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Abstract: The method for computing the latent heat in a system with many independently behaving components of the or-
der parameter proposed previously is presented for a chosen point of the phase diagram of the 3D Ashkin-Teller (AH)
model. Binder, Challa, and Lee-Kosterlitz cumulants are exploited and supplemented by the use of the energy distribution
histogram. The proposed computer experiments using the Metropolis algorithm calculate the cumulants in question, the in-
ternal energy and its partial contributions as well as the energy distribution for the model Hamiltonian and its components.
The important part of our paper is an attempt to validate the results obtained by several independent methods.
Key words: the standard 3D Ashkin-Teller model, temperature driven phase transitions, latent heat, high performance
computing

I. INTRODUCTION

One of the basic thermodynamic quantities which en-
ables examination of the character of a phase transition is la-
tent heat. In this paper, we propose precise determination
of the value of latent heat in the computer experiment based
on various cumulants and a histogram of energy distribution.
We exploit Binder [1], Challa [2] and Lee-Kosterlitz [3] cu-
mulants as well as the internal energy distribution histogram
method [3, 4] which were introduced for systems with one
independent order parameter, such as the Ising like mod-
els. The non-trivial generalization of the widely exploited
Ising model of current interest is the Ashkin-Teller (AT)
model [5] which is one of the most important models in sta-
tistical physics and every year a dozen works are devoted
to it (see e.g. [6–8] and the papers cited therein). More-
over, the AT model shows the complex phase diagram and
the Monte Carlo (MC) simulation results published so far
suggest the possibility of the occurrence of the non-universal

behavior also in the 3D AT model [9–12] which has been ob-
served in the 2D one [13–16].

The AT lattice model has been proposed for four compo-
nent mixtures [5], but the interest in it significantly increased
after Fan’s work [17] who expressed it in terms of two Ising
models put on the same lattice with spins si and σi at each
lattice site i. As in the original Ising model, we take into ac-
count only two-spin interactions of a constant magnitude J2
between the nearest neighbors. These two independent Ising
models are coupled by the four-spin interaction of a con-
stant magnitude J4, also only between couples of nearest-
neighboring spins, leading to the effective Hamiltonian H

− H

kBT
=
∑
[i,j]

{K2(sisj + σiσj) +K4siσisjσj}. (1)

In Eq. (1) Kn = −Jn/kBT , with n = 2 or 4, [i, j]
denotes summation over nearest-neighboring lattice sites,
kB is the Boltzmann constant, and T is the temperature
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of the system. In this paper, we consider the standard 3D AT
model put on the cubic lattice. It should be called the stan-
dard one as there are many extensions of the AT model.

The cause of the interesting and complex nature
of theK2(K4) phase diagram of the 3D AT model is the fact
that not only two components of the order parameter 〈s〉 and
〈σ〉 can order independently, but also the product 〈sσ〉 ex-
hibits similar independent behavior, where the symbol 〈. . .〉
denotes the thermal average.

The aim of our paper is to provide a method of precise
locating the phase transition point and computing the latent
heat value in the considered system with multiple compo-
nents of the order parameter showing an independent or-
der. Our method is based on large-scale computer exper-
iments which exploit the properties of various cumulants.
Binder cumulants [1] are based on the order parameter, while
the Challa [2] and Lee-Kosterlitz [3] cumulants use the in-
ternal energy. Binder cumulants allow for the initial determi-
nation of the phase transition region independently for each
of the three components of the order parameter. Further-
more, the presence of characteristic minima of the Binder
cumulant dependences on the K2 coupling constant indi-
cates the possibility of occurrence of latent heat for a phase
transition [1, 18] at a given coupling constant K4. Simulta-
neously, we independently use Challa and Lee-Kosterlitz cu-
mulants, which require adaptation [10, 12] to enable locating
the phase transition point for the individual order parameter
components and their contribution to the latent heat. Know-
ing the phase transition point position accurately enough,
for strong phase transitions we can determine the latent heat
value with a higher precision using the internal energy dis-
tribution histogram method [3] adapted to the considered
system [4]. A detailed description of the method proposed
in this paper and how to systematically validate the results
obtained are clarified in Section II.

