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Abstract: The paper aims to give at least a partial answer to an urgent need for knowledge processing systems equipped
with semantic capabilities. One of the crucial goals is to reflect inner computational models and numerical data outside of
the system by presenting linguistic statements easily understood by a non-expert user. The paper follows a motivational
scenario and presents a layered approach to knowledge integration. The fundamental rationale behind the proposed approach
is that a degree of inconsistency of the whole body of knowledge should be incorporated into the formed summary and
conveyed to the external user of the system. The paper deals with a practically important problem of processing modal
epistemic statements about an object exhibiting some set of fuzzy properties. The statements represent distributed knowledge
of some agent population and are represented on the level of a semi-natural language. In particular, the paper describes an
approach to two-level fuzzy-linguistic knowledge integration based on the consensus-theory and clustering methods. In
particular, it discusses the difference between the in-cluster level and the cross-cluster level. While this paper considers
an environment limited to a single object with multiple properties, it is directly extendable to environments with multiple
objects. The reduction is purely technical as it allows for a simplification of a notation and presented descriptions.
Key words: knowledge integration, fuzzy-linguistic variable, artificial agents, multi-agent systems, semantic communication

I. INTRODUCTION

Data integration topics have been gaining more and more
interest lately as the overall amount of knowledge distributed
throughout the environment has increased. A similar increase
cannot go unnoticed when it comes to the usage of a natu-
ral language in communication between the human and the
machine or – going even further – between the machines.
There is a broad variety of architectures in which the commu-
nication process is crucial and any possible improvement of
this process may drastically increase the effectiveness of the
whole system.

An example of such an architecture is an agent-based sys-
tem where artificial agents act as independent entities com-
municating with each other in order to achieve a specific goal.
The goal may vary greatly, starting from simple goals such as
pure physical effects (e.g. moving objects to a destined area),

through an area of coordinational effects (e.g. multi-robot
rescue or joint multi-robot mapping in SLAM [1, 2]), towards
abstract effects such as multi-agent imitation and knowledge
integration (e.g. integration of observational knowledge in
multi-robot societies [3]).

Agent-based systems, knowledge integration, and natural-
language modelling have all been studied separately for years.
True problems start when one tries to meaningfully bring the
natural-like language into a cognitive artificial system and
successfully apply it for a given task. Partially it is caused by
numerous conflicts between the researchers regarding various
intuitions they base their works on; especially in the field
of natural language modelling which is still cursed by the
Chomskyan spirit up to this day. In general, the main problem
is the lack of a complete cognitive framework implementing
semantic capabilities and meaningfully dealing with such
problems as Harnad’s Symbol Grounding Problem [4].
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Even though there are many disadvantages and difficul-
ties, the need for knowledge processing systems with seman-
tic capabilities will only ever get stronger. There is a particular
need for automation in an area of comprehension and com-
munication using a natural-like language. A variety of real
world problems can be described as knowledge integration
problems and even relatively uncomplicated solutions ( [5])
form a step forward towards formation of more and more
complex systems.

Ideally, artificial knowledge processing systems need to
be able to rely on linguistic inputs and outputs. Natural lan-
guage processing is crucial when it comes to further enrich-
ment of an interaction between the man and the machine.
Such systems need to provide capabilities of intuitive human-
like reasoning. Without such capabilities, it is nearly impos-
sible to meaningfully operate based on uncertain or rapidly
evolving knowledge often met in real systems.

Despite numerous advantages of such an approach there
are also important tradeoffs that have to be taken into ac-
count. [6] state that transparency and precision of natural-
like languages based systems are dependent on each other
and have to be balanced with care. Also the nature of such
languages is inherent to inconsistencies which have to be
considered while integrating knowledge. These are a direct
tradeoff to transparency of linguistic statements which refer
to general, subjective interpretations of concepts ( [7]).

In this approach the main goal is to present a distributed
knowledge integration process that results with linguistic sum-
marization ( [8]) which is easily understood by a non-expert
user. [9] claims that people prefer less precise information
stated in a natural language to figures in terms of under-
standability, therefore the given summary will be stated in
a natural-like language. In order to keep inputs form similar
to outputs the language of the summary is based on the same
natural-like basis.

