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The New Extended KdV Equation
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Abstract: The consistent derivation of the extended KdV equation for an uneven bottom for the case of α = O(β) and
δ = O(β2) is presented. This is the only one case when second order KdV type nonlinear wave equation can be derived for
arbitrary bounded bottom function.
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I. INTRODUCTION

Korteweg and de Vries have discovered surface gravity
nonlinear waves [3] more than 120 years ago in the first order
perturbation approach. Next, in 1990, Marchant and Smyth
obtained the extended KdV equation (also called KdV2) in
the second order approach. Before our and our co-workers’
papers [1, 2] these equations were obtained only for the case
of the flat bottom. In these papers, in addition to standard
small parameters α = a

h and β =
(
h
l

)2
we introduced the

third one defined as δ = ah
h . In these definitions a denotes

the wave amplitude, h the average water depth, l the average
wavelength and ah the amplitude of the bottom variations.
We considered the case of α = O(β) and δ = O(β), that is,
when all three small parameters are of the same order. Then,
with standard assumptions for incompressible, inviscid fluid
and irrotational motion, we applied the second-order pertur-
bation approach to the set of Eulerian equations. This set,
written in nondimensional variables has the following form
(see, e.g., Eqs. (2)-(5) in [2])

βφxx + φzz = 0, (1)

ηt + αφxηx −
1

β
φz = 0, for z = 1 + αη (2)

φt +
1

2
αφ2x +

1

2

α

β
φ2z + η = 0, for z = 1 + αη (3)

φz − βδ (hx φx) = 0, for z = δh(x). (4)

Equation (1) is the Laplace equation valid for the whole vol-
ume of the fluid. Equations (2) and (3) are so-called kine-
matic and dynamic boundary conditions at the surface, re-
spectively. The equation (4) represents the boundary condi-
tion at the non-flat bottom. For abbreviation all subscripts
denote the partial derivatives with respect to particular vari-
ables, i.e. φt ≡ ∂φ

∂t , ηnx ≡
∂nη
∂xn and so on.

For the flat bottom, the boundary condition at the bottom
is φz = 0. In this case, the perturbation approach of the first
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order with respect to small parameters leads to the famous
Korteweg-de Vries equation [3]

ηt + ηx + α
3

2
ηηx + β

1

6
η3x = 0. (5)

The second order perturbation approach leads to the ex-
tended KdV equation of the form [4]

ηt + ηx + α
3

2
ηηx + β

1

6
η3x + α2

(
−3

8
η2ηx

)
(6)

+ αβ

(
23

24
ηxη2x+

5

12
ηη3x

)
+ β2 19

360
η5x = 0.

In [1, 2] we tried to extend the second-order approach to
the case δ 6= 0, that is, the case of a non-flat bottom.

Recently, it was pointed out in [5] that one step in our
derivation performed in [1, 2] and leading to the KdV2 equa-
tion for an uneven bottom was inconsistent, and therefore the
derived equation [2, Eq. (18)] is not correct. We derived our
equation [2, Eq. (18)] in good faith. However, using different
notations for small parameters α, β, δ we did not recognize
the proper order of terms related to the bottom function.

In [6] we presented the proof that for the case α = O(β)
and δ = O(β) a KdV type wave equation exists neither in
the first nor in higher orders. This happens because the set
of the Boussinesq equation resulting from (1)-(4) can not be
made compatible for arbitrary shape of the bottom function
when α = O(β) and δ = O(β).

In this short note we focus on the only one case when
the nonlinear wave equation of KdV type, describing uni-
directional waves, can be derived in a consistent second or-
der approach for an arbitrary shape of the bottom function.
This is done in Section II.. Next, in Section III. we present
some examples of the motion of KdV2 solitons over the un-
even bottom in the form of piece-wise linear functions.

II. DERIVATION OF THE NONLINEAR WAVE
EQUATION FOR THE CASE OF α = O(β) AND

δ = O(β2)

In [5], the author points out that the consistent second
order perturbation approach can be achieved when all small
parameters are related to only one, assuming for the consid-
ered case

α = Aβ, δ = Dβ2. (7)

In the standard approach the velocity potential is as-
sumed in the form of the series

φ(x, z, t) =

∞∑
m=0

zmφ(m)(x, t).

For the flat bottom case (δ = q = 0) equations (1) and
(4) allow us to express all φ(m)(x, t) with even m only, by
f(x, t) := φ(0)(x, t) and its even x-derivatives. For the un-
even bottom case, to satisfy the equation (4), the velocity
potential has to contain also odd m terms. In general, the ve-
locity potential fulfilling Laplace equation can be expressed
in the following form

φ(x, z, t) =

∞∑
m=0

(−1)mβm

(2m)!

∂2mφ(0)

∂x2m
z2m (8)

+

∞∑
m=0

(−1)mβm+1

(2m+ 1)!