The method for computing the latent heat proposed
in this work will be demonstrated on the example of phase
transitions of the first order from the Baxter phase with
the ferromagnetic order, where all components of the order
parameter are different from zero, to the paramagnetic phase,
where all these components are equal to zero. The 3D AT
model is convenient for testing the proposed method, since
for the caseK4 = 0 it reduces to the simple Ising model with
the zero latent heat, and at K4 = K2 = 0.157154 to the 4-
state Potts model [9, 10] where we observe the maximum
latent heat. To demonstrate the proposed method, we have
chosen the point K4 = 0.18, where we observe the interme-
diate value of the latent heat.

II. OUR COMPUTER EXPERIMENT

We use the MC experiment with importance sampling
of states. The finite-size cubic samples of the standard lattice
AT model defined in Hamiltonian (1) which are sufficiently

large to be able to compute the thermodynamic limit of our
results are considered. When performing our MC computer
experiments, we compute not only the thermodynamic quan-
tities but also determine their error bars.

In this way, we perform our computer experiments
to predict the equilibrium behavior of the 3D standard
AT model according to the statistical mechanics methodol-
ogy [10, 11, 18, 19]. The behavior of our system is fully de-
termined by the Hamiltonian (1). We generate equilibrium
configurations (also called microstates) of finite-size cubic
spin samplesL×L×L for fixed values of the model parame-
ters described above at Hamiltonian (1) using the Metropolis
algorithm.

The convenient periodic boundary conditions are as-
sumed, as our final results are calculated in the ther-
modynamic limit. As usual, we first apply thermalization
of the length of order of 106 Monte Carlo steps (MCS)
to bring the system to the thermodynamic equilibrium.
At the same time, one MCS in our computer experiment
is completed when each of the lattice sites has been vis-
ited once. In the case that it is energetically beneficial,
the spin is flipped automatically. Otherwise, the probability
of the spin-flip is e−2(K2+K4).

We split each MC run into k (6 ≤ k ≤ 20) segments
called partial averages to determine uncertainties of the com-
puted quantities. One partial average consists from 0.4×106

MCS for smallest system sizes up to 3.6 × 106 MCS for
the largest L’s. However, only every i-th MCS contributes
(with 8 ≤ i ≤ 12) in the computation of partial averages
to avoid correlations between sampled microstates of spins
and to sample microstates with the Gibbs probability dis-
tribution. Thus, we ensure that our program spends most
of time working with states giving the largest contribution
to the computed quantities.

It is worth noting that our MC computer experiments
take from 20 hours for smallest L’s up to a couple of weeks
for the largest L values considered when applying sequen-
tial processing. Hundreds of such runs have been executed
to complete the results of this paper.

We fix the particular value of K4 coupling and ana-
lyze the Binder cumulant Qα,L(K2) dependences (see e.g.
[1, 20, 21])

Qα,L =
〈M2

α〉2L
〈M4

α〉L
, (2)

to pre-locate a temperature-driven phase transition point.
Here 〈Mn

α 〉L denotes the n-th power of the order param-
eter of α degrees of freedom, with α = s, σ or their
product sσ, which are averaged over an ensemble of in-
dependent samples of the size L × L × L in agreement
with the statistical physics methodology mentioned above.
These Qα,L(K2) dependences intersect mutually around
the critical point K2,c for different L values, because for
L1 < L2 and at K2 < K2,c one obtains Qα,L1

(K2) >
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Qα,L2(K2), while at K2 > K2,c there occurs Qα,L1(K2) <
Qα,L2(K2) [1, 20–22]. This is the method for initial local-
ization of the critical K2 value which is applicable for both
continuous and first order phase transition points.

