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Abstract: Sequencing by hybridization (SBH) is a method of reading DNA sequence from its smaller fragments. Such
a method has been proposed in late 1980s and until the emergence of the new generation sequencing it has been widely
used and improved. Since the initial, classical approach to SBH, many modifications and enhancements was proposed,
aimed at improving the preciseness and the length of sequences which can be unambiguously read. Even now, for some
DNA sequences sequencing by hybridization can still be used effectively and at a low cost. In this paper many different
approaches to the SBH will be described, mainly from the points of view of algorithms and computational complexity.
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I. INTRODUCTION

One of the most important biochemical procedure of
molecular and computational biology is reading DNA se-
quences, both long and short ones. It is the first and nec-
essary step of various biological projects, since many of
them perform the analysis of information encoded in these
sequences. Obviously, in order to analyze the information,
the sequences have to be read first. It is the reason for the
importance of DNA sequencing. This importance is con-
firmed by the rapid development of new technologies for
DNA sequencing, which could be observed during the last
fifteen years. Next generation sequencing methods are be-
coming more and more effective, which means that they al-
low the sequencing of whole genomes in a relatively short
time [1]. However, the new sequencing techniques are very
well suited for sequencing very long DNA molecules, while
there is still a need for fast and low cost methods for se-

quencing or re-sequencing of relatively shorter DNA frag-
ments. Such methods are needed, for example, in medical
diagnostics. A good candidate for such a method is sequenc-
ing by hybridization (SBH). It has been proposed in the late
1980s when it was considered as a promising candidate for a
universal DNA sequencing approach. When the next gener-
ation sequencing technologies have emerged, SBH can still
be considered as an effective method for sequencing or re-
sequencing shorter DNA molecules. For example, it is still
possible to use it for reading whole bacterial genome as pro-
posed in [2] or for virus identifications [3].

Since the development of the SBH method in the late
1980s many variants of this approach have been proposed
and even recently new papers concerning, e.g., algorithms
with novel SBH approaches are being published [4]. In this
paper we provide a survey of SBH methods. For many of
them interesting computational complexity problems have
emerged, which will also be mentioned. In the following
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paper we will start with the description of the classical se-
quencing by hybridization. Then, various proposed modifi-
cations to the initial methodology will be introduced, like,
e.g., multistage sequencing, information about repetition or
non-classical approaches to the DNA chip design.

II. CLASSICAL SEQUENCING BY
HYBRIDIZATION

Sequencing by hybridization is a method composed of
two stages. The first one is called a biochemical one, dur-
ing which a hybridization experiment is performed. In such
an experiment a DNA chip containing a full library of all
oligonucleotides (i.e., short single-stranded nucleotide se-
quences) of a given length l is being used. In this stage
cloned DNA sequences bind to the probes (cells in the
DNA chip filled with copies of a known, specific type of
oligonucleotide) according to the Watson-Crick complemen-
tary rule: adenine binds to thymine, while cytosine to gua-
nine. In other words the DNA attaches itself to the probe,
if its fragment of a given length is complementary to the
oligonucleotide of the same length within the probe. As a
result, a set called spectrum is obtained. In an ideal case it
consists of all substrings of length l of the target DNA se-
quence.

Let Σ = {A,C, T,G} be an alphabet of nucleotides.
A DNA sequence is represented by a string over alpha-
bet ΣDNA. The length of a reconstructed sequence is de-
noted by n. An ideal spectrum Sis(Q) of a sequence Q =
〈q1q2 . . . qn〉 is a set of all unique l-long substrings (l-mers)
of Q.

Since the spectrum does not contain any information
about the order of substrings in the analyzed a DNA
molecule it is necessary to determine it. It is a goal of a sec-
ond, computational stage of the SBH method. In this stage a
permutation of the spectrum elements corresponding to their
order in the target DNA sequence must be found. It can be
done using some combinatorial algorithms. This task can be
formulated as DNA sequencing problem without errors [5]
formulated as follows.

Problem 1. DNA sequencing without errors - search version
INSTANCE: An ideal spectrum Sis(Q) of elements of equal
length l over the alphabet ΣDNA, the length n of an original
sequence Q, |Sis| = n− l + 1.
ANSWER: A sequence of length n containing all elements of
Sis(Q).

In an ideal case, where there are no errors in the spec-
trum, Problem 1 of finding DNA sequence Q can be solved
in a polynomial time [6].

However, a spectrum obtained during the biochemical
experiment may be affected by hybridization errors. Some
substrings of Q may be missing (they will be called nega-
tive errors) and some additional l-mers which are not a part

of Q may be included (positive errors). Such a spectrum is
denoted by S(Q). For each l-mer si = 〈si1si2 . . . sil〉 ∈ Σl,
Q(si) = 1 if si is a substring of Q and Q(si) = 0 in the
other case.

Negative errors appear when the analyzed DNA se-
quence does not hybridize to the complementary oligonu-
cleotide on the chip and as a result the spectrum does not
contain information of the corresponding l-mer of the tar-
get sequence. Another type of negative errors is caused by
repetitions of substrings of a given length l in the target se-
quence. Since the information obtained on the basis of read-
ing the signal from the DNA chip probe is binary, i.e., it only
indicates whether a given substring is present in the target
sequence or not, the hybridization experiment usually does
not provide information about the repeated fragments (a case
when such information is available will be described later).
As a result the spectrum contains information about only
one occurrence of the repeated substring. It should be noted
that errors resulting from repetitions do not follow from im-
perfectness of the hybridization experiment and they depend
only on the nature of the analyzed DNA sequence. Hence, it
is difficult or even impossible to avoid errors of this type in
the first stage of the SBH method. On the other hand it may
happen that the analyzed DNA molecule will hybridize to the
oligonucleotide on the chip which is not perfectly comple-
mentary to it. In this the case spectrum contains information
about a substring complementary to such an oligonucleotide,
which in fact is not a part of the target sequence. Errors of
this type are called positive errors.

The problem of finding a sequence of a given length from
the non-ideal spectrum (i.e., one that contains both positive
and negative errors) can be formulated as follows [5].

Problem 2. DNA sequencing with negative and positive er-
rors - search version
INSTANCE: Spectrum S(Q) of elements of length l over the
alphabet ΣDNA, the length n of an original sequence Q.
ANSWER: A sequence of length ≤ n containing the maxi-
mum number of elements of S(Q).

When positive or negative errors resulting from the im-
perfectness of the hybridization process are present in the
spectrum, the computational problem which must be solved
in the second phase of the method becomes strongly NP-
hard. The computational complexity of the problem with
only negative errors resulting from repetitions remains an
open question. It is worth mentioning, that SBH methods
sometimes result in the formulation of combinatorial prob-
lems with the computational complexity being difficult to es-
tablish, for example [7].