Natural-like language integration may result with incon-
sistencies that are unavoidable consdering the nature of such
language. In order not to deny the information they hold they
have to be taken into account while generating linguistic sum-
mary. For that task a representation derived from natural-like
languages is employed in this approach.

Finally, an issue worth noting is that nowadays knowledge
integrating systems are employed within the units that have
limited computing resources. Even though the development
of such units has been advanced lately it is still desirable
to propose a solution that is simple and lightweight when it
comes to computing.

II. BACKGROUND

In the recent years the amount of knowledge has increased
greatly. Due to vast and extensive growth of internet network
the level of knowledge distribution has also greatly increased.

This implies the more noticeable presence of uncertainties in
these sources.

Knowledge integration can be seen as a very specific
case of knowledge-based reasoning. Specific in the sense that
rather than aiming at reaching a particular conclusion based
on available knowledge, it aims to give a general description
of the available knowledge corpus as a whole.

Existing approaches to knowledge integration base mostly
on rule-oriented representations acquired from either machine
learning and data mining approaches ( [10]) or domain expert
in a standard way. In order to improve operating and reduce
the number of required external resources these approaches
often employs neural networks or genetic algorithms ( [11])
in reference to rule-based systems. This is to integrate rule
sets into a single knowledge base - also in a fuzzy context
( [12]).

Altough rule-based systems have been popular recently
popular they struggle to adapt to more complicated, real envi-
ronments where the knowledge source is greatly distributed
and rapid changes may occur as they require either a long re-
training process or are negatively affected by exclusive rules
in the set which is unavoidable and considered as a fault.

A different approach to knowledge integration may also
be applied in a field of recommendation systems ( [13]) in
order to provide refined suggestions on the selected domain.

All these approaches share similar properties which one
cannot be left unmentioned of. They require a great number of
preparations either forming a rule knowledge base providing
a reasonable number of rules or equipping considerable and
consistent training sets for neural networks initial training.
Additional work is to be done also whenever the knowledge
source changes over time.

Disadvantages strictly relate to knowledge representation
employed in these approaches therefore a different, fuzzy-
based representation of knowledge has been presented in [14]
where rules are exchanged with Fuzzy Cognitive Maps (intro-
duced firstly by [15]) and the integration process is done using
Particle Swarm Optimization (PSO) algorithms (introduced
in [16], explained widely in [17]) as integration is therefore
considered a poorly-structured (ill-structured) problem.

Still these approaches are not flexible enough to grasp
more complicated environments as they were proposed for
strictly selected domains, especially when it comes to using
a natural language as a communication interface between the
environment and the system.

III. PROBLEM DEFINITION

Although there have been multiple approaches to knowl-
edge integration in recent years, they mostly present rule-
based knowledge systems [18]. While such systems do not
constitute a problem per se, they tend to require complicated
preprocessing [19] before the system can be used in practice.
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What strengthens the issue even more is a fact that such pre-
processing has to be redone according to changes in a source
of knowledge. In general, implementing rule-based solutions
in systems operating in real environments – especially if there
is a demand for timely responses – is considered a difficult
task.

Another problem with usual knowledge integration sys-
tems is an interface between the system and its user. A
friendly and easily-interpretable interface for human-machine
interaction would obviously form a decent advantage of such
a system. The natural candidate for such an interface would be
a natural language. In simplistic scenarios, such as evaluating
the danger level, color-coded threat levels can be understood
faster than full natural language sentences. However, when it
comes to an integration of semantic knowledge, natural flexi-
bility and richness of natural language seems irreplaceable to
this day.

Our current capabilities of semantic natural language pro-
cessing are somewhat limited. However, even limited ap-
proaches using natural-like language terms or statements can
improve the transparency of the system and its behaviour [6].