For more precise estimation of a phase transition point
position as well as calculation of the latent heat value,
we compute also the Challa [2]

Vα,L = 1− 〈E
4
α〉L

3〈E2
α〉2L

(3)

and the Lee-Kosterlitz [3]

Uα,L =
〈E2

α〉L
〈Eα〉2L

(4)

like cumulants. In Eqs (3) and (4) 〈Enα〉L is the n-th mo-
ment of the interaction energy of α-degrees of freedom
(α = s, σ or their product sσ) in Hamiltonian (1) sepa-
rately, which is averaged over an ensemble of independent
samples of the size L×L×L. The Challa and Lee-Kosterlitz
cumulants have been adapted [4, 10] by taking not only
the whole Hamiltonian (1) for energy E as originally pro-
posed by Challa et al. [2] and by Lee and Kosterlitz [3], but
also the Hamiltonian individual terms to be able to compute
the latent heat for each component of the order parameter
separately [10, 12, 19]. Of course, we make sure that the la-
tent heat lH computed on the basis of the whole Hamilto-
nian (1) is equal to the sum of the latent heats lα (α = s,
σ or their product sσ) coming from α degrees of freedom
within their error bars.

A phase transition is qualified as continuous when
Vα,L = 2/3 and Uα,L = 1 in their thermodynamic lim-
its within the respective error bars [2, 3, 10, 12, 19]. For
the error bar values of the extremes of these cumulants,
we assume the maximum deviation of the points determined
in our MC experiments from the fitted curves [10], as the un-
certainties should always be rounded up. So, we conclude
that when the thermodynamic limit V min

α,L value with its er-
ror bar remains different from 2/3 and Umax

α,L value with
its error bar remains different from 1, a phase transition
is qualified to be of the first order [2, 3, 10, 18, 19]. Also
locations of minima Kmin

2,α and maxima Kmax
2,α scale lin-

early versus L−3 [2, 3, 10, 23]. So, we extrapolate them
to the thermodynamic limit. These limit values are better
estimations of the critical K2 value than the ones obtained
from the above-mentioned intersection region of the Binder
cumulant Qα,L(K2) dependences.

The partial latent heat lα coming from the above-
mentioned interaction energy Eα of α-degrees of freedom
in the limit L→∞

lα = Eα,+ − Eα,−, (5)

where Eα,± = Eα(K2 → K2,c|±), are determined
on the basis of the Lee-Kosterlitz formula [3, 12, 23, 24]

V min
α,L =

2

3
− 1

12

(
Eα,+
Eα,−

− Eα,−
Eα,+

)2

+
AV
L3

(6)

and using the method proposed in [10]. Derivation of this
equation [3] uses general thermodynamic properties and
is not limited to a specific form of the expression for energy.
Here K2,c is the critical value of K2 coupling at the fixed
value of K4. The quantity AV in Eq. (6) stands for L in-
dependent complicated expression [3]. Thus, Eq. (6) allows
us to determine V min

α,∞ limit value using the linear regres-
sion to analyze our V min

α,∞(L−3) computer experiment data.
This is a powerful tool and similar analysis has been recently
applied respectively to the first order phase transitions with
an exponential low temperature phase degeneracy [25].

According to the method proposed in [10], one can com-
pute the value E− by equating this V min

α,∞ value to the first
term on the right hand side of Eq. (6) and using the value
E+ estimated from the Eα,L(K2) energy plot for the finite-
size samples. When we calculate the values of E+ and E−,
then lα value can be obtained from Eq. (5).

It is worth noting that to calculate the latent heat lα for
weak phase transitions of the first order we could use the ap-
proximation of Challa et al. [2, 19], which is an alternative
to Eq. (6). The results of our computations indicate that al-
though Eq. (6) has been derived for strong phase transitions,
it gives correct results also for the weak ones.

In a similar way, we determine the latent heat lα using
our Uα,L cumulant maxima values scaled to the thermody-
namic limit for each component of the order parameter in-
dependently, as well as for the whole system, using the Lee-
Kosterlitz formula [3]

Umax
α,L =

(Eα,+ + Eα,−)
2

4Eα,+Eα,−
+
AU
L3

, (7)

whereAU stands for L independent complicated expression.
Obviously, when the latent heat lα tends to zero, V min

α,∞ ap-
proaches the value 2/3 and Umax

α,∞ approaches the value 1,
as described above for continuous phase transitions.

