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Abstract: Using the Self-Consistent Field Theory (SCFT) we study the dual self-assembly of ABA triblock copolymers
melts and compare the numerical results with those obtained by the lattice Monte Carlo simulations. While the results are
qualitatively similar for both methods, the simulation times are significantly shorter for the SCFT calculations than those for
the corresponding Monte Carlo simulations.
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I. INTRODUCTION

Self-assembly in the block copolymer melts is an active
area of research [1-16]. Block copolymers self-assemble via
the microphase separation which is an instant of the order-
disorder transition (ODT). This transition leads to formation
of a plethora of different nanostructures, such as ordered lay-
ers, hexagonally arranged cylinder, cubically ordered spheres
or a double gyroid phase. Previous studies [17-23] of molec-
ularly asymmetric A1BA2 triblock copolymers synthesized
from a parent diblock copolymer so that NA1 is significantly
smaller than NA2 (where NA1 and NA2 denote the num-
ber of repeat units in the A1 and A2 blocks, respectively)
have helped to elucidate the molecular and property changes
accompanying the transformation from an AB diblock to
a molecularly symmetric ABA triblock copolymer (with
NA1 = NA2 ). Recent Monte Carlo (MC) simulations of

moderately segregated copolymers have yielded results that
quantitatively agree with unexpected experimental findings,
most notably a pronounced minimum in the order-disorder
transition temperature as NA2 is progressively increased.

In the limit of superstrong segregation (SSS) [24, 25],
interstitial micelles composed of the minority A2 endblock
are observed to be arranged into two-dimensional hexagonal
arrays along the midplane of B-rich lamellae in composi-
tionally symmetric (50:50 A:B) copolymers. Calculations
performed here establish the coupled molecular-asymmetry
and incompatibility conditions under which such micelles
form. Beyond an optimal length of the A2 endblock, the
propensity for interstitial micelles to develop decreases, and
the likelihood for colocation of both endblocks in the A 1
-rich lamellae increases. The SSS regime has also been stud-
ied experimentally [26-30] and nontraditional morphologies
have been observed [27, 28, 31].
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From previous studies [17-23] we know that as the
A1BA2 triblock melt begins to self-organize, short A-blocks
initially locate in the B-domain, and then as the χ value grows
they migrate to A-domain. Moreover, for sufficiently long
chains and relatively high χ values we can observe that short
A-segments inside the B-domain aggregate into interstitial
micelles (IM’s).

This observation will be investigated by the self-
consistent field theory (SCFT) and reaffirmed by lattice
Monte Carlo methods, which are described in the following
section.

II. METHODS

II. 1. SCFT Method

The incompressible ABA copolymer melt is modeled as
a collection of n diblock chains confined in volume V . Each
chain, labeled α = 1, 2, . . . , n, can take any Gaussian con-
figuration parameterized from s=0 to s=f1 for A-segments,
from s=f1 to s=f2 for B-segments, and from s=f2 to s=1
for A-segments. Up to a multiplicative constant, the partition
function for a single Gaussian chain in external fields WA(r)
and WB(r) acting on segments A and B, respectively, is

Q [WA,WB ] ≡
∫
D̃rα (· ) exp

[
−
∫ f

0

dsWA(rα(s))

−
∫ f2

f1

dsWB(rα(s))−
∫ 1

f2

dsWA(rα(s))

]
(1)

The path integral,
∫
D̃rα (· ) , is taken over single-chain

trajectories, rα (s), with Wiener measure expressed as D̃rα =
DrαP [rα; 0, 1], and

P [rα; s1, s2] ∝ exp

[
− 3

2Na2

∫ s2

s1

ds| d
ds

rα(s)|2
]

(2)

Note that a is the segment size, and Na2 is the mean squared
end-to-end distance of a Gaussian chain. By Kac-Feynman
theorem, eq 1 can be related to a Fokker-Planck partial differ-
ential equation, known also as a modified diffusion equation
(MDE) and shown with appropriate details below (eqs 15 and
16).

Segments A and B interact via the χ parameter which
provides an effective measure of incompatibility between
them. Evaluation of the full partition function of n interacting
diblock chains, shown below (eq 3), is a highly challenging
task, involving many-body interactions, both intermolecular
and intramolecular.