The errors are the main drawback of the SBH approach.
The method is very sensitive to them, meaning that they sig-
nificantly influence the obtained DNA sequence. Moreover,
they make the computational problem which must be solved
in the second stage a more difficult task. Hence, new ver-
sions of the SBH method have been developed in order to
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make SBH more resistant to errors. In some of them the hy-
bridization experiment is also modified in such a way that
the probability of errors occurrence is decreased.

III. INTERACTIVE PROTOCOLS,
MULTISTAGE SEQUENCING

The general idea of interactive protocols described in [8]
(also being called sequencing by hybridization in rounds) is
to perform multiple hybridization experiments using differ-
ently designed DNA chips. Each hybridization stage is be-
ing followed by the separate computational phase, the re-
sult of which gives the background for chip redesign for
the next turn of hybridization. Each turn is performed on a
much smaller scale in terms of the number of probes on a
DNA chip. Using the spectrum from the first round one usu-
ally cannot reconstruct the whole DNA sequence unambigu-
ously. However, after the first turn there are new data avail-
able, or in other words, there are new questions that can be
answered by a specifically constructed DNA chip in the next
round. Authors prove that the total capacity of chips used
in all rounds to successfully reconstruct the DNA is much
smaller than the capacity of the classical chip used in the
same task. An interesting summary Table 1 is given in [8].
It shows the advantages of such an approach when it comes
to the scale of the hybridization experiment, i.e., it compares
the total number of generated probes on the DNA chips for
both methods - proposed and classical one.

Authors also propose two algorithms designed for such
an approach and present the results obtained in computa-
tional experiments. The first algorithm is called the Doubling
Algorithm and is based on the theorem (proved in the pa-
per) that O(lg n) rounds of n2/ lg n substring queries per
round are enough to reconstruct any string of length n on
an alphabet of size α ≤ n. A query is a simple question
whether a specific substring exists or does not exist within
a given string. In practice such a query takes the form of
a specific probe on a sequencing chip. The second algo-
rithm called Adaptive Length Algorithm uses another theo-
rem which states that if S is a random string over an alphabet
of size α, then with a probability of 1 − 1/nε string S can
be determined using O(α · logα n) rounds of n queries per
round.

The algorithms have been tested on real sequences ob-
tained from GenBank. For most sequences the Adaptive Al-
gorithm required between 9 and 11 rounds with 50 to 150
thousands queries. The longest DNA fragment successfully
sequenced came from Bacteriophage Lambda having length
of 48502bp it required 11 rounds and about 386 thousands
queries.

The sole problem of a string reconstruction in rounds on
the basis of questions concerning its substrings was formu-
lated and analyzed two years earlier in [9]. That paper, how-
ever, did not provide a direct algorithm for the application

in SBH, gave rather extensive theoretical knowledge about
such a reconstruction. Tight bounds on the complexity of re-
constructing an unknown string from substrings queries have
been given, for example, the authors provided a pattern for
a maximum number of queries necessary for reconstruction,
given the size of the string and the alphabet building it.

Another example of research on a field of sequencing
in rounds is [10] by Kruglyak. The author further investi-
gates the concept of the Doubling Algorithm ( [8]) for the
multistage SBH. The problem of estimating the number of
the l-tuples necessary to sequence the DNA depending on
its length and the length of the used oligonucleotides is de-
scribed in detail. Further progress has been made and de-
scribed in [11]. The main thesis of the paper is that with
a “high probability” a string of length n can be success-
fully reconstructed using up to seven different hybridization
chips, each containing O(n) probes. Authors introduce an
algorithm solving the DNA sequencing problem in rounds
and show experimental results for different DNA sequences.
For the first round a DNA chip having all strings (oligonu-
cleotides within probes) of length dlog4 ne + c is required,
where n is the length of the analyzed DNA, c is an arbitrary
number from a range 0 to 4. The greater the c, the longer
the length of oligonucleotides in a given round, but fewer
rounds will be necessary in order to sequence the DNA. In
subsequent rounds at most 4c · n probes are necessary.

Another paper is [12] where the author further extended
the method of sequencing in rounds. In the proposed ap-
proach one can ask a question not only if a substring exists
in an analyzed string (the DNA sequence), but also if it ex-
ists more than once, thus introducing a concept of substring
repetitions.

IV. POSITIONAL SEQUENCING
BY HYBRIDIZATION

Another variant of the SBH is called positional sequenc-
ing by hybridization (PSBH), described first in [13] by
Broude et al., in 1994 and in [14] by Hannenhalli et al. in
1996. Authors proposed using additional data for the DNA
spectrum from the hybridization experiment. In this mod-
ified approach, for every oligonucleotide in the spectrum
there is also information about the probable location of the
fragment within the original sequence. In [14] the so called
positional Eulerian path problem is defined as follows:
Problem 3. Positional Eulerian path problem
INSTANCE: A directed multigraph G(V,E) and an interval
Ie = {le, he}, le ≤ he associated with every edge e ∈ E.
ANSWER: An Eulerian path P in G such that for all e ∈ E,
le ≤ π(P, e) ≤ he.

In the above problem, the π(P, e) denotes the position of
end edge e in path P . The theorem that Problem 3 is NP-
complete, even if each vertex has in-degree and out-degree
at most 2 and intervals associated with edges are of the same
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Tab. 1. Characteristic length of unambiguously reconstructed DNA as a function
of the size classical and interactive SBH as given in [8]

DNA Classical SBH Interactive SBH
size Oligo length Chip size Rounds Chip size
80 7 16 384 7 560
180 8 65 536 8 1 140
260 9 262 144 8 2 080
560 10 1 048 576 8 4 480

1300 11 4 194 304 9 11 700
2450 12 16 777 216 9 22 050

size, has been formally proved in the paper. The authors pro-
posed two algorithms solving the sequencing problem using
the information about the substrings locations.

In the paper [15] the idea has been extended. The authors
have given a linear time algorithm for a case when for every
element of spectrum there are at most two possible location.
They have also proved that the problem is NP-complete if
for every element there are at most three possible locations.
The positional SBH problem has been defined as follows.

Problem 4. Positional SBH problem
INSTANCE: A multiset S of strings having length p. For each
s ∈ S there is a set P (s) ⊆ {0, ..., |S| − 1}.
ANSWER: Yes, if S is the ideal spectrum of substrings hav-
ing length p of some string X such that for each s ∈ S its
position along X is in P (s), no in other case.

