
CMST 24(4) 235–247 (2018) DOI:10.12921/cmst.2018.0000054

From the Dynamic Lattice Liquid Algorithm to the Dedicated
Parallel Computer – mDLL Machine

Jarosław Jung1, Rafał Kiełbik2, Kamil Rudnicki2,
Krzysztof Hałagan1, Piotr Polanowski1, Andrzej Sikorski3*

1Department of Molecular Physics, Technical University of Łódź
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Abstract: The designing, production and testing of the mDLL machine led to the development of such a structure in which
operational cells (e.g. KDLL) were located in the nodes of a three-dimensional torus network and the device was scalable.
Thus, the future expansion of this device with additional Printed Circuit Boards (PCB) will not result in lengthened wire
connections between Field-Programmable Gate Arrays (FPGA) or slow down the operation of the machine. The conducted
tests confirmed the correctness of the adopted design assumptions and showed that by using mDLL one can effectively
perform molecular simulations. Despite some structural shortcomings, the mDLL machine was a prototype that has already
been sufficiently tested to allow the technology used in it to be used to build a device with a number of 1 million to 5 million
KDLL cells. Such a device would already be suitable for simulating multi-particle systems with unprecedented speed.
Key words: Field Programmable Gate Array, topology of the network connections, parallel data processing, molecular
simulations.

I. INTRODUCTION

Comprehensive computing systems such as computer
clusters or supercomputers are very often used to simulate
phenomena occurring in complex molecular systems [1-3].
However, the possibilities offered by computer simulations
are subject to very important limitations. One of them is
the small size of the simulation space. For smaller systems,
this limitation results from finite memory resources and the
number of simultaneously operating computing units. In the
case of supercomputers that allow tests of objects containing
a large number of elements, the limitation is related to the

possibility of simulation in a “reasonable time” – that is, not
exceeding a duration of a few to a dozen or so months of
continuous system operation.

The paper presents the construction of a scalable mDLL
machine containing operational cells (KDLL) [4] placed in
the nodes of a face-centered cubic lattice (FCC) forming a
three-dimensional torus [5]. The device is designed to per-
form molecular simulations using the dynamic lattice liquid
algorithm (DLL) [6-7]. mDLL is a development of the con-
cept of a DLL machine built earlier at the Łódź University of
Technology.
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Fig. 1. The planes for the FCC network in which the KDLL op-
erational cells in the DLL machine were placed along with the
connection network. The planes in which the closest neighbors of
the KDLL cell were located (A); network nodes lying in one plane,
included in 3 integrated circuits U11, U12 and U13 (B); connections
between KDLL cells (C); the colors are marked with the following
planes: P1 – dark gray “behind the page”, P2 – black ‘in the plane of
the page’ and P3 – light gray ‘before the card’ (C); the numbering

of network nodes of RCL in FPGA (D)

In the DLL machine described in Ref. [8-10], on 6 PCBs
(in the Printed Circuit Board), three FPGAs (in the field-
programmable gate array) were placed each containing 12
KDLL operational cells (Fig. 1B). KDLL cells implemented
in FPGAs were located on virtual planes in nodes of the tri-
angular network with coordination number 6 (Fig. 1A). For
each implemented KDLL cell, 6 pins arranged on PCBs were
assigned, and the remaining connections (2 times for 3 con-
nections to KDLL cells placed on neighboring planes) were
realized by means of cables (Fig. 1A and Fig. 1C). Together
with the operating control systems, the DLL machine was a
closed spatial structure.

However, the topological solution used in the DLL ma-
chine had the following significant disadvantages:

1. the machine was non-scaled – it could not be expanded
by a larger number of KDLL cells,

2. the adopted data transmission system between KDLL
cells, due to the limited number of soldering terminals
in FPGAs, made it impossible to place more than a
dozen KDLL cells in one FPGA chip,

3. it was necessary to make the configuration of FPGAs in
three ways. This resulted from a different topology of
the input-output lines for the three neighboring planes.
Each of the planes was shifted relative to the neigh-
boring one by one-half node of the triangular network
(representation of planes P1, P2 and P3 in Figs. 1A or
1C). The numbering of network nodes of reduced cubic
lattice (RCL) in FPGA is presented in Fig. 1D.