Z =

∫ n∏
α=1

D̃rα δ[1− φ̂A − φ̂B ] exp
[
−χρ0φ̂Aφ̂B

]
, (3)

where δ-function enforces incompressibility (the melt is as-
sumed to be incompressible), and

φ̂A(r) =
N

ρ0

n∑
α=1

[∫ f1

0

ds δ(r− rα(s))

+

∫ 1

f2

ds δ(r− rα(s))

] (4)

φ̂B(r) =
N

ρ0

n∑
α=1

∫ f2

f1

ds δ(r− rα(s)) (5)

are the microscopic segments densities of A and B, respec-
tively; ρ0 = nN/V is the segment number density. After
replacing microscopic segment (or particle) densities with
a variety of fields, by inserting and spectrally decomposing
the appropriate δ-functionals, the partition function of an
incompressible diblock melt is

Z =N
∫
DφA (· ) DWA (· ) DφB (· ) DWB (· ) DΨ (· )

exp

[
−F [φA,WA, φB ,WB ,Ψ]

kBT

]
,

(6)
where N is a normalization factor. The func-
tional integral is taken over the relevant fields
φA (r) ,WA (r) , φB (r) ,WB (r), and Ψ (r), with the free
energy functional, F [φA,WA, φB ,WB ,Ψ], including the
single chain partition function (in external fields WA(r) and
WB(r)), as shown below

F [φA,WA, φB ,WB ,Ψ]

nkBT
≡

≡− ln
Q
V

+ V −1
∫
dr[NχφA (r)φB (r)

−WA (r)φA (r)−WB (r)φB (r)

−Ψ (r) (1− φA (r)− φB (r))]

(7)

Fields φA (r) and φB (r) are associated with normalized con-
centration profiles of A and B, and fields WA (r) and WB (r)
with chemical potential fields acting onA andB, respectively;
field Ψ (r) enforces incompressibility. Evaluating functional
integrals in eq 6 is a challenging task which, in principle, can
be performed by field theoretic simulations. A simpler, but
approximate, approach is based on the mean-field idea, where
the dominant and, in fact, only contribution to the functional
integral in eq 6 comes from the fields satisfying the saddle
point condition expressed as the following set of equations:

δF

δφA
=

δF

δφB
=

δF

δWA
=

δF

δWB
=
δF

δΨ
= 0 (8)
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Performing the above functional derivatives yields

WA(r) = NχφB(r) + Ψ(r) (9)
WB(r) = NχφA(r) + Ψ(r) (10)

1 = φA(r) + φB(r) (11)

φA(r) =
V

Q
[

∫ f1

0

ds q(r, s)q†(r, s) (12)

+

∫ 1

f2

ds q(r, s)q†(r, s)]

φB(r) =
V

Q

∫ f2

f1

ds q(r, s)q†(r, s), (13)

where Q/V can be calculated as

Q
V

=
1

V

∫
dr q(r, 1) (14)

and q(r, s) is the forward chain propagator which is the solu-
tion of the following modified diffusion equation

∂q

∂s
=

1

6
Na2∇2q −WA(r)q, 0 ≤ s ≤ f1

∂q

∂s
=

1

6
Na2∇2q −WB(r)q, f1 ≤ s ≤ f2

∂q

∂s
=

1

6
Na2∇2q −WA(r)q, f2 ≤ s ≤ 1 (15)

with the initial condition q(r, 0) = 1. Similarly q†(r, s) is
the backward chain propagator which is the solution of the
conjugate modified diffusion equation:

−∂q
†

∂s
=

1

6
Na2∇2q† −WA(r)q†, 0 ≤ s ≤ f1

−∂q
†

∂s
=

1

6
Na2∇2q† −WB(r)q†, f1 ≤ s ≤ f2

−∂q
†

∂s
=

1

6
Na2∇2q† −WA(r)q†, f2 ≤ s ≤ 1 (16)

with the initial condition q†(r, 1) = 1.
While the set of equations 9, 10, 11, 12, and 13 can be

solved, in principle, in a self-consistent manner, it is difficult
to solve this set without some additional assumptions. First,
we assume that the melt forms a spatially ordered nanophase.
Second, we use the UCA which is a considerable simplifica-
tion, limiting our attention to a single D-dimensional spherical
cell of radiusR, and volume V . All fields within this cell have
radial symmetry, which reduces this problem computationally
to a single radial coordinate, r. Thus eq 14 can be rewritten
as

Q
V

= D

∫ R
0
rD−1q(r, 1)dr

RD
(17)

Note that the factor, D, in front of the above integral origi-
nates from the ratio of the area of a sphere with radius 1 to

the volume of a spherical cell with the same radius, both in
D dimensions.