For sufficiently strong first order phase transitions,
a characteristic histogram of the internal energy E distribu-
tion with two peaks in the close critical region can be ob-
served [3, 4]. For samples of finite-size L, the maxima
of these peaks appear at the energy value E−,L for the or-
dered state and at E+,L for the unordered one and they are
separated by the minimum of Em,L value. From the tech-
nical point of view, the histogram is computed by dividing
the range of all internal energy E values (in units of kBT )
appearing in our computer experiments into small subinter-
vals and our program counts the energy occurrence in the in-
dividual subintervals. Thus, dividing the received individual
values within these intervals by their sum, we get the proba-
bility P of the energy E appearance in the system of the fi-
nite size Ld, with dimensionality d = 3 here. As in the case
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of cumulants, the PL(Eα, β) values are calculated indepen-
dently for each degree of freedom α = s, σ, or their prod-
uct sσ, and also for the whole Hamiltonian (1), at a critical
value K2,c of the parameter K2 precisely determined from
the above mentioned analyzes using cumulants at a fixed
value of K4. Here β = 1/kBT . It is worth noting that for
continuous phase transitions only a single peak of the prob-
ability P (E) dependence appears.

This is the method for precise determination of the phase
transition point and the latent heat. We carefully check
whether the results we have received independently on
the basis of some cumulants based on the order parame-
ter and on the other ones based on internal energy, as well
as using the internal energy distribution histogram, are con-
sistent within error bars. However, it is important to verify
the correctness of the assumptions about the relations be-
tween the cumulants and the valuesEα,± in the macroscopic
limit.

III. THE RESULTS AND CONCLUSIONS

As explained in Sections I. and II., we have pre-located
the temperature-driven phase transition point at fixed value
of the coupling K4 = 0.18 from the intersection points
of the Binder cumulant [1, 22] curves Qα,L(K2) speci-
fied by Eq. (2) [10, 20]. In Fig. 1 there appears the re-
gion at K2,c = 0.1452(2) where Qα,L(K2) curves intersect
in such a way that for L1 < L2 and at K2 < K2,c one
has Qα,L1

(K2) > Qα,L2
(K2), while at K2 > K2,c there

is Qα,L1
(K2) < Qα,L2

(K2), as explained below Eq. (2).
The analyses have been performed independently for 〈α〉
components of the order parameter with α = s, σ and sσ
(see e.g. [10, 20, 21]) allowing us to estimate at least four
decimal digits of the K2 coupling critical value. The inter-
section region should be identified with the transition from
the paramagnetic to the Baxter phase.

The characteristic minimum in the dependence Qs,L
(K2), for clarity in Fig. 1 demonstrated for L = 22 only,
should be attributed to the first order phase transition [2].
Obviously, the existence of these minima is an important
signal, but not the proof of the presence of the latent heat,
which was discussed in the paper [18].

The essential element for this paper is to demonstrate
the proposed way of computation the latent heat of con-
sidered phase transitions in 3D AT model which is the sys-
tem with three behaved independently components of the or-
der parameter. For this purpose we propose first to exploit
the Challa like Vα,L cumulants properties explained in Sec-
tion II.

The example of such analyses is shown in Fig. 2 at the
fixed value of the couplingK4=0.18 where the temperature-
driven transition from ferromagnetically ordered phase to
the disordered one takes place. For clarity we have plotted
our results only for selected values of the system linear size

L. Characteristic local minima are observed in Fig. 2. To av-
erage the scatter of the results and determine more precisely
the ordinates V min

s,L and the abscissas Kmin
2,L of these min-

ima in Fig. 2, our MC computer experiment data were ap-
proximated by a polynomial of fourth degree as explained in
the caption. Nevertheless, the uncertainties of the ordinates
and of the abscissas in Fig. 2 fully take into account this scat-
ter as the uncertainties should always be rounded up.

Fig. 1. The Binder cumulants Qα,L(K2) dependences for α =
s and for the system size L values specified in the legend box
at the fixed value K4 = 0.18. For clarity of the graph, especially
in the intersection region, the minimum for L = 22 is only pre-
sented. The results of our MC computer experiments are denoted

by symbols

Fig. 2. The dependences Vs,L(K2) with characteristic minima
for system sizes L listed in the legend box and at critical cou-
pling K4 = 0.18. The results of our MC computer experiments
are denoted by symbols. For the sake of clarity, the error bars of se-
lected points have only been marked. Our MC computer experi-
ment data are approximated by a polynomial of fourth degree (solid

curves) to average the scatter of the results
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To compute the latent heat, we have to estimate the value
of the cumulant Vs,L minimum in the thermodynamic limit.
For this purpose we have analyzed V min