If the set of allowed positions for each string is of size
at most k, then Problem 4 is called k-positional SBH. If, for
each s ∈ S, P (s) is a sub-interval of {0, ..., |S| − 1}, then
the problem is called interval PSBH [15]. Further in the pa-
per there are proofs that 2-positional SBH problem is solv-
able in linear time, while 3-positional SBH problem is NP-
complete. Also the interval PSBH problem is proved to be
NP-complete. In such a version all the positions are intervals
of equal length.

In paper [16] published in 2006 by Zhang et al., a novel
positional SBH problem was introduced, this time handling
both negative and positive errors. Authors extensively dis-
cussed the mathematical formulation of the problem and pro-
posed a dynamic programming method for fixing the optimal
solution and a branch and bound algorithm for the positional
SBH reconstruction. Results of an extensive computational
experiments for the proposed algorithm also given.

V. INFORMATION ABOUT REPETITIONS

Real DNA sequences are repetitious. A given substring
may occur more than once in an analyzed DNA. If the
length of the repetitive fragment is longer than the length

of oligonucleotides on a DNA chip then some information
about spectrum composition may be lost. In the classical
SBH the data from the hybridization experiment consists
of the binary information about l-mers included in a spec-
trum, i.e., a given oligonucleotide is or is not a part of a tar-
get DNA. Besides imperfect hybridization, this is the second
source of negative errors.

The consequence of repetitions longer than the length of
oligonucleotides on a DNA chip is often an ambiguity of ob-
tained results. In general, the ideal solution reconstructed in
the computational stage should have the same length as a
target sequence, containing as many oligonucleotides from
a spectrum as possible (i.e., n − l + 1 oligonucleotides in
the idea case, cf. 1). However, if a target sequence contains
multiple occurrences of a given l-mer then a reconstructed
sequence may meet the above requirements, but it may still
be significantly different from the target. Consequently, it is
more difficult to reconstruct a repetitious sequence than a
sequence without repetitions and one should expect that rep-
etitions lead to a lower quality of obtained results.

Some of studies related to the classical SBH take into
consideration multiple occurrences of l-mers in DNA se-
quences and examine their influence on the algorithm perfor-
mance, especially on the spectrum elements utilization and
the similarity of a reconstructed sequence to its real coun-
terpart. Błażewicz et al. compared in [17] a hybrid genetic
algorithm [18] and a tabu and scatter search algorithm [19].
Błażewicz et al. presented in [20] outcomes for the same tabu
and scatter search algorithm [19], a hybrid genetic algorithm
with isothermic libraries [21] and a revised hybrid genetic al-
gorithm with standard libraries [20]. Zhang et al. described
results of a branch and bound algorithm for the classical
SBH approach in [22] and the positional SBH in [16]. Note
that although all the above-mentioned works deal with the
repetitions in sequences they use the standard model of bi-
nary information about spectrum composition.

The idea to extend the classical sequencing by hybridiza-
tion with the information about repetitions was proposed by
Formanowicz [23]. The current development of the DNA
chip technology makes information about the intensity of
chip signals available. This information can be, at least to
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some extent, correlated with the number of repetitions of a
given oligonucleotide in a target DNA sequence. Unfortu-
nately, the intensity information is not very precise. The de-
termination of the exact number of occurrences of a given l-
mer becomes more difficult, the bigger the number of repeti-
tions is and the stronger the signal is. It is easy to distinguish
the signal coming from one occurrence and many occur-
rences. However, to differ the signal representing, for exam-
ple, six and seven occurrences may be very hard or even im-
possible. Nevertheless, even partial information about repe-
titions should be useful.

Taking into account the information about l-mers mul-
tiplicity requires distinguishing between four types of spec-
tra [23]. Let S(Q) denote a classical spectrum of a sequence
Q and Sis(Q) denote an ideal spectrum of this sequence.
The ideal spectrum Sis(Q) contains all and only these l-mers
which are a part of the sequence Q. However, the ideal spec-
trum is a set but not a multiset and each l-mer occurs in the
ideal spectrum once, even if it occurs in the sequenceQmul-
tiple times. The complete information about the composition
of the sequence Q is provided by the ideal multispectrum
Sim(Q).Such a multiset consists of all and only these l-mers
which are subsequences of length l of the sequence Q. Note
that the number of occurrences of a given l-mer in the ideal
multispectrum is equal to the multiplicity of this l-mer in the
sequence Q. The last type of spectra is a multispectrum of
the sequence Q denoted by Sm(Q). It may be affected by
hybridization errors so some l-mers which are a part of the
sequence Q may be missed. Moreover, the multispectrum
may contain some additional oligonucleotides which are not
subsequences of Q. Finally, let us define for every oligonu-
cleotide si ∈ Sm(Q) a parameter mi which is equal to the
number of occurrences of si in Sm(Q).

In [23], Formanowicz described two models of addi-
tional information about repetitions. According to the first
one, called “one and many”, there is available information if
a given l-mer occurs in a target sequence exactly once or
at least twice. In the second model, called “one, two and
many”, it is assumed that the results coming from the bio-
chemical experiment allow for distinguishing between one,
two and more than two occurrences of any oligonucleotide
in an analyzed DNA sequence. The current DNA chip tech-
nology justifies these assumptions and makes these models
of multiplicity information realistic. It is a common practice
to take into consideration such information in a gene expres-
sion analysis [24].

The variants of the classical SBH problem were refor-
mulated in [23] for both above models of information. The
considered problems include:

• problem without any errors,
• problem with negative errors resulting from repeti-

tions,
• problem with negative errors resulting from hybridiza-

tion,

• problem with negative errors of arbitrary types,
• problem with positive errors,
• problem with positive errors and negative once result-

ing from repetitions,
• problem with errors of arbitrary types.
In this paper only the most general problems with er-

rors of arbitrary types are presented. See [23] for definitions
of the other ones. The combinatorial problem related to the
classical SBH approach (no information about repetitions)
has already been formulated as Problem 1 and 2. Let us as-
sume that the additional multiplicity information according
to the model “one and many” is available. Then the combi-
natorial problem may be stated as follows:

Problem 5. Multiplicity information of the type “one and
many”
INSTANCE: set S(Q), length n of sequence Q, parameter
mi ∈ {1, 2} for every si ∈ S(Q).
ANSWER: sequence Q′ of length n containing at most one
occurrence of si if mi = 1 and at least one occurrence of si
if mi = 2. Moreover, Q′ can contain some l-mers which are
not elements of S(Q).