While in integrals (eqs 12, 13 and 14) we replace r with
r, and dr/V with DrD−1dr/RD, in the modified diffusion
equations, 15 and 16, we replace r with r and use the spheri-
cally symmetric form of the Laplacian

∇2f =
∂2f

∂r2
+
D − 1

r

∂f

∂r
(18)

and similarly, in equations for both propagators q(r, s) and
q†(r, s), we replace r with r. Obviously the solution de-
pends on radius, R, and dimensionality, D = 1, 2 and 3,
corresponding to 3 different nanophases. We use the Crank-
Nicholson scheme to solve iteratively the modified diffusion
equations (eqs 15 and 16) in their radial form, until the self-
consistency condition is met, obtaining the saddle point fields,
φA(r), φB(r),WA(r) and WB(r) for a given R and D. In
the MF approximation, the free energy functional becomes
the free energy, and therefore we calculate the reduced free
energy (per chain in kBT units) by substituting the saddle
point fields into eq 7:

F (R,D)

nkBT
≡ − ln

Q
V

+
D

RD

∫ R

0

rD−1[NχφA(r)φB(r)−

WA(r)φA(r)−WB(r)φB(r)]dr (19)

Since in the MF theory, the stability of a nanophase de-
pends on the product χN and composition, f , we start, at a
given point of the phase diagram, (f , χN ), with numerical
calculation of F (R,D) (eq 19) for various D’s (1, 2, and 3)
and R’s. In order to solve the MDE’s (eqs 15 and 16) we use
up to NT = 1000 and up to NR = 2000 steps for the “time”,
s, and space, r, variables, respectively.

Numerically, we find R and D which minimize F (R,D),
and this allows us to determine the dimensionality, D, of
the most stable nanophase, and therefore the most favorable
nanophase itself. But the free energy of this nanophase has to
be compared to that of the disordered phase. Therefore, we
calculate the difference

∆F

nkBT
≡ F

nkBT
− Fdis
nkBT

(20)

where Fdis is the free energy of the disordered phase:

Fdis
nkBT

= Nχf(1− f) (21)

If ∆F is negative then the appropriate nanophase is ther-
modynamically stable for the point considered, (f ,χN ); oth-
erwise the system is the disordered phase.
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II. 2. MC Method

The cooperative motion algorithm (CMA) [32-36], based
on FCC lattice, is used to simulate the triblock solutions.
We apply standard Monte Carlo (MC) simulations with the
Metropolis algorithm [37] as well as parallel tempering (PT)
method [38-40]. In the PT case, M replicas of system are
simulated in parallel, each in different temperature Ti, with
i ranging from 1 to M . After 3000 MC steps we try to ex-
change replicas with neighboring Ti in random order with
probability:

p(Ti ↔ Ti+1) =

= min[1, exp(−(βi − βi+1)(Ui+1 − Ui))],
(22)

where βi = 1/kTi and Ui is potential energy of replica at Ti.
This method offers efficient equilibration at low temperatures.

We repeat the experiment at least 3 times starting with
different initial configurations, in which the polymer chains
assume statistical conformations and random orientations,
and are uniformly distributed within the simulation box. A
single MC step is defined as an attempt to move a given seg-
ment. Usually, the first half of run is used to equilibrate the
system and the second one to collect the data. The results are
averaged over all simulation runs. While the morphologies
obtained in the simulations were quantitatively dependent on
the box size, this dependence was weak and did not change
the main conclusions qualitatively.

We use the following set of interaction energies which
are limited to the nearest neighbors:

εAB = ε (23)
εAA = 0 (24)
εBB = 0, (25)

where ε is an energy unit, and we define the reduced energy
per lattice site and the reduced temperature as:

E∗

na
=
E/ε

na
(26)

T ∗ =
kT

ε
(27)

On the basis of considerations presented in reference [41]
we can relate T ∗ used in this paper to the Flory χ parameter
employed in the self-consistent field theory by the following
approximate equation:

χ =
7.5

T ∗
(28)

The above equation can also be used in order to relate theo-
retical T ∗’s to experimental χ’s.

III. RESULTS

Monte Carlo simulations were carried out using the co-
operative motion algorithm (CMA) for the following chain
lengths: N = 32, 64, 80, 96 and 112. In each case, the ratio of
segments A and B is 1 : 1. For each chain length, the number
of monomers in the short A1-block is NA1 = 1, 2, 3 and 4,
respectively. The SCFT calculations were performed for the
corresponding parameters.

For the N = 32 chain we used the 32 × 32 × 32 and
64 × 32 × 32 simulation boxes, for the N = 64 chain the
64× 32× 32 and 64× 64× 64 boxes, for the N = 80 chain
the 80× 40× 40 box, for the N = 96 chain the 96× 48× 48
box, and for the N = 112 chain the 112× 56× 56 box.

We determined the order-disorder (ODT) χ’s (and thus
temperatures). We also introduce interface-domain transition
(IDT) χ’s as those in which half of the dangles are within
B-domain and half in A-domain (interface). The χNIDT ’s de-
scribes quantitatively the process of migration of short A1’s
from B-domain to the native A-domain. χNIDT in SCFT
calculations are determined from short A1’s density profiles
in the direction normal to the layers, whereas in Monte Carlo
simulations they are determined directly from the configura-
tions. In addition we determine the χ range in which aggrega-
tion into interstitial micelles (IM) within B-domain occurs.