α,L (L−3) dependences
using linear regression as explained in Section II. below
Eq. (6). The finite-size-scaling analysis of the ordinates
V min
s,L is illustrated in Fig. 3 for α = s (the results for α = σ

are similar because of the symmetry of the Hamiltonian (1)),
for α = sσ, and taking the whole Hamiltonian H for energy
E, as explained in the legend box. We see the clear linear
character of the MC computer experiment data which are
inter- and extrapolated using linear regression. The thermo-
dynamic limit values of the minima of cumulants Vα,L are
found at the intersection points of these approximating lines
with the ordinate axis.

Fig. 3. The values of Challa like cumulants V min
α,L minima extrap-

olated to the thermodynamic limit for α = s (the dotted line),
for α = sσ (the dashed line) and taking the whole Hamiltonian
H for energy E (the solid line) at the fixed value of the coupling
K4 = 0.18 as explained in the legend box. The dependences are
fitted by straight lines using the linear regression. The error bars are

of order of magnitude of symbols

We have determined the E− = 0.093(4) value associ-
ated with 〈s〉 component of the order parameter at K4 =
0.18 by comparing the V min

s,∞ = 0.476(4) value to the lin-
ear term in Eq. (6) and taking the value E+ = 0.187(3)
estimated from the Es,L(K2) energy plot for the finite-size
samples (see the left-hand graph in Fig. 7 discussed be-
low). It is worth noting that although such an estimation
of the step change in the energy value in the thermody-
namic limit is very imprecise, it allows the initial calcu-
lation of the values E+ and E− and a qualitative verifi-
cation of the location of this energy value jump from E+

to E− in the background of the course of the dependence
Es,L(K2). In addition, we find that such a calculated E−
value weakly depends on the precision of estimation of E+

value varying by a few on the last decimal digit only. Sub-
stituting the obtained E+ and E− values to Eq. (5) we have

obtained ls = 0.094(4) in kBT units. Similar analyses have
been performed for 〈sσ〉 component of the order parameter
and taking the whole Hamiltonian H for energy E, as ex-
plained in the legend box in Fig. 3. The results of these analy-
ses are summarized in the second column of Tab. 1.

Tab. 1. The cumulants Vα,L(K2) dependences minima ordinates
V min
s,L and abscissas Kmin

2 as well as the cumulants Uα,L(K2) de-
pendences maxima ordinates Umax

s,L and abscissas Kmax
2 in their

thermodynamic limits atK4 = 0.18. α specified in the first column
denotes degrees of freedom s (the same value for σ for the Hamil-
tonian (1) symmetry reasons), or the product sσ, and H indicates

that the whole Hamiltonian H has been taken for the energy E

α V min
α,∞ Kmin

2,∞ Umax
α,∞ Kmax

2,∞

s (or σ) 0.476(4) 0.145189(35) 1.128(2) 0.145192(28)

sσ 0.181(14) 0.145183(38) 1.283(4) 0.145187(25)

H 0.406(5) 0.145195(33) 1.169(4) 0.145187(33)

In order to confirm the correctness of the computa-
tion of the latent heat value independently, we have used
the properties of the Lee-Kosterlitz like Uα,L cumulants
as explained in Section II. We did the analyses of Uα,L prop-
erties in an analogous manner to the above for the cumulants
Vα,L. Fig. 4 illustrates the example of characteristic local
Uα,L maxima as a function ofK2 coupling at the fixed value
of the coupling K4 = 0.18. For clarity, here also we have
plotted our results only for selected values of system linear
size L. To average the scatter of the results and determine
more precisely the ordinates Umax

s,L and the abscissas Kmax
2,L

of these maxima in Fig. 4, our MC computer experiment data
were also approximated by a polynomial of fourth degree
as explained in the caption.