Assuming that one is able to obtain in the biochemical
experiment information of the type “one, two and many” the
sequencing problem may be defined as follows:

Problem 6. Multiplicity information of the type “one, two
and many”
INSTANCE: set S(Q), length n of sequence Q, parameter
mi ∈ {1, 2, 3} for every si ∈ S(Q).
ANSWER: sequence Q′ of length n containing at most one
occurrence of si if mi = 1, one or two occurrences of si
if mi = 2 and at least two occurrences of of si if mi = 3.
Moreover, Q′ can contain some l-mers which are not ele-
ments of S(Q).

Problems 5 and 6 may be transformed to a variant of the
traveling salesman problem (TSP). An instance of the clas-
sical TSP consists of a directed or undirected graph and a
cost defined for each: an arc (in the case of a directed graph)
or an edge (in the case of an undirected graph). The goal is
to find the lowest cost Hamiltonian cycle in the given graph.
In order to obtain a computational problem representing the
sequencing by hybridization with information about repeti-
tions, TSP has to be modified as follows. Firstly, the solution
to be found is a path instead of a cycle. The cost of the path
may not exceed a length n of a reconstructed sequence de-
creased by an oligonucleotide length l. Additionally, if the
first l-mer is a part of input data then the first node in the
path should be the one corresponding to the given oligonu-
cleotide. Moreover, some vertices may not be visited at all
and others may be visited more than once according to pa-
rameter mi.

If oligonucleotides from spectrum are represented by
nodes in a directed graph then the traveling salesman prob-
lem customized as described above corresponds to the SBH
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problem with additional multiplicity information. Cost cij of
an arc connecting nodes representing oligonucleotides i and
j depends on their overlapping. The cost is equal to their
length l decreased by the length of their common subse-
quence. For example, the cost of an arc from a node rep-
resenting oligonucleotide CGCTTA to a node representing
GCTTAT is equal to 1 because the sequences have com-
mon substring GCTTA of length 5.

The classical TSP is strongly NP -hard. The computa-
tional problem related to the classical SBH is also strongly
NP -hard [5]. The above variants of problems for sequencing
by hybridization with multiplicity information are strongly
NP -hard [23] too so there does not exist a polynomial time
exact algorithm to solve them (assuming P 6= NP ).

The additional information about repetitions may be
used also in the case of sequencing by hybridization with
isothermic libraries. The computational problems for this ex-
tension with the multiplicity information have been formu-
lated in [25].

V. 1. Algorithms for SBH problems with information
about repetitions

There exist results confirming usefulness of the addi-
tional information about repetitions and several algorithms
have been implemented. Most of them are heuristics because
of the time complexity of the computational problem.

V. 1. 1. Branch and bound algorithm

One exact algorithm has been proposed: a branch and
bound method [26] which solves the problem optimally. The
implementation takes into consideration negative errors of
arbitrary types and the multiplicity information model of the
type “one and many”. The algorithm explores the space of
all solutions and stores these which utilize all spectrum el-
ements and represent a sequence not longer than the ana-
lyzed one. It is verified if a given exploration path may lead
to a feasible solution. If not then it is terminated to reduce
the computation time. Subsequently, the stored solutions are
validated using the multiplicity information, i.e., each spec-
trum element should be used a given number of times. In-
consonant solutions are discarded. Finally, the set of stored
solutions is returned. Using multiplicity information leads to
a significantly reduced number of acceptable solutions.

V. 1. 2. Greedy algorithm

Another implemented algorithm is a greedy heuristic for
SBH with errors of arbitrary types [27]. It is able to use as
an input a multispectrum with multiplicity information of the
type “one and many” or “one, two and many”

The heuristic starts at an initial oligonucleotide and it it-
eratively extends a current solution by adding l-mers. A re-
constructed sequence cannot be longer than an analyzed one
of length n so the process stops when appending another

oligonucleotide violates the maximum length constraint. The
criterion to choose the next oligonucleotide is the cost of
overlapping of the last l-mer in the current solution and a
new one plus the smallest overlapping cost of the new one
and one of its possible successors. The next l-mer is cho-
sen from a set of oligonucleotides not used yet. For each
l-mer the number of occurrences in the current solution is
monitored. If it reaches the maximum value (mi, provided
as the parameter) then a given oligonucleotide is not taken
into consideration during selection any more.

The algorithm has been tested in a computational exper-
iment and the results have shown that even the partial multi-
plicity information leads to better sequence reconstruction,
i.e., it increases the alignment score. Moreover, using the
more precise model of multiplicity information “one, two
and many” enables to obtain slightly better results.

V. 1. 3. Tabu search algorithm

The performance of the greedy algorithm encouraged
its authors to implement a more sophisticated heuristic. A
tabu and scatter search algorithm has been proposed [28]. It
solves the problem with any kind of hybridization errors and
is able to take into account the multiplicity information mod-
els “one and many” and “one, two and many”. The input data
for the algorithm consist of the multispectrum (i.e., a multi-
set of oligonucleotides), a length of a target DNA sequence
and the first oligonucleotide of the target (optionally). The
global criterion function is the number of utilized oligonu-
cleotides. The goal of the algorithm is to maximize it and
compose a sequence not longer than the target. An initial so-
lution is obtained using the greedy algorithm and it is repre-
sented by an ordered list of oligonucleotides. The multiplic-
ity model determines both the minimum and the maximum
number of occurrences of a given oligonucleotide and this
constraint is satisfied at each stage of computation. Addi-
tionally, a DNA sequence corresponding to a current solution
can never be longer than the target.

This algorithm has been compared with several existing
ones. First, it has been compared with a previous implemen-
tation of tabu and scatter search for the classical SBH [19].
Spectra coming from sequences without repetitions have
been used but they have been affected by random positive er-
rors and negative errors to simulate the imperfect hybridiza-
tion experiment. The length of oligonucleotides in spectra
has been equal to 10. For the longest considered sequences
of length 500bp, the new algorithm solved optimally (i.e., it
used the maximum number of spectrum elements) 26 of 40
instances and the average solution similarity to an analyzed
sequence (i.e., average global alignment score) was 95.11%.
The corresponding values for the previous algorithm were
18 of 40 instances and 85.50%, respectively.

The next comparison utilized 59 real DNA sequences
of length 509bp with natural repetitions only. The number
of optimally solved instances for a hybrid genetic algorithm



Computational Aspects of DNA Sequencing by Hybridization – a Survey 265

[18], the old tabu and scatter search algorithm [19] and for
the new tabu and scatter search [28] were respectively: 26,
52 and 59 (the last one solved all instances optimally).