In particular, the fuzzy-linguistic approach [20–22] – as
simplistic as it is in a semantic sense – can be considered
a rather successful tackle at modelling of the reality with
words. Computational ease and transparency of the approach
made it relatively popular and broadly adapted in multiple
fields. In some cases, the fuzzy and/or fuzzy-linguistic ap-
proach are even considered (overenthusiastically, but still) an
approach at the natural language level.

The nature of knowledge integration systems often causes
them to work in naturally distributed environments where
knowledge comes from external entities [23]. It naturally
implies a situation in which the whole body of knowledge
is susceptible to inconsistencies. Inconsistent knowledge, if
left unhandled, can cause erroneous knowledge integration
results and, in general, makes the system prone to failure.
Inconsistencies do not only occur due to conflicts between
particular agents’ knowledge. Inconsistencies are inherent to
a natural language, they constitute its inseparable part due to
words and sentences holding multiple and/or broad meanings.

Fuzzy-based approaches have been broadly applied in
a variety of systems serving as knowledge bases [24] or in
order to enhance reasoning and decision-making processes
[25]. There are fuzzy-relational databases [26] and fuzzy-
based database query languages [27] as well. Fuzzy-based
approaches and, in particular, the fuzzy-linguistic approach
perform well in multiple other tasks and provide an interface
for limited natural language inputs.

An interesting scenario occurs when knowledge integra-
tion process is implemented in a system gathering data and
providing its summaries to non-expert users (e.g. textual sum-
maries of weather [28] or city traffic [29]). Such a situation
calls for a certain level of abstraction in a summary as non-
expert users may not understand the meaning behind raw

data. A natural candidate for a friendly and intuitively under-
stood solution are natural language-like summaries of data.
The already mentioned fuzzy-linguistic approach allows us to
form a mapping between observed numerical properties and
concepts of a natural language understandable for an external
user of the system.

The summarization method for fuzzy relational databases
has been proposed by Yager [30], mentioned and extended
to interval-based by Niewiadomski in [26]. In his approach
Niewiadomski assumes existence of a database with linguis-
tic values upfront which is subject to further summarization
in Yager sense. In this approach such assumption has been
rejected in favour of gathering data on-fly from other en-
tities taking part in the system using their communication
capabilities.

Yager’s approach to summarization provides a single sum-
mary scoring the highest degree of truth according to a se-
lected quality measurement tool. It may be followed with
misleading summaries whenever inconsistencies or incom-
pleteness are present in a database. Inconsistent and incom-
plete data results in one more problem during knowledge
integration. In this approach a cluster analysis is performed
before a linguistic summary is formed. In some situations it
may be important to notify a user about how “certain” the
summary is. It can be done by assigning some numeric value
(interpreted as the confidence level – degree of belief) or, to
avoid numerical values in the summary, by forming an output
as a statement with an auto-epistemic modal operator [31]
such as Possible, Believe, Know.

IV. MOTIVATION

A vast amount of knowledge nowadays requires ap-
proaches which are computationally feasible while providing
precise, interpretable, and tractable results. The task of an
efficient integration is often complicated by the fact that the
knowledge may be dynamic (growing or changing in real
time), distributed [23], incomplete, and inconsistent.

The approach proposed in this paper emphasized the im-
portance to maintain a general ease-of-use of the system. In
order to attain this goal, a solution aimed at mimicking natu-
ral language behaviour can be applied during the design of
interfaces for handling both output and input of the knowl-
edge processing system. Following this idea, the user does
not need to possess an extensive knowledge regarding the
particular domain and should be able to communicate with
the system using general language concepts. For example,
rather than obtaining a row of numerical measurements of
various meteorological factors, the user can obtain a textual
summary describing the weather in his/her area [28].

Following the above example, the main goal of such
a knowledge-integration system is to summarize a distributed
body of knowledge in order to provide a fitting, meaningful
and easy-to-interpret summary. This allows reducing the need
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of a domain knowledge on an end-user side of the system by
providing quick and easy-to-interpret information about a cer-
tain environment (e.g. by providing city-traffic descriptions
based on numerical data gathered by a distributed network of
sensors [5]).