Fig. 4. The dependences Usσ,L(K2) with characteristic maxima
for system sizes L listed in the legend box and at critical cou-
pling K4 = 0.18. The results of our MC computer experiments
are denoted by symbols. For the sake of clarity, the error bars of se-
lected points have only been marked. Our MC computer experi-
ment data are approximated by a polynomial of fourth degree (solid

curves) to average the scatter of the results
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Fig. 5 shows the example of computing of the cumu-
lants Uα,L maxima values (α = s, sσ and H denotes taking
the whole Hamiltonian H for energy E) in the thermody-
namic limit using linear regression as explained in Section II.
below Eq. (7). Also here one can see the clear linear charac-
ter of the MC computer experiment data which are inter- and
extrapolated using linear regression.

Fig. 5. The values of Lee-Kosterlitz like cumulants Umax
α,L maxima

extrapolated to the thermodynamic limit for α = s (the dotted line),
for α = sσ (the dashed line) and taking the whole Hamiltonian H
for energy E (the solid line) at the fixed value of the coup-
ling K4 = 0.18 and for degrees of freedom α explained
in the legend box. The dependences are fitted by straight lines using

the linear regression

The E− = 0.073(3) value associated with 〈sσ〉 order
parameter for K4 = 0.18 has been determined by com-
paring the Umax

sσ,∞ = 1.283(4) value to the linear term
in Eq. (7) and taking the value E+ = 0.202(2) estimated
from the Esσ,L(K2) energy plot for the finite-size sam-
ples. Substituting the obtained E+ and E− values to Eq. (5)
we have obtained lsσ = 0.129(3) in kBT units. Similar
analyses have been performed for 〈s〉 component of the or-
der parameter and taking the whole Hamiltonian H for en-
ergy E, as explained in the legend box in Fig. 5. The results
of these analyses are summarized in the fourth column of
Tab. 1.

Abscissas Kmin
2,L of the Vα,L(K2) dependence min-

ima [2] shown in Fig. 2 and abscissasKmax
2,L of theUα,L(K2)

dependence maxima [3] illustrated in Fig. 4 for degrees
of freedom α = s, the product sσ and taking the whole
Hamiltonian H for energy E, as indicated in the indices
of the respective cumulants in the legend box, at the fixed
value of the coupling K4 = 0.18, also are linearly correlated
versus L−3 as shown in Fig. 6. Scaling the positions of these
extremes to the thermodynamic limit allowed us to deter-
mine more precisely the location of the phase transition, i.e.
the critical value of K2, as explained below Eqs (3) and (4)
in Section II. The Kmin

2,∞ and Kmax
2,∞ values of these analy-

ses ale collected in the third and fifth columns of Tab. 1,
respectively. The critical K2 value determined on the basis
of intersections of the cumulant Qs,L dependencies shown
in the right hand graph of Fig. 2 is K2 = 0.1452(2) as men-
tioned above. The values obtained by scaling the positions
of cumulants Vα,L minima and of cumulants Uα,L max-
ima shown in Fig. 6 gave us more accurate average criti-
cal value K2 = 0.145189(12). All obtained K2 critical val-
ues are consistent within the error bars. As we see in Tab. 1,
the analyses performed for Uα,L cumulants gave us almost
the same results as those for Vα,L cumulants.

Fig. 6. The values of abscissas Kmin
2 (diamonds) and Kmax

2 (×
symbols) of the cumulant Vα,L minima and Uα,L maxima, re-
spectively, extrapolated to the thermodynamic limit for α = s
(the line for α = σ falls within the line thickness), α = sσ, and
taking the whole Hamiltonian H for energy E at the fixed value
K4 = 0.18, as indicated in the indices of the respective cumulants
in the legend box. The dependences are fitted by straight lines using

the linear regression

Fig. 7. The the internal energy E (left) and its distribution his-
togram (right) for L = 26 at the phase transition point with
K4 = 0.18 and K2,c = 0.145189. The right hand graph shows
two probability Pα,L peaks for degrees of freedom α = s (or sσ),
or the product sσ, and taking the whole Hamiltonian H for energy
E, as indicated in the indices of the respective energies in the leg-

end boxes
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We have obtained the completely independent confirma-
tion of correctness and the increased accuracy of our re-
sults thanks to the internal energy Eα distribution histogram
analyses, whose example is illustrated in Fig. 7 for the sys-
tem size L = 26 at the point K4 = 0.18 and K2,c =
0.145189(12). This is the phase transition point precisely de-
termined as the average value from the third and fifth column
of Tab. 1. The degrees of freedom α are given in the leg-
end box. For all degrees of freedom one can see two distinct
probability Pα,L peaks corresponding to the energies E−,L
and E+,L, for the ordered and unordered state, respectively,
as explained in the last paragraph of Section II.