The tabu and scatter search using partial multiplicity in-
formation has been also compared to a revised hybrid genetic
algorithm [20]. A test set consisted of 40 human DNA se-
quences. They contained from 1 to 17 repetitions. In the case
of no hybridization errors, the new tabu and scatter search
generates significantly better results. It reconstructed per-
fectly (i.e. obtained solution the same as a target sequence)
23 instances and the average similarity was 93.62%. The re-
vised hybrid genetic algorithm solved perfectly 18 instances
and the average similarity was 90.99%. The algorithms were
also compared using spectra of the same sequences affected
by 5% random positive errors and up to 5% random nega-
tive errors simulating a biochemical experiment. In this case,
the new tabu and scatter search solved perfectly 19 instances
and the average similarity was 91.56%. The revised hybrid
genetic algorithm solved perfectly one instance less but the
average similarity was slightly higher (92.60%).

The impact of the multiplicity information on the results
generated by the tabu and scatter search algorithm has also
been checked. The computational experiment results confirm
that using even partial multiplicity information leads to im-
proved sequence reconstruction. Moreover, the more precise
model “one, two and many” enables to solve perfectly more
instances and the average similarity of obtained solutions is
higher in comparison with the model “one and many”.

V. 1. 4. Ant Colony Optimization algorithm

The last currently implemented algorithm for sequenc-
ing by hybridization with information about repetitions is an
ant colony optimization algorithm (ACO) [29]. This heuris-
tic is a probabilistic, iterative search for a path in a given
graph. It is based on ACO presented in [30]. It solves the
problem with any kind of hybridization errors and is able to
take into consideration the multiplicity information models
“one and many” and “one, two and many”. The ant colony
optimization algorithm outperforms the greedy algorithm.
Moreover, computational experiment results confirmed that
applying even partial multiplicity information leads to better
sequence reconstruction.

VI. RESEQUENCING

Another area where sequencing by hybridization has
been and is still being used is the resequencing, i.e., read-
ing DNA sequence under the assumption that some given
reference sequence is available. Such SBH approach has
also been used for the analysis of homologous sequences.
During the process of evolution the DNA of any species is
changing, yet the changes are very slight. Sequences which
evolved from the same ancestral sequence are very similar

to the source and thus are also alike to each other and they
are called homologous. For example, in the human genome
the forecast average number of differences in DNA coming
from two people is 1 per 100-300 base pairs. Such a vari-
ation occurring when a single nucleotide differs in DNA of
two individuals is called Single Nucleotide Polymorphism
(SNP). The homology phenomenon is not limited only to the
same species. The genome of different but phylogenetically
related species may also have homologous regions. The sim-
ilarity may be up to 100% in highly conserved segments. The
obtained chimpanzee genome is different by 1.23% com-
pared to the human genome only if direct sequence com-
parison is utilized [31].

VI. 1. Pe’er resequencing algorithm
Availability of the already sequenced DNA and its high

similarity to homologous counterparts encourage to develop
new sequencing methods. It is possible to use a known
DNA sequence to determine the homologous one. The main
contribution of applying homologous information should be
more unambiguous solutions. This idea was utilized by Pe’er
et al. to develop a polynomial dynamic programming algo-
rithm [32, 33].

In the classical SBH a signal from a DNA chip is con-
verted into binary information about spectrum composition.
Pe’er et al. applied a stochastic signal quantification. They
define two probabilities for each spectrum element si, i.e.
probability P1(si) that a given oligonucleotide is a part of an
analyzed sequence and probability P0(si) that it is not a part
of the sequence. The output of the biochemical experiment is
probabilistic spectrum (PS) as a result. One should note that
the classical spectrum is a set of l-mers. The probabilistic
spectrum is a pair (P0, P1) of functions Pi : ΣlDNA 7→ [0, 1],
where l is the length of oligonucleotides. Note that these
functions are defined over a full oligonucleotide library.

Pe’er et al. modeled the resequencing problem using the
de Bruijn graph G(V,E), where vertices are labeled by all
(l−1)-mers. Each oligonucleotide si = 〈si1si2 . . . sil〉 from
the library is represented by arc ei = (v′, v) which connects
two vertices v′ = 〈si1si2 . . . sil−1

〉 and v = 〈si2si3 . . . sil〉.
Weight w(ei) of arc ei representing si is related to the prob-
abilities P0(si) and P1(si) and it is equal to log2

P1(si)
P0(si)

. A
sequence of length n is represented by a path in G of length
n− l + 1.

Obtained sequence Q is evaluated by the score which
consists of two elements, the so called experimental like-
lihood computed for Q and homology information which
represents the probability of a mutation on a given posi-
tion in comparison with a homologous sequence. Details
about such scoring function is given in [32]. Calculating only
the optimal score requires memory space O(|V |). However,
in order to reconstruct the corresponding sequence trace
back pointers for the full n × |V | matrix have to be stored.
Pe’er et al. presented in [32, 33] how to reduce the required



266 K. Kwarciak, M. Radom, P. Formanowicz

space to O(|V |) by increasing time complexity by the factor
O(log n).

It should be noted that authors assumed utilization of
standard DNA chips which can be mass produced. The cost
of the biological experiment to obtain hybridization data are
reduced in comparison to other SNP detection methods us-
ing special purpose chips [34, 35]. The use of universal DNA
chips raise an issue. The number of probes on a chip of this
type increases exponentially with the probe length. A DNA
chip containing the full oligonucleotide library of length 9
consists of 49 ≈ 2.6 · 105 probes. The development of
the DNA chip technology enables to create a chip of this
size [36, 37], but a cost-effective approach should utilize a
significantly smaller one.

Pe’er at al. validated their approach by performing sev-
eral biochemical experiments which utilized a library of all
5-mers [38]. However, if shorter oligonucleotides are used
then experiment results are less specific and more noisy.
They overcome these obstacles, at least partially, by applying
the polymerase signaling assay (PSA) [39] instead of simple
hybridization. PSA is a more sophisticated method and uses
enzymatic discrimination, based on single-nucleotide primer
extension, to identify oligonucleotides which are a part of a
target sequence. The results of the experiment performed by
Pe’er at al. presented in [38] shows that their method en-
ables to successfully resequence in practice targets of length
ca. 100 bp.

VI. 2. Shotgun SBH
Another approach to resequencing was proposed by Pih-

lak at al. [2]. Authors named their method shotgun sequenc-
ing by hybridization (shotgun SBH). It also utilizes the in-
formation about spectrum composition, but these data are
obtained in a completely different way. The main difference
lies in DNA chip composition. In the classical SBH approach
it consist of l-mers representing elements of a oligonu-
cleotide library and is put into a solution of fluorescent or ra-
dioactively labeled target DNA. In the case of shotgun SBH,
a chip contains fragments of a target DNA sequence and is
placed in contact with labeled probes being oligonucleotides
of length 5 (pentamers). Shorter probes would have difficul-
ties to hybridize properly, and longer ones would require a
much larger probe set [2].