∂2m+1φ(1)

∂x2m+1
z2m+1,

where φ(1) = φ(1)(x, t). The explicit form of this velocity
potential is

φ = f (0) − 1

2
βz2f

(0)
2x +

1

24
β2z4f

(0)
4x −

1

720
β3z6f

(0)
6x + · · ·

+ βzF − 1

6
β2z3F2x +

1

120
β3z5F4x + · · · , (9)

where we denote f = φ(0) and F = φ
(1)
x .

Now, we insert the general form of velocity potential (9)
into the bottom boundary condition which in this case is

φz −Dβ3 (hx φx) = 0, for z = Dβ2h(x) (10)

obtaining relation

F −Dβ2(hfx)x −
1

2
D2β5(h2Fx)x +

1

6
D3β7(h3f3x)x

(11)

+
1

24
D4β10(h4F3x)x −

1

120
D5β12(h5f5x)x + · · · = 0.

Then, since we are interested in second order equations, we
can neglect all terms except the first one and use

F = Dβ2(hfx)x (12)

which inserted into (9) gives the velocity potential in the
form

φ = f − 1

2
βz2f2x +

1

24
β2z4f4x −

1

720
β3z6f6x + · · ·

(13)

+Dβ3z(hfx)x−
1

6
Dβ4z3(hfx)3x+

1

120
Dβ5z5(hfx)5x+· · ·

Inserting velocity potential (13) into (2) and (3) and retain-
ing terms up to the second order one obtains the set of
the Boussinesq equations in the following form (as usual
w = fx)
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ηt + wx + β

(
A(ηw)x −

1

6
w3x

)
(14)

+ β2

(
−A1

2
(ηw2x)x +

1

120
w5x −D (hw)x

)
= 0,

wt + ηx + β

(
Awwx −

1

2
w2xt

)
(15)

+ β2

(
−A(ηwxt)x +A

1

2
wxw2x −A

1

2
ww3x

+
1

24
w4xt

)
= 0.

In the first order this system reduces to the common KdV
system, with

w = η + β

(
−A1

4
η2 +

1

3
η2x

)
(16)

which ensures the KdV equation

ηt + ηx + β

(
A
3

2
ηηx +

1

6
η3x

)
= 0. (17)

Now, we aim to satisfy the Boussinesq system (14)-(15)
with the terms of the second order included. So, we set

w = η + β

(
−A1

4
η2 +

1

3
η2x

)
+ β2Q. (18)

Then we insert the trial function (18) into (14) and (15)
and retain terms up to second order in β. This yields the set
of two equations

ηt + ηx + β

(
A
3

2
ηηx +

1

6
η3x

)
+ β2

(
−A2 3

4
η2ηx (19)

+
1

12
ηxη2x −

1

12
ηη3x +

17

360
η5x −D(hη)x +Qx

)
= 0

and

ηt + ηx + β

(
−A1

2
ηηt +Aηηx −

1

6
η2xt

)
(20)

+ β2

(
−A2 3

4
η2ηx −A

1

2
ηxηxt +A

1

4
ηtη2x +A

5

6
ηxη2x

−A3

4
ηη2xt −A

1

6
ηη3x −

1

8
η4xt +Qt

)
= 0.

Now, we subtract the equation (20) from (19). This gives

β

(
A
1

2
η(ηt + ηx) +

1

6
(η2xt − η3x)

)
(21)

+ β2

[
A

(
1

2
ηxηxt−

1

4
ηtη2x−

3

4
ηxη2x+

3

4
ηη2xt+

1

12
ηη3x

)
+
1

8
η4xt −

17

360
η5x +Qx −Qt −D(hη)x

]
= 0.

In (21), in order to replace t-derivatives by x-derivatives we
use Qt = −Qx and the properties of the first order equation
(17), that is, ηt = −ηx − β

(
A 3

2ηηx +
1
6η3x

)
, again retain-

ing only terms up to second order. Solving the result with
respect to Qx and integrating over x we find

Q =
1

2
D(hη)+A2 1

8
η3+A

3

16
η2x+A

1

2
ηη2x+

1

10
η4x. (22)

This form of the correction function makes the Boussinesq
system (14)-(15) compatible and allows to the derive explicit
form for the wave equation for the case of α = O(β) and
δ = O(β2). Finally, we have

w = η + β

(
−A1

4
η2 +

1

3
η2x

)
+ β2

(
1

2
D(hη) (23)

+A2 1

8
η3 +A

3

16
η2x +A

1

2
ηη2x +

1

10
η4x

)
and

ηt + ηx + β

(
A
3

2
ηηx +

1

6
η3x

)
+ β2

(
−1

2
D(hη)x (24)

−A2 3

8
η2ηx +A

23

24
ηxη2x +A

5

12
ηxη3x +

19

360
η5x

)
= 0.

The equation (24) is the nonlinear wave equation, for uneven
bottom, when α = O(β), δ = O(β2), derived consistently
within the second order perturbation approach.

