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Abstract: In the paper we compare Nakao’s method to our interval difference scheme of second order. Repeating some
computational examples of Nakao, we have observed that our implementation of his method gives better results. Moreover,
it appears that the presented interval difference scheme gives better enclosures of exact solutions than Nakao’s method.
Wę also point out that the considered interval method can be used to solve the Poisson equation with Dirichlet’s condition,
for which Nakao’s method is not applicable.
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I. INTRODUCTION

Applying an approximate method to solve a problem on
a computer we introduce three kinds of errors: representation
errors and rounding errors (caused by floating-point arith-
metic) and the error of method (usually called the trunca-
tion error). Verified numerical computing requires a math-
ematical tool to describe operations performed on comput-
ers. Such a mathematical tool, called interval arithmetic, has
been developed by R.E. Moore in 1966 [1, 2] and extended
by other researchers in the following years (see, e.g., [3–5]).
Using interval methods (based on interval arithmetic) real-
ized in interval floating-point arithmetic we can obtain solu-
tions (in the form of intervals) which contain all mentioned
errors.

The first approach to solve elliptic boundary value prob-
lems in interval arithmetic has been done by M.T. Nakao
in 1988 [6] and extended in the following years [7, 8].
His method is based on Galerkin’s approximation and fi-
nite elements methods known from conventional theory for

solving elliptical problems (see, e.g., [9] and [10]). In [6]
Nakao has presented a number of numerical examples for his
method. We have repeated these experiments and obtained
much better enclosures of the exact solution (see Sec. V. for
details). Although Nakao’s method can be applied to a lot
of elliptic boundary value problems, there are some small
inconveniences, from which the main one consists in non-
applicability of the method to the well-known Poisson equa-
tion.

In our previous paper we have considered interval differ-
ence methods of second and four order for solving the Pois-
son equation with Dirichlet’s conditions in interval proper
and direct floating-point arithmetic [11–15]. In this paper we
generalize our second order method to solve the problems
considered by Nakao in [6]. It appears that the presented in-
terval difference scheme gives better enclosures of exact so-
lutions than Nakao’s method. However, it should be added
that the proposed interval method can be considered only as
an experimental one. Since some quantities occurring in the
method are adopted experimentally (see Sec. IV. for details),
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a strictly mathematical proof that the obtained intervals con-
tain exact solutions is rather impossible to receive.

The paper is divided into six sections. In Sec. II. we recall
shortly the elliptic boundary value problem with the Dirich-
let boundary conditions, for which Nakao’s and our methods
is applied. Since the main aim of this paper is to compare
Nakao’s and our methods, in Sec. III. we present in full de-
tails (i.e., in the form that can be implemented immediately)
Nakao’s method. In Sec. IV. we derive in details our interval
difference scheme of second order. In Sec. V. we consider
three numerical examples. The first two examples concern
examples presented by Nakao in [6], and we compare his
and our implementation with the results obtained by the in-
terval method presented. The third example concerns an el-
liptical problem for which Nakao’s method is not applicable.
All these examples have been carried out in interval floating-
point arithmetic using our IntervalArithmetic32and64 unit
[16] written in the Delphi Pascal programming language. Fi-
nally, in Sec. VI. we shortly present some conclusions.

II. THE ELLIPTIC BOUNDARY VALUE PROBLEM

In this paper we restrict our considerations to the follow-
ing elliptic boundary value problem of second order:

∆u+ cu = −f in Ω, u = g on ∂Ω, (1)

where Ω = [0, α] × [0, β], u = u (x, y) ∈ C2 (Ω) (C2 (Ω)
means the space of all continuous real-valued functions de-
fined on Ω such that ∆u is also continuous on Ω), c =
= c (x, y) ∈ L∞ (Ω), f = f (x, y) ∈ L2 (Ω) (for defini-
tions of L∞ (Ω) and L2 (Ω) see the next section),

∂Ω = {(x, y) : x = 0, α and 0 ≤ y ≤ β
or 0 ≤ y ≤ α and y = 0, β},

∆ is the Laplace operator defined by

∆u =
∂2u

∂x2
+
∂2u

∂y2
,

g = g (x, y) =


g1 (y) , for x = 0,

g2 (x) , for y = 0,

g3 (y) , for x = α,

g4 (x) , for y = β,

(2)

and where

g1 (0) = g2 (0) , g2 (α) = g3 (0) ,

g3 (β) = g4 (α) , g4 (0) = g1 (β) .

The conditions (2) are called the Dirichlet boundary condi-
tions.

III. NAKAO’S METHOD

Nakao’s method is an iteration method to find intervals
containing exact solutions. In [6] Nakao has considered the
problem (we resemble it in two-dimensional case)

∆u+ b · ∇u+ cu = −f in Ω,

u = 0 on ∂Ω,

where ∆ denotes, as previously, the Laplace operator, c and
f are the same functions as in (1),

∇u =

(
∂u

∂x
,
∂u

∂y

)T

,

and b = (b1, b2). We assume that bi = bi (x, y) ∈ W 1
∞ (Ω)

(i = 1, 2), where W 1
∞ (Ω) denotes the usual L∞ – Sobolev

space of first order on Ω. The above problem can be rewritten
in the so called weak form as follows:

(∆u,∇ϕ) = (b∇u+ cu, ϕ) + (f, ϕ) , ϕ ∈ H1
0 (Ω) . (3)

Nakao has proved that the unique solution, i.e., the function
u = u (x, y), lies in the set uh + [α], where for a given num-
ber α > 0 we have

[α] =
{
ϕ ∈ H1

0 (Ω) : ‖ϕ‖H1
0 (Ω) ≤ α, ‖ϕ‖L2(Ω) ≤ Chα

}
,

and where h is a parameter (mesh size) with 0 < h < 1,
while C denotes a constant independent of h. In (3) the sym-
bol (·, ·) means the inner product on L2 (Ω), where (in the
case of two-dimensional problem)

L2 (Ω) =

u :

∫
Ω

|u (x, y)|2 dxdy <∞

 ,

‖u‖L2(Ω) =

√√√√∫
Ω

|u (x, y)|2 dxdy,

(u, v) =

∫
Ω

u (x, y) v (x, y) dxdy,

and H1
0 (Ω) is a kind of Sobolev space:

H1
0 (Ω) =

{
u∈L2 (Ω) :

∂u

∂x
,
∂u

∂y
∈L2 (Ω) , u = 0 on ∂Ω

}
.

The quantities uh and α are calculated by iterations. As-
suming b = 01, we have(
∇u(k)

h ,∇ϕij

)
=
(
cu

(k−1)
h + f, ϕij

)
+

+ [−1, 1]Chα(k−1) ‖ϕij‖L2(Ω) ,

α(k) =Ch

(∥∥∥cu(k−1)
h + f

∥∥∥
L2(Ω)

+

+ Ch ‖c‖L∞(Ω) α
(k−1)

)
,

(4)

1 This assumption is taking into account according to the examples presented by Nakao in [6] to whom we compare our interval difference scheme.



Nakao’s method and an interval difference scheme of second order for solving the elliptic BVP 83

where L∞ (Ω) means the space consisting of functions
c = c (x, y) defined on Ω such that |c (x, y)| has finite
essential supremum on Ω (namely, there exists a positive
constant M such that |c (x, y)| ≤ M for almost every
(x, y) in Ω, and the smallest such number M is called
the essential supremum of |c (x, y)|, and we write M =
= ess. sup(x,y)∈Ω |c (x, y)|). The space L∞ (Ω) is equipped
with the norm

‖c‖L∞(Ω) = ess.sup(x,y)∈Ω |c (x, y)| .