Inconsistencies are one of the characteristics of truly dis-
tributed and asynchronous knowledge sources. Unless serious
prearrangements are made, inconsistencies are a natural con-
sequence of such a structure of knowledge. A natural way to
deal with inconsistencies is to remove them from the data (e.g.
by using inputation procedures [32]). While it is usually the
most useful way, in some cases it may be important to retain
the information about some particular pieces of knowledge
being uncertain.

In a natural language humans tend to use auto-epistemic
operators [33] to convey their uncertainty. The same can be
successfully applied to autonomous systems used to describe
data with words. Ultimately, the goal is to inform a recipent
of an unclear state of certain parts of knowledge body – com-
pletely opposite to a situation in which a recipient remains
unaware of potentially faulty information.

Original approaches [34] successfully extend a language
generated in artificial agents by applying auto-epistemic op-
erators. However, the setting of distributed knowledge in-
tegration is different from the original ones and, in conse-
quence, needs a separate analysis. The closest setting to the
one currently investigated can be found in works on gener-
ating modally-extended textural descriptions of incomplete
city-traffic data [5]. Still, even if it describes a generation
of modal descriptions in hierarchical population of agents,
it is designed mostly for merging summaries about disjoint
regions of the environment and differs from the situation of
greatly overlapping and inconsistent knowledge which needs
comprehensive reinterpretation.

V. SYSTEM ARCHITECTURE

Artificial knowledge integration systems are designed in
order to either enhance the knowledge integration process or
fully automatize and speed up such a process by removing
an expert from the decision making loop. We could draw an
analogy to a distinction between decision support systems
and decision making systems. Fortunately, typology does not
matter here much as long as we accept the crucial idea of
artificially supporting humans in tasks which usually need
our elaborate participation.

In real-world circumstances integration processes occurs
only in environments with knowledge distributed throughout
entities forming such environment [23]. Each entity possesses
only part of the knowledge. This partial knowledge is usu-
ally considered to be subjective, which may lead to possible
inconsistencies in the knowledge as a whole.

In this paper we consider an environment limited to a sin-
gle object with multiple properties. Such reduction allows

us to simplify a notation and presented descriptions. Still,
the approach can be freely extended to environments with
multiple objects. Naturally, it implies that while relations be-
tween objects in the world are not out of the question, they
are simply omitted by the proposed method. While tackling
the problem of inter-object relations would be desirable, to
say the least, it is beyond the scope of this step of the research
and should be a subject for future consideration.

An ultimate goal of communication is to attain goals of
specific agents (attaining goals of the community as a whole
can also be modelled as a selfish desire to optimize global
’wellness’). However, the communication process itself can
be seen as a way of spreading knowledge in the population,
be it acquisition or sharing. Entities in the real-world environ-
ment communicate with each other for various reasons. In this
process they share their knowledge gathered on environment
within which they operate. Such a process is an indispens-
able part of knowledge integration as it provides information
fluctuation and therefore a need for integration.

An artificial system of knowledge integration was men-
tioned to resemble corresponding real-world processes, there-
fore an agent-based approach was employed in this work.
Intelligent agents are commonly used throughout the liter-
ature and the definition of an intelligent agent is presented
in [35]. For the sake of simplicity in this approach the archi-
tecture was reduced to the minimum of interaction between
agents.

In this approach two types of agents may be distinguished,
the first being an Observer Agent (OA) focused on conduct-
ing observations within real-world environment. OA’s goal is
to perceive the selected object’s properties and pass this in-
formation further for integration. The number of such agents
depends on various quality and performance factors. A high
number of OAs affects the performance as the amount of
information increases but it simultaneously raises the quality
of the final result.

A recipient of such information is the Main Agent (MA)
which is responsible for the integration process. The goal is
to integrate the knowledge provided by OA and summarize it
in a specific manner in order to release the summary outside
of the system.