Based on the research already done on the DLL machine
and the analysis of its future applications, three key conclu-
sions have been drawn. These conclusions are the basis for
taking the action to build a new device (with the working
name mDLL). The conclusions were the following:

1. a scalable mDLL machine containing the same operat-
ing cells as in the DLL machine with KDLL placed in
FCC nodes in a three-dimensional torus system has to
be designed,

2. a new data exchange system between neighboring
PCBs containing FPGAs has to be developed and tested
because at least several dozen KDLL operational cells
can be implemented in the latest FPGA chips,

3. at least one scalable module surrounded by 26 simi-
lar modules in order to check the new data exchange
system has to be introduced,

4. PCBs have to be spatially fixed in such a way that the
device, which will contain at least 1 million KDLL
cells necessary to simulate the dynamics of molecules
in complex molecular liquids can be created in the
future.

II. SPATIAL STRUCTURE
OF THE MDLL MACHINE

The work on the construction of the mDLL machine
started with the analysis of the FCC network topology and the
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data exchange system between KDLL cells. It was assumed
that the planes would intersect nodes in a different way than
shown in Fig. 1. The FCC network nodes were every second
node of the RCL, for which the distance between nodes was
as ax/2, and the FCC network was as if “immersed” in RCL
networks (Fig. 2A).

Fig. 2. Reduced cubic network RCL (A); straight plane (B); and
turned (C). Indexes i, j, k indicate the location of nodes in the RCL

network

The analysis of the FCC network fragment presented in
Fig. 2A shows that two types of parallel planes could be
distinguished, alternating with each other, on which the FCC
network nodes are located. The first plane (hereinafter re-
ferred to as the straight plane) is spanned on 5 nodes with
coordinates (i− 1, j + 1, k), (i+ 1, j + 1, k), (i+ 1, j − 1,

k), (i − 1, j − 1, k) and (i, j, k). The second type of plane
(hereinafter referred to as the rotated plane) is stretched on 4
nodes with coordinates (i, j + 1, k − 1), (i+ 1, j, k − 1), (i,
j − 1, k − 1) and (i− 1, j, k − 1) (the same plane contains
points (i, j + 1, k + 1), (i + 1, j, k + 1), (i, j − 1, k + 1)
and (i− 1, j, k + 1)). Figs. 2B and 2C present the difference
between straight and rotated planes. Figs. 2B and 2C show
that the rotated plane is a straight plane offset by one node of
the reduced RCL network. In the further part of the work, we
call a straight plane in which the first point in the upper left
corner (i = 1 and j = 1) will contain the FCC network node.
Otherwise, a plane will be called the rotated plane.

KDLL cells in each FPGA system were assigned to po-
sitions in every second α · β · η of the virtual nodes (imple-
mented in the FPGA system) of the RCL network (Fig. 3 and
Tab. 3). For an even number of network nodes, the number of
cells contained in the logic was αβγ/2, and when the num-
ber was odd, the number of these cells was (αβη/2)− 1 or
(αβη/2) + 1. In order to implement KDLL operational cells
in FPGAs the topology of the RCL network inscribed in these
systems had to be defined. It was also necessary to determine
the number of lines needed for the data exchange between
neighboring FPGAs in specific space directions. Depending
on whether the number of rows β and columns α were even
or odd, there were 4 pairs of complementary systems with
different communication directions [9, 11]. These systems
were arranged alternately on the plane and constituted pairs,
hereinafter referred to as complementary pairs, in which sys-
tems marked with the letter P were called basic ones, and the
U systems were called complementary ones.

Fig. 3. The network of 157 cells placed in every second RCL net-
work’s node. The letter P denotes basic circuit, and the letter U
supplementary circuit (A). The directions of communication for the
complementary system (basic and supplementary planes). Wheels
with cross indicate the direction of backward communication (“be-
hind a paper sheet”), and circles with a dot indicate the forward
direction (‘before the paper sheet’); squares with cross or dot are the

backward and forward oblique directions, respectively (B)
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Fig. 3 shows an example of the arrangement of 3 surface
fragments: two straight lines and one rotated line covered by
one FPGA system containing 30 operational cells located at
the reduced ZSK network nodes. The system contains α = 4
columns, β = 5 rows and η = 3 levels. On the planes marked
with k − 1 and k + 1 indices there are layers P1 and P3 of
the FPGA chip, in which the directions of communication
with neighboring cells in these planes correspond to the basic
layout for α even and β odd.