Assuming that Ω = [0, 1] × [0, 1] and partitioning the
intervals [0, 1] in x- and y-directions into n equal parts of
width h, the functions ϕij = ϕij (x, y) denote the finite
element basis functions associated with the interior nodes
(xi, yj) = (ih, jh) (i, j = 1, 2, . . . , n − 1) defined as fol-
lows:

ϕij(x, y)=



1 + i+ j − x+ y

h
,

ih≤ x≤ (i+1)h, jh≤ y≤ (i+j+1)h−x,
1 + j − y

h
,

(i−1)h≤ x≤ ih, (i+j)h−x≤ y≤ (j+1)h,

1− i+
x

h
,

(i− 1)h ≤ x ≤ ih, jh ≤ y ≤ (i+ j)h− x,

1− i− j +
x+ y

h
,

(i−1)h ≤ x ≤ ih, (i+j−1)h−x ≤ y ≤ jh,
1− j +

y

h
,

ih≤ x≤ (i+1)h, (j−1)h≤ y≤ (i+j)h−x,
1 + i− x

h
,

ih ≤ x ≤ (i+ 1)h, (i+ j)h− x ≤ y ≤ jh,
0, otherwise.

(5)
In (4) we usually take C = 1 (see [6, p. 327]). Since for the
functions ϕij (x, y) given by (5) we have

‖ϕij‖L2(Ω) =

√
2

2
h,

the method (4) can be written in the form(
∇u(k)

h ,∇ϕij

)
=
(
cu

(k−1)
h + f, ϕij

)
+

+ [−1, 1]

√
2

2
h2α(k−1),

α(k) = h

(∥∥∥cu(k−1)
h + f

∥∥∥
L2(Ω)

+ h ‖c‖L∞(Ω) α
(k−1)

)
.

(6)

In the method (6) the quantities

u
(k)
h =

n−1∑
i=1

n−1∑
j=1

u
(k)
ij ϕij (x, y) (7)

are intervals since the coefficients u(k)
ij =

[
A

(k)
ij , A

(k)

ij

]
are

intervals, and the quantity α(k) is a vector with real num-
ber components. Thus, the first formula in (6) is a system of
linear equations of the form

A B 0 · · · 0 0 0

B A B · · · 0 0 0

0 B A
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . A B 0

0 0 0 · · · B A B

0 0 0 · · · 0 B A





u
(k)
1

u
(k)
2

u
(k)
3

...
u

(k)
n−3

u
(k)
n−2

u
(k)
n−1


=



d
(k)
1

d
(k)
2

d
(k)
3

...
d

(k)
n−3

d
(k)
n−2

d
(k)
n−1


,

A =



a b 0 · · · 0 0 0

b a b · · · 0 0 0

0 b a
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . a b 0

0 0 0 · · · b a b

0 0 0 · · · 0 b a


,

B =



b 0 · · · 0 0

0 b · · · 0 0
...

...
. . .

...
...

0 0 · · · b 0

0 0 · · · 0 b


,

u
(k)
i =


u

(k)
i1

u
(k)
i2
...

u
(k)
i,n−1

 , d
(k)
i =


d

(k)
i1

d
(k)
i2
...

d
(k)
i,n−1


i = 1, 2, . . . , n− 1.

where

a =
4

h2
, b = − 1

h2
,

d
(k)
ij =

1

h2

(
Icij4u

(k−1)
i−1,j + Icij6u

(k−1)
i−1,j+1 + Icij2u

(k−1)
i,j−1 +

+ Icij1u
(k−1)
ij +Icij3u

(k−1)
i,j+1 +Icij7u

(k−1)
i+1,j−1 +Icij5u

(k−1)
i+1,j

)
+

+
1

h2
fij + [−1, 1]

√
2

2
α

(k−1)
ij ,

i, j = 1, 2, . . . , n− 1,



84 A. Marciniak

and where u(k−1)
0j = u

(k−1)
nj = u

(k−1)
i0 = u

(k−1)
in = 0,

fij =

1∫
0

1∫
0

f (x, y)ϕij (x, y) dxdy =

(i+1)h∫
(i−1)h

(i+j+1)h−x∫
jh

f (x, y)

[
1 + i+ j − 1

h
(x+ y)

]
dydx+

+

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

f (x, y)
(
i+ j − y

h

)
dydx+

ih∫
(i−1)h

(
1− i+

x

h

) (i+j)h−x∫
jh

f (x, y) dydx+

+

ih∫
(i−1)h

jh∫
(i+j−1)h−x

f (x, y)

[
1− i− j +

1

h
(x+ y)

]
dydx+

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

f (x, y)
(

1− j +
y

h

)
dydx+

+

(i+1)h∫
ih

(
1 + i− x

h

) jh∫
(i+j)h−x

f (x, y) dydx,

(8)

For Icijl (l = 1, 2, . . . , 7) we have

Icij1 =

1∫
0

1∫
0

c (x, y)ϕ2
ij (x, y) dxdy =

(i+1)h∫
ih

(i+j+1)h−x∫
jh

c (x, y)

[
1 + i+ j − 1

h
(x+ y)

]2

dydx+

+

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

c (x, y)
(

1 + j − y

h

)2

dydx+

ih∫
(i−1)h

(
1− i+

x

h

)2
(i+j)h−x∫

jh

c (x, y) dydx+

+

ih∫
(i−1)h

jh∫
(i+j−1)h−x

c (x, y)

[
1− i− j +

1

h
(x+ y)

]2

dydx+

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c (x, y)
(

1− j +
y

h

)2

dydx+

+

(i+1)h∫
ih

(
1 + i− x

h

)2
jh∫

(i+j)h−x

c (x, y) dydx,

(9)

Icij2 =

1∫
0

1∫
0

c (x, y)ϕij (x, y)ϕi,j−1 (x, y) dxdy =

ih∫
(i−1)h

jh∫
(i+1−1)h−x

c (x, y)

[
1− i− j +

1

h
(x+ y)

](
j − y

h

)
dydx+

+

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c (x, y)
(

1− j +
y

h

)[
i+ j − 1

h
(x+ y)

]
dydx,

(10)

Icij3 =

1∫
0

1∫
0

c (x, y)ϕij (x, y)ϕi,j+1 (x, y) dxdy =

(i+1)h∫
ih

(i+j+1)h−x∫
jh

c (x, y)

[
1 + i+ j − 1

h
(x+ y)

](
−j +

y

h

)
dydx+

+

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

c (x, y)
(

1 + j − y

h

)[
−i− j +

1

h
(x+ y)

]
dydx,

(11)

Icij4 =

1∫
0

1∫
0

c (x, y)ϕij (x, y)ϕi−1,j (x, y) dxdy =

ih∫
(i−1)h

(
1− i+

x

h

) (i+j)h−x∫
jh

c (x, y)

[
i+ j − 1

h
(x+ y)

]
dydx+

+

ih∫
(i−1)h

(
i− x

h

) jh∫
(i+j−1)h−x

c (x, y)

[
1− i− j +

1

h
(x+ y)

]
dydx,

(12)
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Icij5 =

1∫
0

1∫
0

c (x, y)ϕij (x, y)ϕi+1,j (x, y) dxdy =

(i+1)h∫
ih

(
−i+

x

h

) (i+j+1)h−x∫
jh

c (x, y)

[
1 + i+ j − 1

h
(x+ y)

]
dydx+

+

(i+1)h∫
ih

(
1 + i− x

h

) jh∫
(i+j)h−x

c (x, y)

[
−i− j +

1

h
(x+ y)

]
dydx,

(13)

Icij6 =

1∫
0

1∫
0

c (x, y)ϕij (x, y)ϕi−1,j+1 (x, y) dxdy =

ih∫
(i−1)h

(
i− x

h

) (j+1)h∫
(i+j)h−x

c (x, y)
(

1 + j − y

h

)
dydx+

+

ih∫
(i−1)h

(
1− i+

x

h

) (i+j)h−x∫
jh

c (x, y)
(
−j +

y

h

)
dydx,

(14)

Icij7 =

1∫
0

1∫
0

c (x, y)ϕij (x, y)ϕi+1,j−1 (x, y) dxdy =

(i+1)h∫
ih

(
−i+

x

h

) (i+j)h−x∫
(j−1)h

c (x, y)
(

1− j +
y

h

)
dydx+

+

(i+1)h∫
ih

(
1 + i− x

h

) jh∫
(i+j)h−x

c (x, y)
(
j − y

h

)
dydx.