The division into two types of agents is purely theoretical
and is performed in order to outline the goals of each type. In
real implementations any agent can possess both an ability to
observe the environment and to perform the integration task.
However, in this paper it is assumed that these tasks are not
performed simultaneously by any particular agent. Although
it is also left for future consideration, we claim that possessing
its own empirically-verified (but still subjective) knowledge
greatly influences the knowledge integration process. Like in
humans, private empirical observations of a particular agent
take huge precedence over information obtained from others.
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Fig. 1. An agent observing a part of the world

VI. INTEGRATION OUTLINE

Architecture described in previous paragraphs directly
outlines the structure of the investigated integration process.
In this particular case the summarization of the distributed
knowledge source is an appropriate reason.

In the investigated scenario an input of the integration pro-
cess consists of distributed sources knowledge in the form of
Observer Agents (OAs). Although it may differ in general, it
is assumed that OAs are limited to a single observation mean-
ing that an OA collects the values for each unique property
of an object once. Were the number of observations more dif-
ferentiated, the result of the proposed approach would favour
agents sending their ‘opinions’ more often. Sending ‘more’
would directly translate towards a higher impact on the final
result of the integration.

It is also assumed in our scenario that all OAs are equal.
That is, the quality of their observation does not vary from
one to another. They are equally insightful and equally prone
to making errors when replaced with one another. Naturally,
in heterogeneous societies of agents one would need to apply
additional trust-based mechanisms [36] in order to diminish
the impact of incompetent units.

There is exactly one Main Agent (MA) assigned to the
knowledge integration task. Following common-sense, it is
assumed that the MA does not take part in an observation
process. That would cause a heavy interpretational impact as
one’s empirical observation takes precedence over knowledge
attained from others. Under confirmation bias [37] humans
tend to take things they see for granted and follow their think-
ing tending to ignore alternative possibilities, especially if
they are not empirically verified. To put this simply, we be-
lieve what we see but only possibly trust in what is told by
others.

As mentioned earlier, this distinction between OA and
the MA still allows them to possess the same architecture.

Both hardware and software components can be the same.
It allows for some extended scenarios where a role of the
MA is assumed dynamically depending on the situation and
information needs of the user. It should be noted that while
heterogeneity of agents is generally allowed, it may lead to
other problems such as semantic inconsistencies following
from possibly different conceptualizations of the external
world in differing agents [38].

In order to properly communicate with one another,
agents must be equipped with a common language. While
this language may be pre-determined by a system designer,
there are approaches for an autonomous development of – not
too complicated, but still – languages. An approach called
Naming Game [39–41] has been developed for agent-based
systems in order to both automatize and autonomize this
process.

An outline of the approach to the integration process in
this work may be described briefly with the following steps
and diagram:

1. OAs observe a selected object from the environment,
2. OAs pass observations through messages to MA,
3. Gathered observations are integrated,
4. Result of integration is summarized linguistically,
5. Modal operators are applied in order to emphasize the

certainty,
6. Final result is presented outside of the system.

VII. AGENT INTERNAL MODEL

Throughout the years, a variety of existing approaches
to knowledge integration employed multiple various archi-
tectures. Among them, an agent-based architecture deserves
a particular interest, as it reproduces such relations between
real entities as communication interactions or trust mecha-
nisms.
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Fig. 2. Simplified steps of the process for a single object, three OAs and three features

A definition of an intelligent and autonomous agent pre-
sented in [42] clearly distinguishes the agents from a standard
computer software. Another definition that origins back to
IBM’s Intelligent Agent Strategy white paper states that agent
is acting for another, with authority granted by the other.

Autonomous nature of agents is strongly reflected in a pur-
suit towards achievement of its goals relying on its knowledge
partially derived from personal experience. A more detailed
discussion on this topic may be found in [43] or [44].

In the proposed approach two different types of agents
may be distinguished based on their goals:

1. Observer Agent (OA): An agent whose main goals are
to observe and share observations with other agents,
especially with the Main Agent. These agents, as
a group, constitute a source of distributed knowledge.

2. Main Agent (MA): An agent conducting the integra-
tion process as a main goal. This agent also interacts
with OAs in order to obtain knowledge for the integra-
tion.