A chip used in a biochemical experiment of shotgun SBH
is created as follows. In the beginning a DNA sequence is
randomly fragmented and single-stranded subsequences of
length 200bp are isolated. Every fragment is concatenated
with a 50bp universal linker and formed as a closed circular
molecule. The universal linker is used to bind the circle into
a chip surface. Subsequently, in-situ rolling-circle amplifi-
cation (RCA) is performed. As a result, the chip contains
many tandem-repeated copies of a given feature which form
loosely coiled balls.

In the classical approach, signals related to all probes are
captured at once. Melting temperature of particular l-mers is

different so adjusting experiment conditions is a challenge.
Shotgun SBH tackle this issue. For the hybridization experi-
ments on the DNA fragments, a set of 582 pentamer probes
has been developed. As the authors explained, the DNA frag-
ments were to be obtained from both strands of the genome,
therefore, half of all 1024 possible pentamers sufficed to tile
the reference genome at every position on either strand. A
full set of probes consists of 512 pentamers plus additional
70 special-purposes probes. A hybridization experiment is
performed independently for each probe si from the set so it
is possible to optimize hybridization temperature according
to a given l-mer.

In short, the shotgun SBH method proposed in [2] con-
sist of four steps:

1. In situ rolling-circle amplification of circular single-
stranded DNA fragments.

2. For each feature F (a small fragment of single-
stranded DNA), spectrum S(F ) is generated by se-
quential hybridization of each probe independently.

3. Alignment of the spectra to reference sequence H .
4. Reconstruction of a target DNA using reference se-

quence H and the aligned spectra.
Pihlak et al. validated their approach in practice. They

performed an experiment using a library of 5-mers to rese-
quence 48.5kbp Bacteriophage λ genome and 4.6Mbp Es-
cherichia coli genome. The results outperformed the clas-
sical methods - shotgun SBH decoded correctly in the first
case ca. 96% of the analyzed genome and ca. 80% in the
second case [2].

As a result, shotgun SBH provides a sequenced genome
of a given individual. In particular, it identifies occurrences
of single nucleotide polymorphisms (SNPs), i.e. variations
in comparison to an already sequenced genome of another
member of a species. These variations in human DNA in-
fluence how humans develop diseases and respond to drugs,
vaccines, etc., so this information has very important prac-
tical applications in medicine. It may be used, for example,
to:
• resequence bacterial or viral genome to identify drug

resistance,
• identify SNP (Single Nucleotide Polymorphism) re-

sponsible for genetic diseases to enable medical diag-
nostics and prognostics,
• realize the concept of personalized medicine.

A resequencing platform may also be used to validate se-
quences which have already been determined. If a given
DNA has been properly sequenced then resequencing it
should produce the same result.

VII. NON-CLASSICAL SEQUENCING BY
HYBRIDIZATION

One of the proposed ways to improve the efficiency of
the original SBH methodology is the idea to modify the
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DNA chip itself. Some different definitions of probes have
been proposed. Classical DNA chips contain a number of
cells where oligonucleotides are attached. These cells are
probes and each of them contains a huge number of oligonu-
cleotides of the same type, i.e. each probe is composed of
many copies of same short single stranded DNA fragment.
Every probe contains different oligonucleotides but all of
them are of the same length. The probe is marked in the hy-
bridization experiment when its oligonucleotides hybridize
to the analyzed DNA. In many non-classical DNA sequenc-
ing chips one probe can be composed of many different types
of oligonucleotides. The probe is then described by a spe-
cific pattern which defines what types of oligonucleotides
compose it.

In the paper [40] Pevzner and Lipshutz have introduced
three different non-classical DNA sequencing chips called
Binary, Gapped and Alternating chip. The main reason for
such a proposal has been to present chips that are able to un-
ambiguously sequence longer DNA fragments that the clas-
sical SBH approach can. Any DNA sequencing chip can be
described by a so called branching probability, which de-
fines the probability of ambiguously extending a random n-
sequence upon reconstruction with a spectrum coming from
a specific biochip. The greater the branching probability is,
the shorter DNA sequence can be unambiguously recon-
structed. Three proposed chips in [40] have smaller branch-
ing probability than classical chips having the same number
of probes. Each of those chips uses a so called unspecific nu-
cleotide which can bind to more than one natural nucleotide
described by a set ΣDNA = {A,C,G, T}. An alternating
chip uses an unspecified nucleotide denoted as X that can
bind with any natural nucleotide from ΣDNA. Chip capacity
tells us how many probes the chip has. The total capacity of
the alternating chip is ||Calt(k)|| = 2 · 4k. The chip is com-
posed of all probes of two types, which can be described by
the following general patterns:

N1XN2X...XNk and N1XN2X...XNk−1Nk (1)

The number of X symbols is equal to k − 1 for the first
type of probes and k − 2 for the second type. In both types
of probes the number of known nucleotides denoted above
as N (N ∈ ΣDNA) is equal to k.

The next proposed chip has been called Gapped chip. It
utilizes the same non-specific x nucleotide, but within a dif-
ferent pattern:

N1N2...Nk and N1N2Nk−1... XX...X︸ ︷︷ ︸
k−1

Nk (2)

The total capacity ||Cgap(k)|| = 2 · 4k is the same as
previously for the alternating chip. The third proposed chip
is called Binary chip. The pattern describing its two halves
is as follows:

{W,S}, {W,S}, ..., {W,S}︸ ︷︷ ︸
k

, N

and

{R, Y }, {R, Y }, ..., {R, Y }︸ ︷︷ ︸
k

, N

(3)

where W, S, R and Y are two-letters sets such that W =
{A, T}, S = {C,G}, R = {A,G}, Y = {C, T}, N ∈
ΣDNA. Such two-element sets define their complementary
nucleotides from ΣDNA, e.g. W elements are complemen-
tary to T and A, respectively, while R elements to T and C.
Binary chip capacity is defined as ||Cbin(k)|| = 2 · 2k · 4.