These two probability Pα,L peaks correspond to the min-
ima of the −lnPα,L(Eα,L) function [3]. As for the cumu-
lants Vα,L minima, we first determine the energy values cor-
responding to the lower minima Eα,−,L for the ordered state
and to the upper minima Eα,+,L for unordered state for a fi-
nite system size L and for degrees of freedom α = s (or σ),
the product sσ, and also taking the whole HamiltonianH for
the energy E.

Fig. 8. Values of Emin
+,L (upper lines) and Emin

−,L (lower lines)
of the minima positions of dependencies −lnPL(Eα, β) received
at K4 = 0.18 and K2,c = 0.145189 for the system of the finite
size L and for degrees of freedom explained in the legend box.
The individual lines are extrapolated to their thermodynamic limits

E+ or E− using linear regression

Fig. 8 shows the results of our analyzes for the energy
Eα,−,L (lower lines) and Emin

α,+,L (upper lines) of the whole
Hamiltonian (1), for energy of interaction of degrees of free-
dom s (the same result is for σ) and the product sσ sepa-
rately, explained in the legend box, for systems with differ-
ent sizes 16 ≤ L ≤ 28 at the point K4 = 0.18 and K2,c =
0.145189(12). The values Eα,−,L and Eα,+,L in the L−2

function scale linearly to the respective bulk valuesEα,− and
Eα,+ [3, 4, 12]. Therefore, the individual lines in Fig. 8 were
extrapolated to the thermodynamic limit using linear regres-
sion. The resulting values Eα,− and Eα,+ after substituting
into equation (5) at K4 = 0.18 gave latent heat lα values

collected in the fourth column of Tab. 2 for degrees of free-
dom α explained in the first column calculated on the ba-
sis of cumulants indicated in the second and third columns,
as well as using the internal energy distribution histogram
shown in the fourth column. The fourth row shows the la-
tent heat summed up over all degrees of freedom, whereas
the fifth row presents the latent heat computed for the en-
tire system, i.e. obtained by taking the whole Hamiltonian
H for energy E. These results in the fourth and fifth row
of the fourth column are consistent within their error bars
as we expected.

Tab. 2. The latent heat lα values for degrees of freedomα explained
in the first column calculated on the basis of cumulants indicated
in the second and third columns, as well as using the internal energy
distribution histogram shown in the fourth column for the coupling
K4 = 0.18. The fourth row shows the latent heat summed up over
all degrees of freedom, whereas the fifth row presents the latent heat
computed for the entire system, i.e. obtained by taking the whole

Hamiltonian H for energy E

Uα Vα −lnPα

ls (or lσ) 0.0941(5) 0.0940(6) 0.0935(8)

lsσ 0.1292(7) 0.1293(8) 0.1289(10)

ls+lσ+lsσ 0.3174(17) 0.3173(20) 0.3159(26)

lH 0.3172(26) 0.3163(19) 0.3145(13)

Using the values Eα,+ determined on the basis of the in-
ternal energy distribution histogram, the cumulant Uα,L and
Vα,L values scaled to their thermodynamic limits on the ba-
sis of Eqs (6) and (7), respectively, we have performed calcu-
lations ofEα,− and of the latent heat lα. The results obtained
using this method are more accurate than those discussed
above, for which we have used the value Eα,+ estimated
from the energy plot for a finite-size samples, and are sum-
marized in the second and third column of Tab. 2. These re-
sults are consistent with those obtained using the energy dis-
tribution histogram (fourth column of Tab. 2) within the error
bars. Particularly noteworthy is the very good consistency
of the latent heat summed up after individual degrees of free-
dom (the fourth row) with that obtained for the whole Hamil-
tonian (1) (the fifth row).

Thus, the method for computation of latent heat, which
based on Binder, Challa, and Lee-Kosterlitz like cumulants
as well as the energy distribution histogram, has been care-
fully checked and can successfully be used in systems with
many components of an order parameter showing individual
ordering.