(15)

The formula for α(k) contains two norms. The first one is as follows:

∥∥∥cu(k−1)
h + f

∥∥∥
L2(Ω)

=

√√√√√ 1∫
0

1∫
0

(
cu

(k−1)
h + f (x, y)

)2

dxdy. (16)

Since α(k) is a vector, this norm should be calculated for each i and j. Taking into account (5) and (7), and denoting the
expression under the square root in (16) by βij , we have

βij = β
(1)
ij + 2β

(2)
ij +

1∫
0

1∫
0

f2 (x, y) dxdy, (17)

where

β
(1)
ij =

(
u

(k−1)
ij

)2


(i+1)h∫
ih

(i+j+1)h−x∫
jh

c2 (x, y)

[
1 + i+ j − 1

h
(x+ y)

]2

dydx+

+

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

c2 (x, y)
(

1 + j − y

h

)2

dydx+

ih∫
(i−1)h

(
1− i+

x

h

)2
(i+j)h−x∫

jh

c2 (x, y) dydx+

+

ih∫
(i−1)h

jh∫
(i+j−1)h−x

c2 (x, y)

[
1− i− j +

1

h
(x+ y)

]2

dydx+

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c2 (x, y)
(

1− j +
y

h

)2

dydx+

+

(i+1)h∫
ih

(
1 + i− x

h

)2
jh∫

(i+j)h−x

c2 (x, y) dydx

 ,
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β
(2)
ij =u

(k−1)
ij


(i+1)h∫
ih

(i+j+1)h−x∫
jh

c (x, y)

[
1 + i+ j − 1

h
(x+ y)

]
f (x, y) dydx +

+

ih∫
(i−1)h

(j+1)h∫
(i+j)h−x

c (x, y)
(

1 + j − y

h

)
f (x, y) dydx+

ih∫
(i−1)h

(
1− i+

x

h

) (i+j)h−x∫
jh

c (x, y) f (x, y) dydx+

+

ih∫
(i−1)h

jh∫
(i+j−1)h−x

c (x, y)

[
1−i−j+ 1

h
(x+y)

]
f (x, y) dydx+

(i+1)h∫
ih

(i+j)h−x∫
(j−1)h

c (x, y)
(

1−j+ y

h

)
f (x, y) dydx+

+

(i+1)h∫
ih

(
1 + i− x

h

) jh∫
(i+j)h−x

c (x, y) f (x, y) dydx

 .

The second norm, i.e.,

‖c‖L∞(Ω) = ‖c (x, y)‖L∞(Ω) =

= ess.sup(x,y)∈(0,1)×(0,1) |c (x, y)| ,

depends on c(x, y) and should be calculated for each prob-
lem separately. Thus, we have

α
(k)
ij =h

(√
βij+h ·ess.sup(x,y)∈(0,1)×(0,1)|c (x, y)|α(k−1)

ij

)
,

where βij is given by (16).
In order to find integrals (8)–(15) and also those occur-

ring in (17) we usually apply quadratures. But such an ap-

proach causes additional errors (errors of quadratures) in ob-
tained results. Thus, whenever it is possible, we recommend
to find analytical forms of these integrals (see examples in
Sec. V.). A mathematical software, e.g., Mathematica, Mat-
lab or Derive, can be helpful in this case.

For initial values in process (6) we take the solution u(0)
h

obtained from the Galerkin approximation, i.e.,(
∇u(0)

h ,∇ϕij

)
=
(
cu

(0)
h + f, ϕij

)
, i, j = 1, 2, . . . , n−1,

(18)

and α(0) =
(
α

(0)
11 , α

(0)
12 , . . . , α

(0)
n−1,n−1

)T
= (0, 0, . . . , 0)

T .
The approximation (18) consists in finding the solution of
the following system of linear equations:



A1 B1 0 · · · 0 0 0

B̂2 A2 B2 · · · 0 0 0

0 B̂3 A3
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . An−3 Bn−3 v

0 0 0 · · · B̂n−2 An−2 Bn−2

0 0 0 · · · 0 B̂n−1 An−1





u
(0)
1

u
(0)
2

u
(0)
3

...
u

(0)
n−3

u
(0)
n−2

u
(0)
n−1


=



d1

d2

d3

...
dn−3

dn−2

dn−1


,

where

Ai =



ai1 a+
i2 0 · · · 0 0 0

a−i1 ai2 a+
i3 · · · 0 0 0

0 a−i2 ai3
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . ai,n−3 a+

i,n−2 0

0 0 0 · · · a−i,n−3 ai,n−2 a+
i,n−1

0 0 0 · · · 0 a−i,n−2 ai,n−1


,

i = 1, 2, . . . , n− 1,
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Bi =



bi+1,1 0 0 · · · 0 0 0

b−i+1,1 bi+1,2 0 · · · 0 0 0

0 b−i+1,2 bi+1,3
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . bi+1,n−3 0 0

0 0 0 · · · b−i+1,n−3 bi+1,n−2 0

0 0 0 · · · 0 b−i+1,n−2 bi+1,n−1


,

i = 1, 2, . . . , n− 2,

B̂i =



b̂i−1,1 b̂+i−1,2 0 · · · 0 0 0

0 b̂i−1,2 b̂+i−1,3 · · · 0 0 0

0 0 b̂i−1,3
. . . 0 0 0

...
...

. . . . . . . . .
...

...

0 0 0
. . . b̂i−1,n−3 b̂+i−1,n−2 0

0 0 0 · · · 0 b̂i−1,n−2 b̂+i−1,n−1

0 0 0 · · · 0 0 b̂i−1,n−1


,

i = 2, 3, . . . , n− 1,

u
(0)
i =


u

(0)
i1

u
(0)
i2
...

u
(0)
i,n−1

 , di =


di1

di2
...

di,n−1


i = 1, 2, . . . , n− 1,

aij =
1

h2

(
4− Icij1

)
, i, j = 1, 2, . . . , n− 1,

a−ij =− 1

h2

(
1+Icij2

)
, i=1, 2, . . . , n−1, j=1, 2, . . . , n−2,

a+
ij =− 1

h2

(
1+Icij3

)
, i=1, 2, . . . , n−1, j = 2, 3, . . . , n−1,

bi+1,j =− 1

h2

(
1+Icij5

)
, i=1, 2, . . . , n−2, j=1, 2, . . . , n−1,

b−i+1,j =− 1

h2
Icij7, i=1, 2, . . . , n− 2, j=1, 2, . . . , n− 2,

b̂i−1,j =− 1

h2

(
1+Icij4

)
, i=2, 3, . . . , n−1, j=1, 2, . . . , n−1,

b̂+i−1,j = − 1

h2
Icij6, i = 2, 3, . . . , n− 1, j = 2, 3, . . . , n− 1,

dij =
1

h2
fij , i, j = 1, 2, . . . , n− 1,

and where Icijl (l = 1, 2, . . . , 7) are given by (9)–(15), and
fij – by (8).

The iterations (4) are stopped if for sufficiently small
ε > 0 and a positive integer N we attain estimates:

∥∥∥u(N)
h − u(N−1)

h

∥∥∥ = max
i,j=1,2,...,n−1

{∣∣∣A(N)
ij −A

(N−1)
ij

∣∣∣ ,∣∣∣A(N)

ij −A
(N−1)

ij

∣∣∣} < ε

and

max
i,j=1,2,...,n−1

∣∣∣α(N)
ij − α

(N−1)
ij

∣∣∣ < ε.

Finally, for an appropriate δ > 0, we set

ũ
(N)
h =

n−1∑
i=1

n−1∑
j=1

Ã
(N)
ij ϕij (x, y) , α̃(N) = α(N) + δ,

where Ã
(N)
ij =

[
A

(N)
ij − δ, A

(N)

ij + δ
]
. This procedure is

called δ-extension and the intervals Ã(N)
ij are enclosures for

u (xi, yj).
Although Nakao’s method can be applied to a lot of el-

liptic boundary value problems, there are three small incon-
veniences:
• the mesh size hmust be the same in x- and y-directions

(it would be more convenient to take h for x-direction
and k 6= h for y-direction),

• the function u = u (x, y) should be equal to 0 on the
boundary ∂Ω, while, in general, it can be u (x, y) =
= g (x, y) 6= 0 on this boundary,

• the method cannot be applied for (b, c) = (0, 0),
which means that, e.g., the conventional Poisson equa-
tion cannot be solved.
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Let us note that for the method (6), where we have assumed
b = 0, if we take also c = 0, then we have(

∇u(k)
h ,∇ϕij

)
= (f, ϕij) + [−1, 1]

√
2

2
h2α(k−1),

α(k) = h ‖f‖L2(Ω) = const

and no iteration has been carried out. The interval difference
method developed by us are free from these inconveniences.
Moreover, numerical experiments show that our method
gives better enclosures (intervals with smaller widths) of the
exact solutions.