In the third dimension (along the z axis), as well as for
two dimensions (in the x, y plane), there are 4 possibilities
of mutual arranging of the planes (depending on the parity α
and β) in which there are pairs of straight and rotated planes.
For each combination of plane pairs, they are always in front
of each other the basic layout for α even and β odd (Tab. 1).
In the selected direction the number of these lines, marked
with symbol, LX,Y,Zx,y,z , is:

Ω
α,β,η L

X,Y,Z
x,y,z (i, j, k) = Π ·Θ (1)

where:
1. X , Y , Z define spatial directions and take binary val-

ues (e.g., X = 1 and X̄ = 0 – data sent, or X = 0 and
X̄ = 1 – data not sent in the direction of the X axis),

2. x, y and z (divalent variables: -1 or 1) inform in which
direction data is sent/received along the X, Y and Z
directions (see inset to Fig. 4),

3. indices i and j are line and column numbers, and the
index k is the number of the plane in which the FPGA
is located (Fig. 3),

4. Ω is equal to 1 when the device is a simple machine
(FPGA is in the upper left corner of the first plane for
i = 1, j = 1 and k = 1 or Ω is equal to −1 for the

rotated machine (when the upper left corner of the first
plane does not contain a logic).

5. α, β, η indicate the number of ZSK network nodes
included in the FPGA system counted in the x, y and z
axis directions (Fig. 3).

The six-dimensional, linear vector Π defines the direc-
tions in space and is given by the formula:

Π =
[
XY Z XY Z XY Z XY Z XY Z XY Z

]
(2)

A six-dimensional, columnar vector Θ, whose elements
depend on the number of nodes (α, β, η) of the RCL network
contained in the FPGA and on the parameters’ parity, α, β
and η is described by the equation:

Θ =



2ηβ − η − β
2αη − α− η
2αβ − α− β

1
2
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(3)

The variables highlighted by arrows pointing left, right or in
both two sides correspond to natural numbers s and they take
the values -1, 0 and 1 according to the following definition:

s
←

=
1− (−1)

s

2
; s
→

=
1 + (−1)

s

2
; s
↔

= (−1)
s (4)

The DLL and mDLL machines were designed in such
a way that FPGAs simultaneously receive and send data to

Fig. 4. Directions of data exchange for one FPGA. The insert determines the orientation of the coordinate axes in space
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neighbors and, therefore, two signal lines are assigned to each
direction. Thus, the number of pins from each FPGA inte-
grated circuit (number of solder terminals) needed to connect
KDLA cells to neighboring cells in other FPGAs on neigh-
boring PCBMs is equal to 2 · LX,Y,Zx,y,z . Eq. (1) determines the
number of these leads. Tab. 2 presents the results of calcula-
tions for 12 cells implemented in one FPGA (α = 12, β = 2,
η = 1) (as it was done in the DLL machine described in [8-9])
and for the case of 100 cells implemented in one layout. The
data presented in Tab. 2 show that the number of pins and the
number of signal wires per one FPGA system containing 12
cells enables the execution of a machine with a connection
topology similar to that in the DLL machine [8-9]. However,
if the number of implemented cells reaches the value of 100
or more, then it is impossible to build a machine in which the
cells are connected directly via signal lines. This is due to
two factors:

1. the number of needed leads would be greater than the
number of available soldering tips in one integrated cir-
cuit (e.g., OSERDES and ISERDES blocks available

in FPGA systems, which allow for LVDS transmission
(in Low-Voltage Differential Signaling)),

2. the number of cables distributed between the plates
would be too great for the machine to operate at a
satisfactory level of reliability.

Fig. 5. The reduced communication channels between FPGAs

Tab. 1. Four possibilities for the arrangement of planes (depending on the parity of α or β), in which there are pairs of regular and rotated
planes

α β regular plane rotated plane

odd odd

even odd

odd even

even even



240 J. Jung, R. Kiełbik, K. Rudnicki, K. Hałagan, P. Polanowski, A. Sikorski

Tab. 2. An example of calculations for the number of bits of information grouped into 6 communication channels designed for serial data
transfer to operation cells (bit by bit) implemented within neighboring FPGAs

The direction of data exechange Direction of communication channels The number of direction lines for FPGA