Since δ = Dβ2 we can come back to original notations
for small parameters, used in [2]. Then equations (23) and
(24) take the following forms

w = η − 1

4
αη2 +

1

3
βη2x + δ

1

2
hη (25)

+
1

8
α2η3 + αβ

(
3

16
η2x +

1

2
ηη2x

)
+

1

10
β2η4x

and

ηt + ηx +
3

2
αηηx +

1

6
βη3x − δ

1

2
(hη)x −

3

8
α2η2ηx

(26)

+ αβ

(
23

24
η2x +

5

12
ηη2x

)
+ β2

(
19

360
η5x

)
= 0.

These forms of equations (25) and (26) may be misleading,
since the terms with δ, looking as first order ones, are, in fact,
of second order.

The equation (26), limited to the case δ = D = 0, is
the extended KdV equation or KdV2 [4]. This equation is
nonintegrable. Despite this fact, we found several forms of
analytic solutions to KdV2: soliton solutions in [2], cnoidal
solutions (∼ cn2) in [7] and superposition cnoidal solutions
(∼ dn2 ±

√
mcn dn) in [8, 9], see the monograph [11], as

well.
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The equation (26) is the second order wave equation di-
rectly taking into account bottom variation derived consi-
tently for the case of α = O(β) and δ = O(β2).

The wave equation (26) is very similar to the not fully
correct [2, Eq. (18)]. The latter contains, apart from the lead-
ing term from the bottom − 1

2δ(hη)x, two other terms which
resulted from not fully consistent derivation.

III. NUMERICAL SIMULATIONS

In this section, we tentatively examine the motion of soli-
tons, solutions of the KdV2 equation (6), entering the region
where the bottom is no longer even. In these tests, we use
our numerical code based on the finite difference method.
The code was described in detail in [2] and [6].
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Fig. 1. Time evolution of the KdV2 soliton moving over the trape-
zoidal bump, t ∈ [0, 30]. The thick red line shows the shape of the

bottom function h(x) (not in scale)

Since the equation for the uneven bottom (26) differs
from the extended KdV equation (6) by only single term
− 1

2δ(hη)x then for initial conditions we can choose the sin-
gle soliton solution of (6) for soliton position far from the ob-
stacle. Such single soliton solutions were found by us in [2,
Sect. V]. Below we present numerical evolution of such soli-
ton when α = β = 0.2424 and δ = 2β2 ≈ 0.1175. For
α ≈ 0.2424 the amplitude of such soliton is one. Then the
initial condition is η(x, t = 0) = sech2

(√
0.599x

)
.

Distortions of the soliton shape caused by interaction
with uneven bottom observed in Figs. 1 and 2 are small. The
main effect of this interaction is the increase of the wave
amplitude during the motion over the obstacle with a simul-
taneous decrease of the wave velocity. These effects for the
motion of KdV2 solitons over localized obstacle were pre-
dicted in approximate analytic solutions found by us in [10].
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Fig. 2. Time evolution of the KdV2 soliton moving over the trape-
zoidal well, t ∈ [0, 30]. The thick red line shows the shape of the

bottom function h(x) (not in scale)

Comparison of the numerical evolution of KdV2 soli-
tons obtained with the equation (26) with that resulted from
the not fully correct equation [2, Eq. (18)] shows an impor-
tant difference. The radiation of small amplitude wavetrain
in front of the main wave, present in evolution according
to [2, Eq. (18)] seems to dissappear in evolution according
to the equation (26) displayed in Figs. 1 and 2.
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Fig. 3. Several profiles of the KdV2 soliton moving over the trape-
zoidal well. In the inset the radiation of the faster wave packets of

small amplitude is clearly seen

The thorough inspection of the calculated data reveals
that this radiation still exists, but with much smaller ampli-
tude (in Figs. 1 and 2 this amplitude is comparable to the
linewidth). In order to enhance these effects we performed
additional calculations in which we set α = β = 0.2424
and δ = 3β2 ≈ 0.176. Several profiles of the wave obtained
in the numerical evolution of KdV2 soliton according to the
equation (26) are displayed in Fig. 3. The creation and then
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detachment of the small amplitude wave packet in front of
the main wave is clearly exposed in the inset. This is qual-
itatively the same feature as observed in our previous pa-
pers [1, 2, 10] for wave motion according to the not fully
correct equation [2, Eq. (18)]. Quantitatively the effect has
much smaller amplitude, for realistic values of parameters
α, β, δ it is smaller than 1% of the solitons amplitude. On
the other hand, even such small effect suggests the origin of
the very tiny wrinkles observed always on the water surface
at the seashore.

We are sure that this is the real effect, not an artifact
of numerical simulation. Since our code utilizes periodic
boundary conditions we performed calculations on much
wider x-interval than displayed in figures above. In such
cases, when the soliton moves far from the end of the x-
interval, the boundary conditions do not influence the shape
of the localized wave.
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