IV. AN INTERVAL DIFFERENCE SCHEME
OF SECOND ORDER

For the problem (1) with c = 0, interval difference meth-
ods of second order based on proper and directed interval
arithmetic we have developed in details in [11–15].2 In this
section we expand our second order method in proper inter-
val arithmetic for the case c = c (x, y).

Partitioning the interval [0, α] into n equal parts of width
h and the interval [0, β] into m equal parts of width k pro-
vides a mean of placing a grid on the rectangle [0, α]× [0, β]
with mesh points (xi, yj), where h = α/n, k = β/m.3 As-
suming that the fourth order partial derivatives of u exist,
for each mesh point in the interior of grid we use the Taylor
series in the variable x about xi and in the variable y about
yj . This allows us to express the equation (1) at the points
(xi, yj) as

δ2
xuij−

h2

12

∂4u

∂x4
(ξi, yj)+δ

2
yuij−

k2

12

∂4u

∂y4
(xi, ηj)+cijuij=−fij ,

(19)
where

δ2
xuij =

ui+1,j − 2ui,j + ui−1,j

h2
,

δ2
yuij =

ui,j+1 − 2ui,j + ui,j−1

k2
,

i = 1, 2, . . . , n − 1; j = 1, 2, . . . ,m − 1, uij =
= u (xi, yj), cij = c (xi, yj), fij = f (xi, yj), and
where ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1) are intermedi-
ate points, and the boundary conditions as

u (0, yj) = g1 (yj) , for j = 0, 1, . . . ,m,

u (xi, 0) = g2 (xi) , for i = 1, 2, . . . , n− 1,

u (α, yj) = g3 (yj) , for j = 0, 1, . . . ,m,

u (xi, β) = g4 (xi) , for i = 1, 2, . . . , n− 1,

(20)

Note that in our previous papers [11–15] on the right-hand
side of (19) we wrote fij instead of −fij . The modification

in this paper is a consequence of Nakao’s notation of elliptic
boundary value problem used in [6].

Directly from (1) we have

∂4u

∂x4
= −∂

2f

∂x2
− ∂4u

∂x2∂y2
− ∂2c

∂x2
u− 2

∂c

∂x

∂u

∂x
− c∂

2u

∂x2
,

∂4u

∂y4
= −∂

2f

∂y2
− ∂4u

∂y2∂x2
− ∂2c

∂y2
u− 2

∂c

∂y

∂u

∂y
− c∂

2u

∂y2
.

(21)

Assuming that
∂4u

∂x2∂y2
=

∂4u

∂y2∂x2
, and substituting (21)

into (19) we get

δ2
xuij + δ2

yuij+

+
h2

12

[
∂2f

∂x2
(ξi, yj)+

∂4u

∂x2∂y2
(ξi, yj)+c(ξi, yj)

∂2u

∂x2
(ξi, yj)+

+
∂2c

∂x2
(ξi, yj)u (ξi, yj) + 2

∂c

∂x
(ξi, yj)

∂u

∂x
(ξi, yj)

]
+

+
k2

12

[
∂2f

∂y2
(xi, ηj)+

∂4u

∂x2∂y2
(xi, ηj)+c(xi, ηj)

∂2u

∂y2
(xi, ηj)+

+
∂2c

∂y2
(xi, ηj)u (xi, ηj) + 2

∂c

∂y
(xi, ηj)

∂u

∂y
(xi, ηj)

]
+

+ cijuij = −fij .
(22)

But if the appropriate functions are bounded, then we can
write

c (ξi, yj) = cij +O (h) ,
∂2c

∂x2
(ξi, yj) =

∂2cij
∂x2

+O (h) ,

∂2u

∂x2
(ξi, yj) =

∂2u

∂x2
(xi, yj) +O (h) = δ2

xuij +O (h) ,

u (ξi, yj) = uij +O (h) ,
∂c

∂x
(ξi, yj) =

∂cij
∂x

+O (h) ,

∂u

∂x
(ξi, yj) =

∂u

∂x
(xi, yj) +O (h) = δxuij +O (h)

and

c (xi, ηj) = cij +O (k) ,
∂2c

∂y2
(xi, ηj) =

∂2cij
∂y2

+O (k) ,

∂2u

∂y2
(xi, ηj) =

∂2u

∂y2
(xi, yj) +O (k) = δ2

yuij +O (k) ,

u (xi, ηj) = uij +O (k) ,
∂c

∂y
(xi, ηj) =

∂cij
∂y

+O (k) ,

∂u

∂y
(xi, ηj) =

∂u

∂y
(xi, yj) +O (k) = δyuij +O (k) ,

where
∂2cij
∂x2

=
∂2c

∂x2
(xi, yj) ,

∂2cij
∂y2

=
∂2c

∂y2
(xi, yj) ,

∂cij
∂x

=
∂c

∂x
(xi, yj) ,

∂cij
∂y

=
∂c

∂y
(xi, yj)

2 In [14] we have also presented interval difference methods of fourth order.
3 When f (x, y) = f (y, x), we usually take h = k. In this case m = round (nβ/α).
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and

δxuij =
ui+1,j − ui−1,j

2h
, δyuij =

ui,j+1 − ui,j−1

2k
.

Thus, the equation (22) can be written in the form(
1+

h2

12
cij

)
δ2
xuij+

(
1+

k2

12
cij

)
δ2
yuij+

h2

6

∂cij
∂x

δxuij+

+
k2

6

∂cij
∂y

δyuij +

(
cij +

h2

12

∂2cij
∂x2

+
k2

12

∂2cij
∂y2

)
uij+

+
h2

12

[
∂2f

∂x2
(ξi, yj) +

∂4u

∂x2∂y2
(ξi, yj)

]
+

+
k2

12

[
∂2f

∂y2
(xi, ηj) +

∂4u

∂x2∂y2
(xi, ηj)

]
+

+O
(
h3
)

+O
(
k3
)

= −fij .
(23)

If h = k and we take into account that
∂2u

∂x2
(xi, yj) +

∂2u

∂y2
(xi, yj) = −fij − cijuij ,

which directly follows from (1), then we can write the equa-
tion (22) as

δ2
xuij + δ2

yuij +
h2

6

(
∂cij
∂x

δxuij +
∂cij
∂y

δyuij

)
+

+

[
cij

(
1− h2

12

)
+
h2

12

(
∂2cij
∂x2

+
∂2cij
∂y2

)]
uij+

+
h2

12

[
−cijfij +

∂2f

∂x2
(ξi, yj) +

∂2f

∂y2
(xi, ηj) +

+
∂4u

∂x2∂y2
(ξi, yj) +

∂4u

∂x2∂y2
(xi, ηj)

]
+O

(
h3
)

= −fij .

(24)

From (23) and (24) we have, respectively(
1−h

2

12
cij

)
δ2
xuij+

(
1−k

2

12
cij

)
δ2
yuij+

h2

6

∂cij
∂x

δxuij+

+
k2

6

∂cij
∂y

δyuij +

(
cij +

h2

12

∂2cij
∂x2

+
k2

12

∂2cij
∂y2

)
uij =

= −fij −
h2

12

[
∂2f

∂x2
(ξi, yj) +

∂4u

∂x2∂y2
(ξi, yj)

]
+

− k2

12

[
∂2f

∂y2
(xi, ηj) +

∂4u

∂x2∂y2
(xi, ηj)

]
+O

(
h3
)
+O

(
k3
)

(25)

and

δ2
xuij + δ2

yuij +
h2

6

(
∂cij
∂x

δxuij +
∂cij
∂y

δyuij

)
+

+

[
cij

(
1− h2

12
cij

)
+
h2

12

(
∂2cij
∂x2

+
∂2cij
∂y2

)]
uij =

=

(
h2

12
cij − 1

)
fij −

h2

12

[
∂2f

∂x2
(ξi, yj) +

∂2f

∂y2
(xi, ηj) +

+
∂4u

∂x2∂y2
(ξi, yj) +

∂4u

∂x2∂y2
(xi, ηj)

]
+O

(
h3
)
.