VII. 1. Observer Agent

Observer Agent (OA) is one of agents type employed
in the presented knowledge integration approach. OA is re-
sponsible for conducting an observation of a given object.
Existence of multiple OAs observing the environment and
producing knowledge naturally implies a distributed nature
of the whole system. A distribution is achieved simply thanks
to the agent’s attributes, ex. autonomous nature, and subjec-
tive experience of particular agents. Agents may complement
one another by observing different parts of the environment.
The system as a whole may also rule out mistakes of sin-
gle OAs by detecting inconsistencies during the knowledge
integration.

As in any intelligent and autonomous agent, there is a set
of goals specified for the OA:

1. to observe the given object(s) within the real world and
create a corresponding observation vector.

2. to share obtained knowledge with other agents (espe-
cially with the Main Agent) using standard communi-
cation channels.
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VII. 1.1. Internal Architecture

An internal organisation of any entity in agent-based sys-
tems depends mostly on the purpose of such a system. A vari-
ety of different architectures were presented in [45] and [46]
for distributed medical care and emotion dynamics simula-
tion.

Huang in [45] presents a three-layered knowledge-based
architecture of an agent. The domain knowledge layer is re-
sponsible for storing knowledge base specific for medical
domain, the inference knowledge layer keeps rules related to
the domain, and the control knowledge layer applies infer-
ences to domain knowledge whenever new data is available.

In contrast to [45] an architecture in [46] presents an
unlayered cognitive agent organisation with components re-
sponsible for behaviours, emotions, evaluations, perceptions
and knowledge base. Relations between the components are
dictated by an algorithm employed in this system to stimulate
specific behaviours based on emotions of an agent.

A group of approaches presented in [47] can be identified
as layered architectures. Both horizontal and vertical types are
described but authors further focus on the latter one referring
to InteRRaP agent architecture. In [48] and [49] InteRRaP
is stated as a refinement of the head-body-mouth approach
to modelling an agent where the layers consecutively are:
a reasoning unit, the processing facilities description and
a communication unit. On the other hand, a horizontal ap-
proach to agent modelling is described in [50]. In that case,
three layers are connected simultaneously to the inputs and
outputs while working concurrently as they produce activities
(and pass them directly to the outputs).

In the proposed approach a vertical layered architecture
is employed as a consequence of consecutive parts of the ob-
servation process naturally aligning themselves in such order
in the system. Each of the layers is responsible for a separate
task: either it is retrieving data from sensors, interpreting or
forming an observation vector (as presented on Figure 3).

In comparison to architecture in this approach, all men-
tioned architectures share either a layer or a component re-
lated to knowledge (domain-specific knowledge layer in [45],
knowledge base component in [46], hierarchical agent knowl-
edge base layer and its components in [47] or in [49], topo-
logical map of the various paths and junctions – navigable
routes in the world in [50]).

Judging on the description, the position and its connec-
tions to other components is a complex element of all the
architectures except in [50] where authors are aware of the
fact that an agent has to cope with uncertainties and some-
times needs to work having very limited knowledge about the
environment.

Mentioned architectures are also equipped with communi-
cation components. It conforms with a natural requirement of
agents to send out messages of different types either to other
systems or, simply, to other agents with which they work.

In contrast to the presented approaches, an architecture

described in this paper is much simpler as it is only limited to
several behaviours and goals. This allows to fully focus only
on required components instead of expanding the architecture
for behaviours that may, or may not, be introduced in the
future and/or used during operational time of an agent.

All these limitations are made in order to focus on the
considered and very specific task-oriented core knowledge-
processing components and in order to simplify the architec-
ture and decrease the amount of initial knowledge an agent is
required to have before he/she is fully prepared to operate in
his/her environment.

Every OA is equipped with sensors necessary to retrieve
raw data related to object’s properties. For the sake of this
research an assumption has been made that the vision on the
object is not obscured by any mean which would disallow the
agent to take observations on the properties he/she is required
to. It should also be noted that such an assumption does not
necessarily mean that the observations taken by two different
agents will be identical. Specific alignment of the sensors and
approaches to dealing with observation techniques are not an
interest of this research and should be dealt with separately.