α.β · η/2 = 12 α.β · η/2 = 100

XY Z
x = 1 1

12,2,1L
1,0,0
1,y,z (3, 3, 3) = 1 1

5,5,8 L
1,0,0
1,y,z (3, 3, 3) = 67

x = −1 1
12,2,1L

1,0,0
−1,y,z (3, 3, 3) = 1 1

5,5,8 L
1,0,0
−1,y,z (3, 3, 3) = 67

XY Z
x = 1 1

12,2,1L
1,0,0
x,1,z (3, 3, 3) = 11 1

5,5,8 L
1,0,0
x,1,z (3, 3, 3) = 67

x = −1 1
12,2,1L

1,0,0
x,−1,z (3, 3, 3) = 11 1

5,5,8 L
1,0,0
x,−1,z (3, 3, 3) = 67

XY Z
x = 1 1

12,2,1L
0,0,1
x,y,1 (3, 3, 3) = 34 1

5,5,8 L
0,0,1
x,y,1 (3, 3, 3) = 40

x = −1 1
12,2,1L

0,0,1
x,y,−1 (3, 3, 3) = 34 1

5,5,8 L
0,0,1
x,y,−1 (3, 3, 3) = 40

XY Z

x = 1, y = −1 1
12,2,1L

1,1,0
1,−1,z (3, 3, 3) = 0 1

5,5,8 L
1,1,0
1,−1,z (3, 3, 3) = 4

x = −1, x = 1 1
12,2,1L

1,1,0
−1,1,z (3, 3, 3) = 0 1

5,5,8 L
1,1,0
−1,1,z (3, 3, 3) = 4

x = 1, y = 1 1
12,2,1L

1,1,0
1,1,z (3, 3, 3) = 1 1

5,5,8 L
1,1,0
1,1,z (3, 3, 3) = 4

x = −1, x = −1 1
12,2,1L

1,1,0
−1,−1,z (3, 3, 3) = 1 1

5,5,8 L
1,1,0
−1,−1,z (3, 3, 3) = 4

XY Z

x = 1, x = −1 1
12,2,1L

0,1,1
x,1,−1 (3, 3, 3) = 6 1

5,5,8 L
0,1,1
x,1,−1 (3, 3, 3) = 3

x = −1, x = 1 1
12,2,1L

0,1,1
x,−1,1 (3, 3, 3) = 6 1

5,5,8 L
0,1,1
x,−1,1 (3, 3, 3) = 2

x = 1, z = 1 1
12,2,1L

0,1,1
x,1,1 (3, 3, 3) = 6 1

5,5,8 L
0,1,1
x,1,1 (3, 3, 3) = 2

x = −1, x = −1 1
12,2,1L

1,0,1
x,−1,−1 (3, 3, 3) = 6 1

5,5,8 L
1,0,1
x,−1,−1 (3, 3, 3) = 3

XY Z

x = 1, x = −1 1
12,2,1L

0,1,1
1,y,−1 (3, 3, 3) = 1 1

5,5,8 L
0,1,1
1,y,−1 (3, 3, 3) = 3

x = −1, x = 1 1
12,2,1L

1,0,1
−1,y,1 (3, 3, 3) = 1 1

5,5,8 L
1,0,1
−1,y,1 (3, 3, 3) = 2

x = 1, z = 1 1
12,2,1L

1,0,1
1,y,1 (3, 3, 3) = 1 1

5,5,8 L
1,0,1
1,y,1 (3, 3, 3) = 2

The formula (1) shows that the number of communication
lines depends on the number of RCL nodes implemented in
FPGAs. However, due to the mDLL scalability the number
of wires needed for signal transmission should always be
the same, regardless of the number of communicating KDLL
cells implemented in FPGA chips. This was achieved by data
compensation and reduction of 18 directions determined by
communication lines (Fig. 4) to 6 directions determined by
cubic network lines. The data were collected in packets, and
then sent to neighboring FPGAs with high-speed serial con-
nections via 6 bidirectional communication channels (Fig. 5).
A detailed description of data collected in packets and their
sending and receiving can be found in the document [11].

Fig. 6. The cyclic boundary conditions in the microDLL machine

The next issue was the development of an appropriate
layout topology for FPGAs. In molecular simulations the
spatial area available to molecules in the machine is limited.
In most cases the systems analyzed contain large numbers of
molecules and thus we want the boundaries of the system to
be located in the infinity. In real systems it is not possible to
build a network of infinite size and, therefore, in parallel ma-
chines, in which a large number of system operational cells
(e.g., microprocessors) operate concurrently over time, n-
dimensional pseudo-finite networks were used [12-14]. In the
DLL machine [8-10], KDLL cells were placed in the nodes of
a three-dimensional torus, which is formed after connecting
the outermost elements of the network (Fig. 6). However,
this solution precludes building a scalable machine, because
adding more FPGAs will elongate the length of the connec-
tions of the extreme elements of the network will elongate the
connection and for large systems it can exceed several meters.
These connections would then be the slowest element of the
entire machine, making it too slow to perform simulations
of systems containing a large number of elements, i.e. of an
order of 106 or larger.