Such chips can have fewer probes compared to their
classical counterparts in order to unambiguously sequence
a given DNA fragment, but every probe can hybridize to
more than one fragment of the DNA. The probe itself is de-
scribed by a pattern which defines the set of oligonucleotides
composing it. This can be achieved in two ways. First, one
can put more than one type of oligonucleotide in a single
probe, in order for the probe to be complementary to a given
set of DNA fragments. There is, however, a problem with
the strength of the hybridization signal, i.e., the more types
of different oligonucleotides are in a single probe, the more
difficult it is to detect such a hybridization event. In the clas-
sical SBH each probe consists of multiple copies of exactly
one type of oligonucleotide. In order to simulate non-specific
nucleotides behavior, many different oligonucleotides can be
used within a single probe. For example, if the probe is de-
noted WA in the Binary chip and W = {A, T}, within
such a probe two short oligonucleotides can be placed: AA
and TA. However, due to technical difficulties, putting so
many different oligonucleotides within a single probe weak-
ens the hybridization signal during the hybridization experi-
ment. Two algorithms have been proposed for Gapped chip
[41] and recently for the Alternating chip data [42].

Another approach uses degenerate or universal bases as
the building blocks of the oligonucleotides. The universal
bases can (theoretically) bind to every natural nucleotide in
the DNA. The degenerate bases are complementary to more
than one type of nucleotide but not to all of them. Such artifi-
cial nucleotides have already been developed, but using them
in the SBH methodology is uncommon [43, 44]. Such an ap-
proach has been proposed and analyzed in a different scien-
tific papers, for example in [45] where different chip idea has
been proposed and its properties analyzed. The algorithm for
the DNA reconstruction basing on such an idea has been pro-
posed in the same paper. In [46] there is an extensive analysis
of the universal and so called semidegenerate bases. Authors
present the results of various experiments and the analysis of
the practical behavior of universal bases. The semidegener-
ate nucleotide idea is proposed in the same paper, basing on
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the energy of the binding process in the hybridization phase.
At the end of the paper algorithmic considerations are pro-
posed. As for the Binary chip mentioned earlier, its idea has
been also discussed in [47] by Sachadyn and Kur, where au-
thors proposed yet another approach called sequencing by
hybridization with oligonucleotides matrix.

VII. 1. Isothermic oligonucleotide libraries
In the hybridization experiment DNA fragments bind

with the probes on the surface of a microarray. When such an
experiment is considered, the process of DNA denaturation
must be taken into account. Such a process takes place in
the sufficiently high temperature and, in general, the longer
the double helix, the more energy is necessary to achieve the
denaturation. The melting temperature is the basis for an-
other approach to construct DNA chips. Isothermic oligonu-
cleotide libraries consist of oligonucleotides having differ-
ent length but the same melting temperature. In order to
construct such a library, a numerical value (a temperature)
is assigned to each nucleotide. It corresponds to the incre-
ment which a particular nucleotide brings into the stability
of oligonucleotide duplexes. In [48] a value equal to 2 is as-
signed to A and T nucleotides, a value equal to 4 to the C
and G ones. This is a very simple thermodynamic model;
however, previously none have been taken into account. A
single isothermic library consists of oligonucleotides with
the same melting temperature, which is a sum of degrees as-
signed to each nucleotide in the oligonucleotide. Obviously,
such a library contains oligonucleotides of various length.
In the classical SBH, the libraries of oligonucleotides of a
given length are used, so their melting temperatures are dif-
ferent. Therefore, it is difficult to set the conditions of the
biochemical experiment such that all the oligonucleotides
create stable duplexes. This issue influences the number of
hybridization errors: in general, isothermic libraries allow
to decrease the number of hybridization errors. Because the
DNA binding is more stable, the hybridization signal from
a probe is stronger, which allows to create a spectrum with
fewer hybridization errors than in the classical SBH experi-
ment. The present paper has proved an important claim that
it is always possible to cover the DNA sequence with the
probes from two isothermic libraries having melting tem-
perature which differ by two degrees. This allows to cover
the sequence in such a way that two consecutive oligonu-
cleotides from the libraries have starting points shifted by
one position at most. In [48] the isothermic oligonucleotide
libraries are studied and their various properties are being an-
alyzed. The sequencing problem with and without errors for
such libraries are formulated and followed by the complex-
ity and computational results. For example, a proof of NP-
completeness for a decision version of an isothermic SBH
with positive and negative errors problem is given. Search
versions of various isothermic SBH problems depending on
the type of errors are also formulated and discussed. For
the problem without errors a polynomial time algorithm has

been proposed in [49].
In [50] a new sequencing algorithm for the isothermic

oligonucleotide libraries has been introduced, basing on the
tabu search approach. The proposed algorithm deals with
both types of hybridization errors, the negative and posi-
tive ones. Various experiments have been performed using
DNA sequences obtained from GenBank, with percentage
of errors in a spectrum set to 5%, 10% and 20%. Libraries
with melting temperatures equal to 26/28 and 36/38 de-
grees, have been tested. The smaller ones, with tempera-
tures equal to 26 and 28 degrees have similar cardinality as
one classical library with oligonucleotides length equal to
10, which allows for comparison of the results for different
libraries. Such an isothermic library for smaller sequences
(200bp) allows reconstruction having almost 100% similar-
ity to the original one if no more than 10% of errors of both
types (positive and negatives) are present in the spectrum. If
the number of errors is equal to 20% the similarity remained
quite high - 93.25%. For longer sequences (600bp) similar-
ity is between 81.88% and 76.47% depending on the number
of errors. When larger isothermic libraries have been used,
even for the long sequences and high rate of errors the simi-
larity has been greater than 93%. The decrease of the quality
has been less than 1.5% between two cases of hybridization
errors rate: 5% and 20%. It should be stressed again that
the purpose behind creating the isothermic libraries lies in
the reduction of the hybridization errors. It means that a real
experiment should have fewer hybridization errors than the
theoretical levels used for computation purpose.

An interesting approach has been introduced in [51].
It joins isothermic libraries with a method described ear-
lier: the multistage hybridization. Each method is resilient to
a specific type of hybridization errors and more vulnerable to
others. Hybridization in rounds tends to eliminate influence
of substrings repetitions (i.e., of negative errors from repe-
titions) on the quality of obtained solutions, but it is quite
susceptible to “normal” hybridization errors, especially neg-
ative errors resulting from imperfectness of probe detection
technology. On the other hand, as it has been previously de-
scribed in detail, isothermic libraries reduce such hybridiza-
tion errors by taking into account the melting temperature in
the hybridization experiment. The combined approach aims
to be more efficient in handling both types of errors in a spec-
trum. The algorithms for the DNA sequence reconstruction
and for the isothermic libraries creation for a multistage ap-
proach are proposed and extensively described, forming the
so called multistage isothermic SBH approach.

