)− CP4a

∫ n

2

dt

log4 t
.

Tab. 2. The Skewes numbers for the prime k-tuples considered
in our study

Prime k-tuple Skewes number

P2a 1369391

P2b 5206837

P3a 87613571

P3b 337867

P4a 1172531

P4b 827929093

P5a 21432401

P5b 216646267

P6 251331775687

2×107 4×107 6×107 8×107 1×108

-20

20

40

60

Fig. 1. Value of πP4a(n)− CP4a

∫ n

2

dt

log4 t
within the interval [2, 108]

1.2×106 1.4×106 1.6×106 1.8×106 2.0×106

-20

-10

10

20

Fig. 2. The crossover region in P4a
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Tab. 3. Values of πP6(n) within intervals of size 1010 and the corre-
sponding Hardy-Littlewood estimate (computed to two significant

figures after the decimal point)

Interval
([i, j]× 1010)

π′P6
(i, j) =

πP6(j) +

−πP6(i)

Hardy-
Littlewood

estimate ε(i, j)
ε(i, j)/π′P6

(i, j)

[0, 1] 1613 1664.55 1.03195

[1, 2] 1065 1052.01 0.98780

[2, 3] 897 920.42 1.02610

[3, 4] 813 845.55 1.04003

[4, 5] 796 794.54 0.99816

[5, 6] 759 756.47 0.99666

[6, 7] 674 726.43 1.07778

[7, 8] 680 701.82 1.03208

[8, 9] 680 681.10 1.00161

[9, 10] 649 663.29 1.02201

[10, 11] 638 647.73 1.01525

[11, 12] 628 633.96 1.00949

[12, 13] 610 621.64 1.01908

[13, 14] 608 610.52 1.00414

[14, 15] 605 600.40 0.99239

[15, 16] 612 591.13 0.96589

[16, 17] 613 582.59 0.95039

[17, 18] 601 574.69 0.95622

[18, 19] 620 567.34 0.91506

Fig. 1 shows a plot of this difference within the interval
[2, 108] while Fig. 2 zooms in on the crossover region. In an-
other example, we observed a similar behaviour for P6,
which showed 15 sign changes between its Skewes num-
ber (251331775687) and 26× 1010 (the Skewes number in-
cluded).

Our computations yielded other intriguing results as
well. Indeed, it follows from the first Hardy-Littlewood con-
jecture that cousin primes (P2b = (p, p + 4)) have the same
asymptotic density as twin primes; however, the Skewes
number for cousin primes is almost 4 times greater than its
twin prime counterpart. This is similar to the tuples P5a and
P5b which, despite their equal conjectured density, have their
Skewes number far apart; indeed, the one for P5b is almost
10 times larger than that for P5a.

Another consequence of the first Hardy-Littlewood con-
jecture is the thinning out of prime tuples within intervals
of equal size. The results in our study do indeed provide evi-
dence for such behaviour. Here we give the example of P6 by
comparing the value of πP6

(n) with the Hardy-Littlewood
estimate (computed here to two significant figures after the

decimal point) within intervals of size 1010. Tab. 3 shows our
numerical results.

Finally, based on the results in our study, we propose the
following conjecture.

Conjecture 3 All admissible prime k-tuples have a Skewes
number.

IV. CONCLUSION AND FURTHER WORK

Alongside the discovery of 8 new Skewes numbers for
prime k-tuples, our results also give further evidence for the
validity of the first Hardy-Littlewood conjecture. However,
we find that tuples that are expected to have the same asymp-
totic density do not behave in the same manner, for instance
their Skewes numbers occur considerable distances apart.

Since our numerical data does not reach a sufficiently
high upper bound, we are unable to investigate the validity
of Wolf’s conjecture within the context of other prime tu-
ples. For instance, the cousin primes are expected to have the
same density as the twin primes, thus according to Wolf’s
conjecture the amount of sign changes in the difference
πP2b

(n)−CP2b
Li2(n) within the interval n ∈ (1, T ) should

also be asymptotic to

√
T

log T
.

We would also find interesting the extension of the
search for Skewes numbers to further k-tuples such as 2-
tuples of the type (p, p + 2k) for positive integer k > 2
(the case k = 3 often being referred to as the “sexy primes”
within more relaxed contexts), or longer ones such as
• P7a = (p, p+ 2, p+ 6, p+ 8, p+ 12, p+ 18, p+ 20)

and
• P7b = (p, p+2, p+8, p+12, p+14, p+18, p+20).

Both of these tuples are expected to have the same asymp-
totic density,

π7a(n), π7b(n) ∼
356

3× 222

∏
p≥11

p6(p− 7)

(p− 1)7

∫ n

2

dt

log7 t
,

but we did not find any primes that violate the Hardy-
Littlewood inequality up to 1.2× 1011.
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