In the described mDLL machine the scalability was ob-
tained thanks to the technique called “leap frog” [5], which
consists in alternating connection of integrated circuits lo-
cated in the nodes of the three-dimensional torus network.
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On the market there are cases in the form of metal cabinets
adapted for joining together PCBs containing integrated cir-
cuits or microprocessors. However, the use of such cabinets
for the construction of the mDLL machine would violate
its spatial construction, in which PCBs with FPGA chips
with FPGAs are mounted on flat, vertically positioned panels.
Thus, a different method of the arrangement of FPGAs has
been developed, which does not change the spatial structure
of the machine and at the same time uses a system of alternat-
ing connection of integrated circuits (details of this solution
can be found in the patent specifications [15-16]).

III. DESIGN ASSUMPTIONS
OF THE MDLL MACHINE

The mDLL machine was built according to the following
assumptions:

1. in FPGAs a virtual reduced cubic network RCL with
number of nodes α β η (with α = β) was implemented,
and in every second node of this network KDLL opera-
tional cells were placed,

2. the position of KDLL cells in the RCL network con-
figured in FPGAs was determined by indexes a, b, c
(index a = 1 . . . α corresponds to the x coordinate,
index b = 1 . . . α corresponds to the y coordinate, and
the index c = 1 . . . η corresponds to the coordinate z),

3. the device consists of δ = 3 panels containing n = 3
rows (counted in the direction of the y axis) and m = 3
columns (counted in the direction of the x axis),

4. panel numbers are marked with the k index, with the
panel marked by the number k = 1 being the straight
plane,

5. on the panels, at the intersection of each column (num-
bered by the index i) and each row (numbered with the
index j), PCBs containing 4 FPGAs “transferred” from
nodes i, j; and, 2m− j+1; 2n and +12m− j+1 and
2n− i+ 1, j of a virtual cubic network were placed.
The nodes of this network cover the areas occupied
by α.β RCL nodes implemented in individual FPGAs.
These areas constitute the subnet of the full RCL net-
work of the entire panel with 2m.α rows and 2n.β
columns [17]. Four FPGAs belonging to one panel
were marked with indices s = 1, s = 2, s = 3, s = 4,
respectively.

For a machine defined in this way, a series of equations allow-
ing for describing its functionality and spatial construction
were formulated. It turned out that the system of equations
used for converting virtual spatial coordinates x, y, z oper-
ational cells implemented in FPGAs to their xs, ys, zs coor-
dinates in the actual RCL network was found most useful in
practice. The equation used to calculate coordinates x, y, z
of the KDLL operational cell, whose position in the FPGA
set indices a, b, c, placed in position s on the PCB marked

with indices i, j on the k-th panel has the following form:

(x, y, z) = ω · Γ · (xs, ys, zs) (5)

where the coordinate values xs, ys, zs are equal to:

xs = λs11 [(j − 1) · α+ a] + λs12 (2m+ 1)
ys = λs21 [(i− 1) · α+ b] + λs22 (2n+ 1) , (k − 1)
zs = (k − 1)β + λs31c+ λs32 (η + 1)

(6)

The elements of the λspq matrix can take values of 0, 1 or −1
and are expressed by the following formula: λs11 λs12

λs21 λs22

λs31 λs32

 =

=


(s− 2) ·

(
s
→
− s
←

)
− s
→

1
2

(
4 s
→

+ 2 s
←
s− s− s

←

)
2 s
←
− s+ 3 s

→
1
2

(
s− s

←
− 2 s
→

)
s
←
− s
→

s
→


(7)

where s parameters are defined in eq. (4).
The size of Γ is equal to 0 when there is no operational

cell in the node of the RCL network, and equal to 1 when
the cell occupies a place in the node. Γ is defined by the
following formula:

Γ = η
→
·
[
α
→
· (A+B + C)
−−−−−−→

+α
←
· (A+B + C + I + J)
−−−−−−−−−−−−−−→

]
+η
←
·
[
α
←
· (A+B + C + k)
←−−−−−−−−−−−−

+α
→
· (A+B + C + I + J + k)
←−−−−−−−−−−−−−−−−−−

]
(8)

Variables A, B, C, I , J correspond to indices a, b, c, i, j
converted from the system with cyclic boundary conditions
to the open system (the cube containing the RCL network)
and can be determined as:

A = λs11a+ λs12 (α+ 1) J = λs11j + λs12 (2m+ 1)
B = λs21b+ λs22 (α+ 1) I = λs21i+ λs22 (2n+ 1)
C = λs31c+ λs32 (η + 1)

(9)
Coefficient ω is equal to:

ω =

η
→

+ δ
→

1 + (δ + η)
−−−−→

(10)

and is 0 when η and δ are odd (when it is impossible to meet
cyclical boundary conditions). In other cases, ω = 1. Eq. (5)
determines the initial position of all elements of the simulated
system and to track the trajectory of their motion.
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Fig. 7. The mDLL machine containing 27 PCBs placed on 3 panels (A) and the control system of the USDLL machine (B)

IV. ELECTRONIC IMPLEMENTATION

The mDLL device was made in such a way that it was
possible to check the developed concepts of machine scala-
bility and the method of sending information between neigh-
boring operational cells. The mDLL machine with fastened
PCBs on a steel truss and data transmission lines is shown in
Fig. 7. It consists of three vertical, parallel-arranged panels,
on which 9 PCBs are evenly spaced. The PCB, located in the
central part of the central panel, was surrounded by similar
26 plates. With such a spatial construction, data exchange
between the FPGAs belonging to the central board and the
systems on neighboring boards had to be done only via physi-

cally mounted signal lines. This allowed testing the developed
concept of serial data transfer. In 108 FPGAs, RCL networks
containing 32 KDLL cells were implemented, which gave
3240 KDLL cells in the entire machine. All systems were
powered by voltage converters, which were cooled by air
using fans. A board with an additional FPGA chip used to
coordinate the simultaneous operation of all cells (USDLL
machine control unit [4, 8-9]) was located on the side wall of
the device (Fig. 7B).

Data exchange between individual machine modules took
place in three ways:

1. In order to minimize the duration of the transmission
resulting from its serial nature, the transmission in the
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Fig. 8. PCB with FPGA chips. The central system was used to synchronize the work of the remaining 4, in which KDLL cells were
implemented

LVDS standard at a speed of up to 800 Mb/s was used
to send and receive data between operating cells. Ether-
net cables were used to connect the systems belonging
to different PCBs. In each of the 6 communication
channels there were 6 “twisted pair”, which allowed
exchanging data between cells at 3.2 Gb/s.

2. For the purpose of synchronizing the machine’s op-
eration, requiring communication between the opera-
tional cells and the CKDLL control system, a mecha-
nism of signal transmission via serially connected PCB
boards was used. Two Ethernet cables were used, i.e.
8 twisted-pair cables, of which 5 twisted-pair cables
were dedicated to “up to CKDLL” communication, and
3 twisted-pair cables were intended for communication
in the ‘from CKDLL’ direction.

3. For the purpose of the configuration of FPGAs,
machine initialization and acquisition of simula-
tion results, fiber optic lines and 6 MGT (Multi-
GigabitTransceiver) chips available in Spartan sys-
tems supporting transmission on these lines at up to
3.125 Gb/s in each direction were used. On each of the
PCBs there are 5 FPGAs (catalog number XC6SLX75-
FGG484-2), one of which was in their central location
and served as the managing element for the other four
(Fig. 8). This system has been equipped with EEP-
ROM configuration memory (Electrically Erasable Pro-
grammable Read-Only Memory). Its contents at the
moment of power supply was used to configure the
central system in such a way that it could communicate
with other similar devices on neighboring boards. A
chain of series connected central circuits was created,
the first of which was with the CKDLL system. Thanks

to such a solution, from the PC computer connected to
CKDLL, using the JTAG protocol, all FPGA systems
in the machine were configured.