(26)

To construct interval methods, let us assume that there
exists a constant M such that∣∣∣∣ ∂4u

∂x2∂y2
(x, y)

∣∣∣∣ ≤M
for all 0 ≤ x ≤ α and 0 ≤ y ≤ β. It is obvious that

∂2f

∂x2
(ξ, y)+

∂4u

∂x2∂y2
(ξ, y)∈Ψ(X+[−h, h] , Y )+[−M,M ] ,

∂2f

∂y2
(x, η)+

∂4u

∂x2∂y2
(x, η)∈Ω(X,Y +[−k, k])+[−M,M ] ,

for any ξ ∈ (x− h, x+ h) and any η ∈ (y − k, y + k),
where X and Y denote interval extensions of x and y, re-
spectively, and Ψ (X,Y ) and Ω (X,Y ) are interval ex-

tensions of
∂2f

∂x2
(x, y) and

∂2f

∂y2
(x, y), respectively. If we

denote by U (X,Y ), F (X,Y ), C (X,Y ), DxC (X,Y ),
DyC (X,Y ), D2

xC (X,Y ) and D2
yC (X,Y ) interval exten-

sions of u (x, y), f (x, y), c (x, y),
∂c

∂x
(x, y),

∂c

∂y
(x, y),

∂2c

∂x2
(x, y) and

∂2c

∂y2
(x, y), respectively, then it is easy to

write interval analogies to equations (25) and (26). For (25)
we have[

1

h2
− 1

12
(Cij + hDxCij)

]
Ui−1,j+

+

[
1

k2
− 1

12
(Cij + kDyCij)

]
Ui,j−1+

+

(
4

3
Cij −

2

h2
− 2

k2
+
h2

12
D2

xCij +
k2

12
D2

yCij

)
Uij+

+

[
1

k2
− 1

12
(Cij − kDyCij)

]
Ui,j+1+

+

[
1

h2
− 1

12
(Cij − hDxCij)

]
Ui+1,j =

=−Fij−
h2

12
Ψ (Xi+[−h, h] , Yj)−

k2

12
Ω (Xi, Yj+[−h, h])+

− h2 + k2

12
[−M,M ] + [−δ, δ] ,

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1,

(27)

while for (26) we obtain(
1

h2
− h

12
DxCij

)
Ui−1,j +

(
1

h2
− h

12
DyCij

)
Ui,j−1+

+

[
Cij

(
1− h2

12
Cij

)
+
h2

12

(
D2

xCij+D2
yCij

)
− 4

h2

]
Uij+

+

(
1

h2
+
h

12
DyCij

)
Ui,j+1+

(
1

h2
+
h

12
DxCij

)
Ui+1,j =

=

(
h2

12
Cij − 1

)
Fij −

h2

12
{Ψ (Xi + [−h, h] , Yj) +

+Ω (Xi, Yj + [−h, h]) + 2 [−M,M ]}+ [−δ, δ] ,
i, j = 1, 2, . . . , n− 1,

(28)
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where Uij = U (Xi, Yj), Fij = F (Xi, Yj), etc., and where
the interval [−δ, δ] stays for an δ-extension in our methods.
In equations (27) this interval containsO

(
h3
)
+O

(
k3
)
, and

in (28) – the term O
(
h3
)
. Moreover, we have

U0j = G1 (Yj), Ui0 = G2 (Xi) ,

Unj = G3 (Yj), Uim = G4 (Xi) ,

for each j = 0, 1, . . . ,m and i = 0, 1, . . . , n− 1,

(29)

where G1 (Y ), G2 (X), G3 (Y ) and G4 (X) denote interval
extensions of the functions g1 (y), g2 (x), g3 (y) and g4 (x),
respectively. The system of linear interval equations (27)
with (29) and the system (28) with (29) can be solved in con-
ventional (proper) floating-point interval arithmetic, because
all intervals are proper.

Note that if c(x, y) = c = const, then the equations (27)
and (28) reduce to(

1

h2
−C

12

)
Ui−1,j+

(
1

k2
−C

12

)
Ui−1,j+

(
4C

3
− 2

h2
− 2

k2

)
Uij+

+

(
1

k2
− C

12

)
Ui,j+1 +

(
1

h2
− C

12

)
Ui+1,j =

=−Fij−
h2

12
Ψ(Xi+[−h, h] , Yj)−

k2

12
Ω (Xi, Yj+[−h, h])+

− h2 + k2

12
[−M,M ] + [−δ, δ] ,

i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1,

(30)

and
1

h2
Ui−1,j +

1

h2
Ui,j−1+

+

[
C

(
1− h2

12
C

)
− 4

h2

]
Uij +

1

h2
Ui,j+1 +

1

h2
Ui+1,j =

=

(
h2

12
C − 1

)
Fij −

h2

12
{Ψ (Xi + [−h, h] , Yj) +

+Ω (Xi, Yj + [−h, h]) + 2 [−M,M ]}+ [−δ, δ] ,
i, j = 1, 2, . . . , n− 1,

(31)

respectively, where C is the thinnest machine interval repre-
senting c. These equations are also useful for solving in inter-
val arithmetic the Poisson equation, in which c = 0 (see [11–
15]). Let us recall that Nakao’s method is not applicable to
the Poisson equation (see Sec. III.).

A remark should be added concerning the constant M.
When nothing can be concluded about M from physical or
technical properties or characteristics of the problem consid-
ered, we propose to find this constant taking into account
that
∂4u

∂x2∂y2
(xi, yj) =

= lim
h→0

lim
k→∞

(
ui−1,j−1 +ui−1,j+1 +ui+1,j−1 +ui+1,j+1

h2k2
+

+
4uij − 2 (ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)

h2k2

)
.

We can calculate

Mnm =
1

h2k2
max

i=1,2,...,n−1
j=1,2,...,m−1

|ui−1,j−1+ui−1,j+1+ui+1,j−1+

+ ui+1,j+1 + 4uij+

−2 (ui−1,j + ui,j−1 + ui,j+1 + ui+1,j)| ,
(32)

where uij are obtained by a conventional method for a vari-
ety of n and m, say n = 10, 20, . . . , ν, m = 10, 20, . . . , µ,
where ν and µ are sufficiently large. Then, we can plotMnm

against different n and m. The constant M can be easily de-
termined from the obtained graph, since

lim
n→∞
m→∞

Mnm ≤M.

For the system of linear equations (27) (and also for (28),
(30) and (31)) we can quote the following theorem (see,
e.g., [17, p. 89]): If we can carry out all steps of a direct
method for solving a finite system of linear algebraic equa-
tions Ax = b in interval arithmetic (if no attempted division
by an interval containing zero occurs, nor any overflow or
underflow), then this system has a unique solution for every
real matrix in A and every real vector in b, and the solution is
contained in the resulting interval vector X. Because in our
method the constant M and δ-extension are obtained exper-
imentally in general, then, obviously, this theorem does not
guarantee that we receive validated solution. But all com-
putational experiments that we carried, show that the exact
solutions are contained in the interval enclosures obtained by
the proposed method (some examples are given in the next
section).