VIII. SUMMARY

Sequencing by hybridization can be currently considered
as a rather old sequencing method, yet it is still used for
some specific tasks like, e.g., medical diagnosis, where at
a low cost it can provide valuable data for diagnostic pur-
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poses. However, even larger scale sequencing can be done
using modified SBH approaches, as proved by recent and
older publications. From the computer science perspective
there are a lot of interesting combinatorial problems which
appear in the computational phase of different variants of
SBH. Finally, new algorithms for various SBH methods are
still being proposed and the results often show that in some
specific areas sequencing by hybridization can still be con-
sidered as a useful method of reading DNA sequences.
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[5] J. Błażewicz and M. Kasprzak, Complexity of DNA sequenc-
ing by hybridization, Theoretical Computer Science 290(3),
1459–1473 (2003).

[6] P. Pevzner, l-tuple DNA sequencing: a computer analysis,
Journal Of Biomolecular Structure & Dynamics 7, 63–73
(1989).
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quencing by hybridization via genetic search, Operations Re-
search 54(6), 1185–1192 (2006).

[22] J.-H. Zhang, L.-Y. Wu, X.-S. Zhang, Reconstruction of DNA
sequencing by hybridization, Bioinformatics 19(1), 14–21
(2003).

[23] P. Formanowicz, DNA sequencing by hybridization with ad-
ditional information available, Computational Methods in
Science and Technology 11(1), 21–29 (2005).

[24] M. Schena, Microarray Analysis. Hoboken, New Jersey:
Wiley-Liss, 2003.

[25] P. Formanowicz, Isothermic sequencing by hybridization
problems with information about repetitions, Electrical Re-
view 9, 103–107 (2008).

[26] K. Kwarciak, M. Radom, P. Formanowicz, DNA sequenc-
ing with negative errors and information about repetitions,
Zeszyty Naukowe Politechniki Śląskiej: Automatyka 151,
215–222 (2008).

[27] K. Kwarciak and P. Formanowicz, A greedy algorithm for the
DNA sequencing by hybridization with positive and nega-
tive errors and information about repetitions, Bulletin of the
Polish Academy od Sciences, Technical Sciences 51(1), 111–
115 (2011).

[28] K. Kwarciak and P. Formanowicz, Tabu search algorithm for
DNA sequencing by hybridization with multiplicity informa-
tion available, Computers and Operations Research 47, 1–10
(2014).

[29] K. Kwarciak, M. Radom, P. Formanowicz, A multilevel ant
colony optimization algorithm for DNA sequencing by hy-
bridization with multiplicity information available. in press,
2015.

[30] C. Blum, M.Y. Vallès, M.J. Blesa, An ant colony optimization
algorithm for DNA sequencing by hybridization, Computers
and Operations Research 35(11), 3620–3635 (2008).

[31] The Chimpanzee Sequencing and Analysis Consortium, Ini-
tial sequence of the chimpanzee genome and comparison with
the human genome, Nature 437, 69–97 (2005).

[32] I. Pe’er and R. Shamir, Spectrum alignment: Efficient rese-
quencing by hybridization, in Proceedings of the Eighth In-
ternational Conference on Intelligent Systems for Molecular
Biology, pp. 260–268, AAAI Press, 2000.

[33] I. Pe’er, N. Arbili, R. Shamir, A computational method for
resequencing long DNA targets by universal oligonucleotide
arrays, Proceedings of the National Academy of Sciences,
vol. 99, no. 24, pp. 15492–15496, 2002.

[34] M. Cargill, D. Altshuler, J. Ireland, P. Sklar, K. Ardlie,
N. Patil, C.R. Lane, E.P. Lim, N. Kalyanaraman, J. Nemesh,
L. Ziaugra, L. Friedland, A. Rolfe, J. Warrington, R. Lip-
shutz, G.Q. Daley, E.S. Lander, Characterization of single-
nucleotide polymorphisms in coding regions of human genes,
Nature Genetics 22, 231–238 (1999).



270 K. Kwarciak, M. Radom, P. Formanowicz

[35] J.G. Hacia, Resequencing and mutational analysis using
oligonucleotide microarrays, Nature Genetics 21, 42–47
(1999).

[36] K.L. Gunderson, X.C. Huang, M.S. Morris, R.J. Lipshutz,
D.J. Lockhart, M.S. Chee, Mutation detection by ligation to
complete n-mer DNA arrays., Genome Res 8(11), 1142–
1153 (1998).

[37] N.J. Haslam, N.E. Whiteford, G. Weber, A. Prugel-Bennet,
J.W. Essex, C. Neylon, Optimal probe length varies for tar-
gets with high sequence variation: Implications for probe li-
brary design for resequencing highly variable genes, PLOS
One 3(6), e2500 (2008).

[38] I. Pe’er, N. Arbili, Y. Liu, C. Enck, C.A. Gelfand, R. Shamir,
Advanced computational techniques for re-sequencing DNA
with polymerase signaling assay arrays, Nucleic Acids Re-
search 31(19), 5667–5675 (2003).

[39] M.T. Boyce-jacino, M.B. Addelston, S.R. Head, Poly-
merase signaling assay, http://www.freepatentsonline.com/
6872521.html, March 2005.

[40] P. Pevzner and R. Lipshutz, Towards DNA sequencing chips,
Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science 841, 143–158
(1994).

Symposium on Mathematical Foundations of Computer Sci-
ence 841, 143–158 (1994).

[41] M. Radom and P. Formanowicz, Algorithms for sequencing
by hybridization problems based on non-classical DNA chips,
Przeglad Elektrotechniczny 10, 97–100 (2010).

[42] M. Radom and P. Formanowicz, An algorithm for sequencing
by hybridization based on an alternating DNA chip, Compu-
tational Biology and Chemistry 10(3), 67–78 (2018).

[43] P. Zhang, M. Egholm, N. Paul, M. Pingle, D. Bergstrom,
Peptide nucleic acid-DNA duplexes containing the universal
base 3-nitropyrrole, Methods 23, 132–140 (2001).

[44] K. Too and D. Loakes, Universal Base Analogues and their
Applications to Biotechnology. Wiley-VCH Verlag GmbH
and Co. KGaA, 2008.

[45] A. Frieze, F. Preparata, E. Upfal, Optimal reconstruction of a
sequence from its probes, Journal of Computational Biology
6, 361–368 (1999).

[46] F. Preperata and J. Oliver, DNA sequencing by hybridization
using semi-degeneratae bases, Journal of Computational Bi-
ology 11, 753–765 (2004).

[47] P. Sachadyn and J. Kur, Reducing the number of microlo-
cations in oligonucleotide microchip matrices by the appli-
cation of degenerate oligonucleotides, Journal of Computa-
tional Biology 197, 393–401 (1999).
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