At the end it is worth noting that Eq. (6) has been derived
for strong phase transitions [3]. Thus, to calculate the la-
tent heat lα for weak phase transitions of the first order,
one should use the approximation of Challa et al. [2], which
is an alternative to Eq. (6). However, we have checked that
although Eq. (6) has been derived for strong phase transi-
tions, our analyzes show that it gives correct results for both
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the strong and the weak ones. The latter show a good agree-
ment with the results obtained by us using the Challa approx-
imation.
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University in Poznań. The authors wish to thank Professors
H.T. Diep and J. Rogiers for valuable discussions.

References

[1] K. Binder, D.P. Landau, Finite-size scaling at first-order
phase transitions, Phys. Rev. B 30, 1477 (1984).

[2] M.S.S. Challa, D.P. Landau, K. Binder, Finite-size effects
at temperature-driven first-order transitions, Phys. Rev. B 34,
1841 (1986).

[3] J. Lee, J.M. Kosterlitz, Finite-size scaling and Monte Carlo
simulations of first-order phase transitions, Phys. Rev. B 43,
3265 (1991).

[4] D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał, Computation
of Latent Heat based on the Energy Distribution Histogram
in the 3D Ashkin-Teller Model, Acta Phys. Polon. A 133, 435
(2018).

[5] J. Ashkin, E. Teller, Statistics of two-dimensional lattices
with four components, Phys. Rev. 64, 178 (1943).

[6] J.P. Santos, F.C.S. Barreto, Upper Bounds on the Critical
Temperature of the Ashkin-Teller Model, Braz. J. Phys. 46,
70 (2016).

[7] Ü. Akıncı, Nonequilibrium phase transitions in isotropic
Ashkin-Teller model, Physica A 469, 740 (2017).

[8] J.P. Santos, D.S. Rosa, F.C.S. Barreto, New Baxter phase
in the Ashkin-Teller model on a cubic lattice, Phys. Lett. A
382, 272 (2018).

[9] R.V. Ditzian, J.R. Banavar, G.S. Grest, L.P. Kadanoff, Phase
diagram for the Ashkin-Teller model in three dimensions,
Phys. Rev. B 22, 2542 (1980).

[10] G. Musiał, Monte Carlo analysis of the tricritical behav-
ior in a three-dimensional system with a multicomponent or-
der parameter: The Ashkin-Teller model, Phys. Rev. B 69,
024407 (2004).

[11] G. Musiał, J. Rogiers, On the possibility of nonuniversal be-
havior in the 3D Ashkin-Teller model, Phys. Status Solidi B
243, 335 (2006).

[12] Z. Wojtkowiak, G. Musiał, Wide crossover in the 3D Ashkin-
Teller model, Physica A 513, 104 (2019).

[13] R.J. Baxter, Exactly Solvable Models in Statistical Mechanics
(Academic Press, London, 1982).

[14] M.S. Gronsleth, T.B. Nilssen, E.K. Dahl, E.B. Stiansen, C.M.
Varma, A. Sudbo, Thermodynamic properties near the onset
of loop-current order in high-Tc superconducting cuprates,
Phys. Rev. B 79, 094506 (2009).

[15] A. Giuliani, V. Mastropietro, Anomalous universality in the
anisotropic Ashkin-Teller model, Comm. in Math. Phys. 256,
681 (2005); V. Mastropietro, Non-Perturbative Renormaliza-
tion (World Scientific, London, 2008).

[16] S. Wiseman, E. Domany, Critical behavior of the random-
bond Ashkin-Teller model: A Monte Carlo study, Phys. Rev.
E 51, 3074 (1995).

[17] C. Fan, On critical properties of the Ashkin-Teller model,
Phys. Lett. 39A, 136 (1972).

[18] D. Jeziorek-Knioła, G. Musiał, L. Dȩbski, J. Rogiers, S. Dy-
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Mickiewicz University in Poznań. She is the physics teacher in the 3rd High School in Kalisz and author
of many publications in the field of teaching physics at school, as well as 4 scientific publications concerning
mainly the Ashkin-Teller model.
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