V. A COMPARISON OF NAKAO’S METHOD
AND THE INTERVAL DIFFERENCE SCHEME

First, in this section we compare our method to Nakao’s
method on the basis of two examples presented by Nakao
in [6]. For the third example Nakao’s method is not applica-
ble. In all these examples we have used our own implemen-
tation of floating-point interval arithmetic written in Delphi
Pascal. This implementation has been written in the form of
a unit called IntervalArithmetic32and64, whose current ver-
sion one can find in [16]. This unit takes advantage of the
Delphi Pascal floating-point Extended type. All programs
written in Delphi Pascal for the examples considered can be
found in [18].
Example 1. [6, pp. 330–331]

Let us consider the following problem:

∆u+ πu = (1− 2π) sinπx sinπy in Ω,

u = 0 on ∂Ω,
(33)
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Tab. 1. Enclosures of solution (34) to the problem (33) obtained by Nakao’s method (N – intervals presented in [6])

(i, j) U(Xi, Yj) Width× 103

(1, 1) [ 2.6895096700530953E−0002, 3.2427221086186715E−0002]
≈ [ 0.0268950, 0.0324273] ≈ 5.5

N [ 0.0152852, 0.0459134] ≈ 30.6
exact ≈ 0.0303959

(1, 5) [ 9.0624935701623463E−0002, 1.0360043786745875E−0001]
≈ [ 0.0906249, 0.1036005] ≈ 13.0

N [ 0.0641884, 0.1338544] ≈ 69.7
exact ≈ 0.0983632

(1, 9) [ 2.7580990032784303E−0002, 3.3135690195121944E−0002]
≈ [ 0.0275809, 0.0331356] ≈ 5.6

N [ 0.0152852, 0.0459134] ≈ 30.6
exact ≈ 0.0303959

(2, 1) [ 5.2119428179302382E−0002, 6.1187858075021614E−0002]
≈ [ 0.0521194, 0.0611879] ≈ 9.1

N [ 0.0335920, 0.0828146] ≈ 49.2
exact ≈ 0.0578164

(2, 5) [ 1.7346343896287746E−0002, 1.9597642240178172E−0002]
≈ [ 0.1734634, 0.1959765] ≈ 22.5

N [ 0.1278847, 0.2488152] ≈ 120.9
exact ≈ 0.1870979

(2, 9) [ 5.2962951964144576E−0002, 6.2056169423667783E−0002]
≈ [ 0.0529629, 0.0620562] ≈ 9.1

N [ 0.0335920, 0.0828146] ≈ 49.2
exact ≈ 0.0578164

(3, 1) [ 7.2554266253714074E−0002, 8.3864670393438673E−0002]
≈ [ 0.0725542, 0.0838647] ≈ 11.3

N [ 0.0496244, 0.1105956] ≈ 61.0
exact ≈ 0.0795775

(3, 5) [ 2.3974209982463119E−0001, 2.6874921583784288E−0001]
≈ [ 0.2397420, 0.2687493] ≈ 29.0

N not presented
exact ≈ 0.2575181

(3, 9) [ 7.3257606517471004E−0002, 8.4587067342072837E−0002]
≈ [ 0.0732576, 0.0845871] ≈ 11.3

N not presented
exact ≈ 0.0795775

(5, 1) [ 9.0624935701623463E−0002, 1.0360043786745875E−0001]
≈ [ 0.0906249, 0.1036005] ≈ 13.0

N not presented
exact ≈ 0.0983632

(5, 5) [ 2.9726292843414220E−0001, 3.3126769903312273E−0001]
≈ [ 0.2972629, 0.3312677] ≈ 34.0

N not presented
exact ≈ 0.3183099

(5, 9) [ 9.0624935701623460E−0002, 1.0360043786745875E−0001]
≈ [ 0.0906249, 0.1036005] ≈ 13.0

N not presented
exact ≈ 0.0983632

(9, 1) [ 2.7580990032784303E−0002, 3.3135690195121944E−0002]
≈ [ 0.0275809, 0.0331357] ≈ 5.6

N not presented
exact ≈ 0.0303959

(9, 5) [ 9.0624935701623460E−0002, 1.0360043786745875E−0001]
≈ [ 0.0906249, 0.1036005] ≈ 13.0

N not presented
exact ≈ 0.0983632

(9, 9) [ 2.6895096700530948E−0002, 3.2427221086186720E−0002]
≈ [ 0.0268950, 0.0324273] ≈ 5.5

N not presented
exact ≈ 0.0303959
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Tab. 2. Enclosures of solution (34) to the problem (33) obtained by the method (31)

(i, j) U(Xi, Yj) Width× 103

(1, 1) [ 2.8413489793818334E−0002, 3.2077265656902749E−0002]
≈ [ 0.0284134, 0.0320773] ≈ 3.7

exact ≈ 0.0303959
(1, 5) [ 9.3435235810096799E−0002, 1.0258291837474664E−0001]

≈ [ 0.0934352, 0.1025830] ≈ 9.1
exact ≈ 0.0983632

(1, 9) [ 2.8373268255628631E−0002, 3.2303880411274499E−0002]
≈ [ 0.0283732, 0.0323039] ≈ 3.9

exact ≈ 0.0303959
(2, 1) [ 5.4472248034826312E−0002, 6.0608703745006735E−0002]

≈ [ 0.0544722, 0.0606088] ≈ 6.1
exact ≈ 0.0578164

(2, 5) [ 1.7840742966978266E−0001, 1.9450823450046243E−0001]
≈ [ 0.1784074, 0.1945083] ≈ 16.1

exact ≈ 0.1870979
(2, 9) [ 5.4395742122844850E−0002, 6.1039750622674490E−0002]

≈ [ 0.0543957, 0.0610398] ≈ 6.6
exact ≈ 0.0578164

(3, 1) [ 7.5335356959410713E−0002, 8.3113638230475435E−0002]
≈ [ 0.0753353, 0.0831137] ≈ 7.8

exact ≈ 0.0795775
(3, 5) [ 2.4622583174343920E−0001, 2.6722217352636624E−0001]

≈ [ 0.2462258, 0.2672222] ≈ 21.0
exact ≈ 0.2575181

(3, 9) [ 7.5230055605350271E−0002, 8.3706923359772883E−0002]
≈ [ 0.0752300, 0.0837070] ≈ 8.5

exact ≈ 0.0795775
(5, 1) [ 9.3435235810096800E−0002, 1.0258291837474664E−0001]

≈ [ 0.0934352, 0.1025830] ≈ 9.1
exact ≈ 0.0983632

(5, 5) [ 3.0498232654819171E−0001, 3.3020640188360169E−0001]
≈ [ 0.3049823, 0.3302065] ≈ 25.2

exact ≈ 0.3183099
(5, 9) [ 9.3305076178355319E−0002, 1.0331625912459803E−0001]

≈ [ 0.0933050, 0.1033163] ≈ 10.0
exact ≈ 0.0983632

(9, 1) [ 2.8373268255628632E−0002, 3.2303880411274499E−0002]
≈ [ 0.0283732, 0.0323039] ≈ 3.9

exact ≈ 0.0303959
(9, 5) [ 9.3305076178355319E−0002, 1.0331625912459803E−0001]

≈ [ 0.0933050, 0.1033163] ≈ 10.0
exact ≈ 0.0983632

(9, 9) [ 2.8333046717438929E−0002, 3.2530495165646248E−0002]
≈ [ 0.0283330, 0.0325305] ≈ 4.2

exact ≈ 0.0303959

where Ω = [0, 1]× [0, 1]. The exact solution of (33) is of the
form (see Fig. 1)

u (x, y) =
1

π
sinπx sinπy. (34)

For Nakao’s method all integrals (8)–(15) can be found
analytically. We have

fij =
1− 2π

π2
(1− cosπh) (cosπ (i+ j)h+

− sinπh

πh
cosπ (i− j)h

)
,

Icij1 =
πh2

2
, Icijp =

πh2

12
, p = 2, 3, . . . , 7.

(35)
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The coefficients βij given by (17) are as follows:

βij =
πh2

2

(
u

(k−1)
ij

)2

+
(2π − 1)

2

4
+

+

(
2

π
− 4

)
(1− cosπh) (cosπ (i+ j)h+

− sinπh

πh
cosπ (i− j)h

)
u

(k−1)
ij .