In Fig. 1 triangles refer to SCFT calculations, while
squares and diamonds to MC results. Open symbols denote
ODT, solid triangles and squares refer to IDT, while solid
diamonds and dashed lines indicate the area, where the IM’s
are observed.

In Fig. 1(a) we can see χNODT in the function of
fA1 (open symbols) and χNIDT (closed symbols). Above
χNODT , most of the short A1’s are in the B-domain. As χ
grows A1’s share in the B-domain and A-domain gets even
(IDT line). Then, for the larger χ values, the share of A1’s in
domain A is dominant.

In Fig. 1(b) we add the Monte Carlo simulation results,
where open squares mean χNODT while solid squares refer
to χNIDT . We can see clearly that both qualitatively and
quantitatively SCFT calculations and Monte Carlo simula-
tions give consistent results when it comes to determining
order-disorder transition and interface-domain transitions.

In Fig. 1(c), we additionally apply the information about
the area in which we observe the aggregation of short A1’s
into micelles within the B-domain (solid diamonds and
dashed lines).

We can see clearly that as fA1 grows (e.g. shorter chains)
the temperature range of the occurrence of IM’s becomes
narrow but moves towards higher (more easily accessible)
temperatures (lower χ’s). On the other hand, when the value
of fA1 decreases and we deal with this by maintaining the
length of A1-block while increasing the length of the chain,
N , the χ range in which the aggregation occurs is wider, but
shifted towards higher χ values, i.e. lower temperatures.
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Fig. 1. Diagram containing information on the order-disorder transition (ODT), location of shorter A1-blocks within individual domains,
and aggregation of A1-blocks into micelles for molten A1-B-A2 triblock copolymer in the function Flory parameter, χ: (a) ODT (open
triangles) and interface-domain transition, IDT (solid triangles), from SCFT calculations; (b) SCFT results with Monte Carlo ODT (open
squares) and IDT (solid squares) lines; (c) the area in which interstitial micelles (IM) has been observed (solid diamonds and dashed lines)

against the background of results shown in (a) and (b).

In Fig. 2 we present an MC snapshot of molten 2(A1)-
48(B)-46(A2) copolymer. The A-domain is marked in blue
and the short A1’s in yellow. B-domain is not shown for clar-
ity purposes. Red color denotes B-segments of these chains
whose A1’s form one of the micelles within the B-domain.
We use a recursive algorithm which allows us to determine
whether a given chain forms a bridge, a loop, or is part of an
IM.

Finally, it is also worthwhile underlining that the differ-
ences in results obtained by these two methods are relatively

small. This can be attributed to the fact that the mean-field ap-
proach, such as the SCFT, is known to work very well in the
dense polymer systems. These small differences are usually
explained in terms a large coordination number, which scales√
N , where N is large for polymers, suppressing fluctuations

as argued by Fredrickson [42].
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Fig. 2. Monte Carlo snapshot of 2(A1)-48(B)-46(A2) triblock copolymer melt. Domain A is marked in blue. Short A-segments (A1) marked
in yellow. B-domain is not shown for clarity. The red segments are the B-segments of these chains, which form

a single micelle inside the B domain.

IV. CONCLUSIONS

Using the Self-Consistent Field Theory (SCFT) we study
the dual self-assembly of ABA triblock copolymers melts
and compare the numerical results with those obtained by the
lattice Monte Carlo simulations. While the results are qual-
itatively similar for both methods, the simulation times are
significantly shorter for the SCFT calculations than those for
the corresponding Monte Carlo simulations. It is also worth-
while underlining that the differences in results obtained by
these two methods are relatively small. This can be attributed
to the fact that the mean-field approach, such as the SCFT, is
known to work very well in the dense polymer systems. These
small differences are usually explained in terms of a large
coordination number, which scales as

√
N , where N is large

for polymers, suppressing fluctuations.
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He received his PhD degree in Physics in 1991 from Memorial University in St. John’s, Canada, specializing in
Polymer Physics. From 1992 to 1995 he worked as postdoctoral fellow in Exxon Research & Engineering Co.
in Annandale, New Jersey, USA, working on theory and modeling of polymer solutions. From 1995 to 1997
he worked in the Chemistry Department of UMIST in Manchester, UK, as a research associate, specializing in
large-scale computer simulations of ionic copolymers. In 1997, he joined the Adam Mickiewicz University,
obtaining his DSc degree (habilitation) in 2004 in Physics (specialty: Soft Matter Physics and Computer
Simulations), and later professorship in Physics. His main interest is in developing new models and theories
for nanoscale self-assembly of various polymer systems. He also collaborates with experimentalists, using
large-scale computing.

CMST 24(4) 227-234 (2018) DOI:10.12921/cmst.2018.0000059