V. MDLL MACHINE OPERATION TESTS

The checking of the communication mechanisms be-
tween the FPGAs was an important part of the verification of
the correctness of the mDLL machine operation. Two tests
were done for this purpose. The first one consisted in self-
verification of the neighbors with whom each of the FPGAs
communicates. Each transmitter of any FPGA system sent a
unique identifier that uniquely determines the position and
direction of transmitting this transmitter. On the receiving
side, the received identifiers were compared to the expected
values and any deviations were reported as connection errors.
In the second test the analysis of the motion of a virtual “ball”
moving accidentally between KDLL cells located in FCC
nodes within a three-dimensional torus was made. During
this test, the number of visits to the “balls” in each node was
remembered, and the expected result was an even distribution
of these visits in all nodes of the network. The quality of
this distribution was assessed by evaluating the spread of the
number of visits ϕ calculated according to the formula:

ϕ =
nmax − nmin

nmax
(11)

where nmax and nmin are the largest and the least observed
number of visits at any of the nodes. The results of this tests
are shown in Fig. 9. One can observe that ϕ decreases with the
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Tab. 3. Four identified pairs of complementary systems for which the communication directions depend on whether the number of rows α
and columns β are odd or even

Directional channels for pairs of complementary logic systems – 2D The parity RCL network nodes counted

in horizontal and vertical directions

basic circuit P = 1, U = 0 supplementary circuit P = 0, U = 1 α β

odd odd

even odd

odd even

even even

number of steps of the algorithm, which clearly proves that
all connections between the nodes of the implemented FCC
network were used to the same extent. The “ball” test was
also an excellent way to verify the pseudo-random number
generator used. It was carried out for different LFSR (Local
Feedback Shift Register), and the obtained results were ad-
ditionally compared with simulations carried out using a PC
computer using the standard RAND function. The obtained

results showed that the generator with the 64-bit LFSR reg-
ister is as effective as the other solutions. It requires almost
half as many hardware resources as its 128-bit counterpart.
Additionally, taking into account the fact that each KDLL cell
is equipped with its own generator, application in the final ver-
sion of the 64-bit generator allowed reducing the number of
logic modules needed to obtain the received implementation.

Fig. 9. The number of visits of nodes in the function of the number of steps for different methods of generating random numbers
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Another test was checking the correctness and efficiency
of the DLL algorithm. As we could not carry out of a com-
parison with another machine similar to mDLL, we decided
to compare the speed between the implementation of a given
simulation using mDLL and a PC. For this purpose, a spe-
cially prepared application allowing emulation of mDLL was
started on the computer. This application was executed em-
ploying the same variant of the DLL algorithm as the one
implemented in the hardware. The test simulations concerned
the cooperative motion of objects (small molecules) at high
densities, i.e. with a fully filled system and with no inter-
actions (the athermal system). A computer with 2 GB of
operating memory and a dual-core Intel Pentium D 3.4 GHz
processor was used, with the reference application using only
one of the processor cores. Analysis of the computational
efficiency of the mDLL device showed that its advantage
over a typical personal computer is at least 40 times. Due to
the serial data exchange between modules, performing one
simulation step for one liquid molecule required an average
of twice as many system clock cycles as in the case of a refer-
ence sequential implementation running on a PC computer.
The system clock in the prototype made was only 100 MHz,
which was 34 times less than in the processor used for the
tests, which in combination with 2 times more cycles gave
almost 70 times the time to perform one step of simulation for
one molecule. However, it should be noted that in contrast to
the standard processor, simultaneous simulations for a system
containing more than 3 000 molecules could be performed in
mDLL.

The comparison of power consumption appeared to be as
good as the computational efficiency. The assumption that a
typical personal computer needs 200 W to power the moth-
erboard, processor and operating memory in confrontation
with the fact that the maximum power consumption of the
prototype made is 1000 W, led to the conclusion that a 40-fold
acceleration of calculations was paid for mDLL only a 5-fold
increase in the demand for electricity.

VI. CONCLUSIONS

In this paper we described the process of designing, pro-
duction and testing of a computer called mDLL machine.
The idea of this machine was based on the Dynamic Lattice
Liquid (DLL) idea – a model describing properties of liquid
systems. The computer was designed in such a way that its fu-
ture expansion with additional Printed Circuit Boards (PCB)
would not result in lengthened wire connections between
Field-Programmable Gate Arrays (FPGA) and therefore, it
would not slow down the operation of the machine. Veri-
fication of the FPGA neighbors and test simulations were
performed. They confirmed that the design assumptions were
correct and mDLL appeared to be able to perform molecu-
lar simulations effectively. The mDLL machine can also be
treated as a step towards the next device with a number of a
few million of operational cells.
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