Using these formulas in Nakao’s method and taking
(as Nakao) h = 0.1, i.e., n = 10, the initial values u(0)

ij from

Galerkin’s approximation, α(0)
ij = 0, the stopping and exten-

sion parameters ε = δ = 10−8, we obtain after N = 10
iterations the results presented in Tab. 1. In the same ta-
ble we also present the results obtained by Nakao. One can
observe that our intervals are thinner than those presented
by Nakao in his original paper. Moreover, it should be added
that Nakao obtained his results after N = 16 iterations, i.e.,
in a greater number of iterations than in our implementation.

Our interval difference method (31) yields intervals pre-
sented in Tab. 2. Since the exact solution is known (see (34),
we have taken M = 62.02. Moreover, we assume in our
method that δ = 0.001 and, obviously, U0j = Ui0 =
= U10,j = Ui,10 = 0 (j = 0, 1, . . . , 10; i = 1, 2, . . . , 9).
The obtained enclosures of the exact solution are better than
those presented in Tab. 1. Obviously, all intervals (in Tab. 1
and 2) contain the exact solution at the mesh points. �
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Fig. 1. A graph of solution (34) to the problem (33)

Example 2. [6, pp. 329–330]
For the problem

∆u+ 20xyu = (1− 2π) sinπx sinπy in Ω,

u = 0 on ∂Ω,
(36)

where Ω = [0, 1]× [0, 1], the exact solution is unknown.
Analytical forms of integrals (9)–(15) occurring in

Nakao’s methods are as follows (the integral (8) is given by
(35)):

Icij1 = 20h4

(
1

2
ij − 1

36

)
,

Icij2 = 20h4

(
1

12
ij − 1

24
i− 1

360

)
,

Icij3 = 20h4

(
1

12
ij +

1

24
i− 1

360

)
,

Icij4 = 20h4

(
1

12
ij − 1

24
j − 1

360

)
,

Icij5 = 20h4

(
1

12
ij +

1

24
j − 1

360

)
,

Icij6 = 20h4

(
1

12
ij +

1

24
i− 1

24
j − 1

45

)
,

Icij7 = 20h4

(
1

12
ij − 1

24
i+

1

24
j − 1

45

)
,

while for the components of βij in formula (17) we have

β
(1)
ij = 400

(
u

(k−1)
ij

)
h6

(
−1

2
i3j2− 1

2
i2j3− 1

3
i3j− 1

6
i2j2+

−1

3
ij3 − 1

12
i3 − 1

4
i2j − 1

4
ij2 − 1

12
j3 − 1

45
i2+

− 1

15
ij − 1

45
j2 − 1

180
i− 1

180
j +

1

120

)
,

β
(2)
ij =

20

π2
(2π − 1)u

(k−1)
ij ×

×
(

1

2π

{
(i−j)

[
h (cos 2πh+ cosπh)− 3

2π
sin 2πh

]
+

+
1

π
(3i− 7j + 4)

}
sinπ (i− j)h+

+
1

2π

[(
ijh+

5

2π2h

)
(2 sinπh−sin 2πh)+h sin 2πh+

+
1

π
(3 cos 2πh− cosπh)

]
cosπ (i− j)h+

+ h

[
(i+j)

(
1

π
−h

2
sinπh

)
−2

π
i cosπh

]
sinπ (i+j)h+

+

{
1

π

(
1

π
− h sinπh

)
+

+h2

[(
ij +

1

6

)
cosπh+

1

3
− ij

]}
cosπ (i+ j)h+

+
2

π

[
(i− j) sinπjh− 1

π
cosπjh

]
cosπh cosπih

)
,

and

1∫
0

1∫
0

f2 (x, y) dxdy =
(2π − 1)

2

4
.



94 A. Marciniak

Tab. 3. Enclosures of solution to the problem (36) obtained by Nakao’s method (N – intervals presented in [6])

(i, j) U(Xi, Yj) Width× 103

(1, 1) [ 2.5422096920147401E−0002, 3.3990702176130446E−0002]
≈ [ 0.0254220, 0.0339908] ≈ 8.6

N [ 0.0044953, 0.0603775] ≈ 55.9

(1, 5) [ 9.2513778055918294E−0002, 1.1033908384199032E−0001]
≈ [ 0.0925137, 0.1103391] ≈ 17.8

N [ 0.0066034, 0.2148457] ≈ 208.2

(1, 9) [ 2.8693572427687149E−0002, 3.7601391162418901E−0002]
≈ [ 0.0286935, 0.0376014] ≈ 8.9

N [ -0.0158443, 0.0880232] ≈ 103.9

(2, 1) [ 5.0699038788017661E−0002, 6.3495793925095351E−0002]
≈ [ 0.0506990, 0.0634958] ≈ 12.8

N [ 0.0097055, 0.1147773] ≈ 105.1

(2, 5) [ 1.8060879979601782E−0001, 2.1053874248141714E−0001]
≈ [ 0.1806087, 0.2105388] ≈ 29.9

N [ 0.0133514, 0.4145900] ≈ 401.2

(2, 9) [ 5.7342513568695084E−0002, 7.0907900667225485E−0002]
≈ [ 0.0573425, 0.0709080] ≈ 13.6

N [ -0.0269411, 0.1674148] ≈ 194.4

(3, 1) [ 7.1830592564795797E−0002, 8.7386541698192201E−0002]
≈ [ 0.0718305, 0.0873866] ≈ 15.5

N [ 0.0124607, 0.1610751] ≈ 148.6

(3, 5) [ 2.5492779458340919E−0001, 2.9379815695755907E−0001]
≈ [ 0.2549277, 0.2937982] ≈ 38.9

N not presented
(3, 9) [ 8.2062195994898807E−0002, 9.8929688472366392E−0002]

≈ [ 0.0820621, 0.0989297] ≈ 16.9
N not presented

(5, 1) [ 9.2513778055918294E−0002, 1.1033908384199032E−0001]
≈ [ 0.0925137, 0.1103391] ≈ 17.8

N not presented
(5, 5) [ 3.3138320035174136E−0001, 3.7902599829881106E−0001]

≈ [ 0.3313832, 0.3790260] ≈ 47.6
N not presented

(5, 9) [ 1.0874662190671927E−0001, 1.2906568116001579E−0001]
≈ [ 0.1087466, 0.1290657] ≈ 20.3

N not presented
(9, 1) [ 2.8693572427687149E−0002, 3.7601391162418901E−0002]

≈ [ 0.0286935, 0.0376014] ≈ 8.9
N not presented

(9, 5) [ 1.0874662190671927E−0001, 1.2906568116001579E−0001]
≈ [ 0.1087466, 0.1290657] ≈ 20.3

N not presented
(9, 9) [ 3.5234034840690512E−0002, 4.5480438346456136E−0002]

≈ [ 0.0352340, 0.0454805] ≈ 10.2
N not presented

Taking (as Nakao) h = 0.1, the initial values u(0)
ij from the

Galerkin approximation, α(0)
ij = 0, the stopping parameter

ε = 10−4 and the extension parameter δ = 10−3, in our
implementation of Nakao’s method we obtain after N = 7
iterations the results presented in Tab. 3. The Nakao results
(published in [6]) obtained after N = 10 are also presented
in the same table. As in Example 1 we can observe that our

intervals are significant thinner and Nakao obtained his re-
sults after a greater number of iterations.

In order to use the interval difference method (28) we
need to evaluate the constant M. Since the exact solution is
unknown, we can calculate Mnm from (32) for different val-
ues of n. The obtained results are presented in Fig. 2. From
this figure it follows that M = 38.9. For h = 0.1, δ = 0.001
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Tab. 4. Enclosures of solution to the problem (36) obtained by the method (28)

(i, j) U(Xi, Yj) Width× 103

(1, 1) [ 2.8997209867618227E−0002, 3.1544047883616199E−0002]
≈ [ 0.0289972, 0.0315441] ≈ 2.5

(1, 5) [ 9.9185893244672646E−0002, 1.0604503147224523E−0001]
≈ [ 0.0991858, 0.1060451] ≈ 6.9

(1, 9) [ 3.1726223260720911E−0002, 3.4740582521688013E−0002]
≈ [ 0.0317262, 0.0347406] ≈ 3.0

(2, 1) [ 5.5847687322568013E−0002, 6.0189730374459988E−0002]
≈ [ 0.0558476, 0.0601898] ≈ 4.3

(2, 5) [ 1.9176543915299421E−0001, 2.0413632819753807E−0001]
≈ [ 0.1917654, 0.2041364] ≈ 12.4

(2, 9) [ 6.1877653239000653E−0002, 6.7170747737222414E−0002]
≈ [ 0.0618776, 0.0671708] ≈ 5.3

(3, 1) [ 7.7943013254661869E−0002, 8.3553350213709836E−0002]
≈ [ 0.0779430, 0.0835534] ≈ 5.6

(3, 5) [ 2.6958027386866717E−0001, 2.8619531804216802E−0001]
≈ [ 0.2695802, 0.2861954] ≈ 16.6

(3, 9) [ 8.7847100544052620E−0002, 9.4883951515621320E−0002]
≈ [ 0.0878471, 0.0948840] ≈ 7.0

(5, 1) [ 9.9185893244672646E−0002, 1.0604503147224523E−0001]
≈ [ 0.0991858, 0.1060451] ≈ 6.9

(5, 5) [ 3.4971929521257995E−0001, 3.7100087427077752E−0001]
≈ [ 0.3497192, 0.3710009] ≈ 21.3

(5, 9) [ 1.1638954152907525E−0001, 1.2539898721724767E−0001]
≈ [ 0.1163895, 0.1253990] ≈ 9.0

(9, 1) [ 3.1726223260720911E−0002, 3.4740582521688013E−0002]
≈ [ 0.0317262, 0.0347406] ≈ 3.0

(9, 5) [ 1.1638954152907525E−0001, 1.2539898721724767E−0001]
≈ [ 0.1163895, 0.1253990] ≈ 9.0

(9, 9) [ 4.0001555361422584E−0002, 4.3990214693613634E−0002]
≈ [ 0.0400015, 0.0439903] ≈ 4.0

and U0j = Ui0 = U10,j = Ui,10 = 0 (j = 0, 1, . . . , 10; i =
= 1, 2, . . . , 9), from (28) we obtain enclosures of the exact
solution presented in Tab. 4 (these enclosure are thinner than
those presented in Tab. 3). �
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Fig. 2. A graph for Mnn obtained from (32) for n=10, 20, . . ., 100

Example 3. Let

∆u =
1

1 + x2 + y2

[
2 + x2 + y2√
1 + x2 + y2

cos
√

1 + x2 + y2+

−
(
x2 + y2

)
sin
√

1 + x2 + y2
]

in Ω

(37)

and

u|∂Ω =


sin
√

1 + y2 for x = 0,

sin
√

1 + x2 for y = 0,

sin
√

65 + y2 for x = 8,

sin
√

17 + x2 for y = 4,

(38)

where Ω = [0, 8] × [0, 4]. The Poisson equation (37) with
Dirichlet’s conditions (38) has the solution of the form
(see Fig. 3)

u (x, y) = sin
√

1 + x2 + y2. (39)
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Tab. 5. Enclosures of solution (39) to the problem (37)–(38) obtained by the method (31) (for selected i and j)

(i, j) U(Xi, Yj) Width× 103

(40, 8) [−8.7570448853762087E−0001, −8.6786852449020102E−0001]
≈ [−0.8757044, −0.8678686] ≈ 7.8

exact ≈ −0.8715758
(40, 16) [−9.6473261912851148E−0001, −9.5273425661315874E−0001]

≈ [−0.9647326, −0.9527343] ≈ 12.0
exact ≈ −0.9583239

(40, 24) [−1.0049018906555416E+0000, −9.9269471083206701E−0001]
≈ [−1.0049018, −0.9926948] ≈ 12.2

exact ≈ −0.9982978
(40, 32) [−8.7882382725746346E−0001, −8.7056138147601539E−0001]

≈ [−0.8788238, −0.8705614] ≈ 8.3
exact ≈ −0.8742991

(16, 20) [ 3.7736191041585845E−0001, 3.8651130223780119E−0001]
≈ [ 0.3773619, 0.3865114] ≈ 9.1

exact ≈ 0.3820811
(32, 20) [−6.9697972969609782E−0001, −6.8473622032926368E−0001]

≈ [−0.6969797, −0.6847363] ≈ 12.2
exact ≈ −0.6905517

(48, 20) [−8.4156500228698132E−0001, −8.2916731158025701E−0001]
≈ [−0.8415650, −0.8291674] ≈ 12.4

exact ≈ −0.8348743
(64, 20) [ 4.7127662788337241E−0001, 4.8095589691916753E−0001]

≈ [ 0.4712766, 0.4809559] ≈ 9.7
exact ≈ 0.4760830

The problem (37)–(38) cannot be solved by Nakao’s method
since c = 0 (see Sec. III.). But using the method presented
in Sec. V. we can obtain enclosures of (39) at some mesh
points.

Taking n = 80, m = 40 (h = k = 0.1), M = 1.382
(this constant can be estimated since the exact solution is
known) from the method (31), in which C = 0 and the inter-
val [−δ, δ] does not occur (this interval never occurs for the
Poisson equation), and for

U0j = sin
√

1 + Y 2
j , Ui0 = sin

√
1 +X2

i ,

U80,j = sin
√

65 + Y 2
j , Ui0 = sin

√
17 +X2

i ,

j = 0, 1, . . . , 40, i = 1, 2, . . . , 79,

we have obtained enclosures of the exact solution presented
in Tab. 5. As previously, all intervals contain the exact solu-
tion at the mesh points. �

VI. CONCLUSIONS

In the paper we have shown that our implementation of
Nakao’s method yields better enclosures of the exact solu-
tions than those presented in the original paper [6]. There are
two possible reasons for that: we have used the exact inte-
grals in the method, while probably in [6] some quadratures

have been used (it causes to come into being some additional
errors – errors of quadratures), and in our interval calcula-
tions we have taken advantage of Delphi Pascal Extended
type, which is more precise than Double type used probably
in [6] (this has rather small influence on the results).

0
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8

-1

-0,6

-0,2
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1

u x  y( , )

x
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Fig. 3. A graph of solution (39) to the problem (37)–(38)

Although Nakao’s method can be applied to a lot of el-
liptic boundary value problems, the method cannot be ap-
plied for (b, c) = (0, 0), which means that, e.g., the con-
ventional Poisson equation cannot be solved. Our interval
difference scheme is free from this disadvantage. Moreover,
our method can be applied for functions u (x, y) 6= 0 on the
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boundary ∂Ω, we can use different mesh sizes h and k in
x- and y-directions, respectively, and the boundary ∂Ω does
not need to be restricted to [0, 1]× [0, 1]. It should be added
that the last remark is not very important, since for an arbi-
trary boundary [α1, α2] × [β1, β2] we can always take new
variables s and t (instead of x and y) defined as follows:

s =
x− α1

α2 − α1
, t =

x− β1

β2 − β1
,

for which the region [α1, α2] × [β1, β2] will be transformed
to [0, 1]× [0, 1].

Finally, we want to draw attention to time of compu-
tations. Since Nakao’s method is an iterative process, the
method is time-expansive and the time of computations
grows rapidly when we decrease the mesh size h or/and
the iteration accuracy ε. In our method the execution time
depends only on the mesh sizes h and k (of course, this
time grows for smaller h and k). In our programs, presented
in [18], the execution time is always calculated.
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Andrzej Marciniak was born in Poznań (Poland) in 1953. He received the M.Sc. degree in mathe-
matics in 1977, the M.Sc. degree in astronomy in 1979 and Ph.D. degree in mathematics in 1981, all
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from the Nicolaus Copernicus University in Toruń (Poland) and in 2010 he received the Professor Ti-
tle from the President of Poland. From 1977 to 1987 and from 2000 to 2011 he held a research
position at the Faculty of Mathematics and Computer Science of the Adam Mickiewicz University,
and since 1987 he has been an an assistant professor in Institute of Mathematics and then a professor
of computer science at the Faculty of Computing Science of the Poznań University of Technology.
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