In order to fulfil their goals, OAs require a language to
communicate with and the communication protocol for send-
ing messages. It is important to note a difference between
the language and protocol of communication as the former is
crucial in terms of knowledge integration and the latter one is
mostly unrelated. Exemplary communication protocols have
been presented in [51] and they refer to [52] communication
language specification.

In contrast to the communication protocol, a language
used by an agent is crucial in terms of successful knowl-
edge sharing. As in any language, entities that communicate
among themselves must possess a similar set of concepts. The
joint understanding is crucial in successful communication.
It is not possible to communicate without shared concepts
as it is simply not possible to communicate efficiently using
two different languages. Particular internal interpretations
related to these concepts are specific for each agent because –
unlike concepts themselves – they are (or at least, can be [39–
41, 53]) derived from their respective experiences and past
knowledge.

A requirement for concepts’ semantics shared a priori
may be considered too strict. In order to partially automa-
tize on-the-run reachability of this requirement, numerous
approaches may be used. An exemplary method for achieving
a conceptualisation shared throughout all agents is the Nam-
ing Game (tNG) described by Steels [40] and Lorkiewicz [39].
In brief, tNG is a process of drawing attention to an object by
naming its characteristic features (or object itself).

The tNG approach has not yet led to creating a fully-
developed human-like language. Still, it is a good example
of how the concepts can be introduced and aligned within
agents without interference from their creators (thus fulfill-
ing Zero Semantical Commitment Condition stated for the



324 Łukasz Modliński, Grzegorz Popek

symbol grounding problem in [54]).
It is worth reminding that the multitude of architectures

introduced in various papers relate directly to the fact that the
proposed architectures are usually goal-oriented. While from
time to time there are mentions of new all-capable robots
with learning capabilities, in the end – after investigating de-
tails – an architecture of an agent is mostly dependent on the
processes he/she has to conduct and is employed for.

VII. 1.2. Knowledge Gathering Process

This section describes a process of transforming raw sen-
sorical data into an observation vector. In short, in order to
prepare the vector, OA has to use values read from sensors
and relate those values to her conceptual knowledge. Based
on this internal relation, the OA generates a vector containing
symbols of the language describing features of an observed
object.

A use of symbols instead of numerical values is dictated
by the communication language. This approach reflects a re-
alistic way of semantic communication in which symbols of
the language are carriers of subjective (yet shared) meaning
instead of objective numerical values.

As shown in Figure 3, this approach translates into an ar-
chitecture formed of multiple vertically-aligned layers. Each
layer corresponds to a distinct stage of an observation process.

An observation process starts with reading values from
sensors. It is assumed that every OA is equipped with sensors
allowing him/her to read sufficient data on the object. It usu-
ally equals to having a separate sensor for each preassumed
feature an agent is supposed to observe.

After the values are read, they are processed by the agent
in order to obtain an internal subjective interpretation.

Finally, an observation vector is formed for each of the
requested features. It is now ready to be shared with others as
it is in the form other agents can understand.

In order to avoid tackling an area of particular communi-
cation protocols, it is – for simplicity – assumed that the order
of features in the vector is fixed and during communication
all the agents assume the same predetermined positioning.

VII. 2. Main Agent

Another type of an agent participating in the knowledge
integration process is the Main Agent (MA). In contrast
to OA, the purpose behind existence of MA is to conduct
a process of knowledge integration over a set of observations
provided by OAs. Unlike OAs, only one of the agents takes
the role of MA within the system.

If integration was performed by multiple agents, it could
result in numerous misunderstandings. It follows from a sim-
ple fact that their experience may differ from one another
(experience in the population may be inconsistent as a whole).

It is also important to note that MA does not participate
in the observation process. Otherwise, an approach to integra-

tion would greatly differ as it would have to be influenced by
the MA view on the object. Having one’s own empirically-
verified experience impacts heavily a person’s judgement
regarding obtained information. We trust more in what we
see in comparison to what we are told. In consequence, the
personal view of MA dominates over the opinion of others.

As a typical autonomous agent, the MA is equipped with
goals to achieve. In this case they are relatively abstract and
predefined, and can be stated as follows:

1. Gather observations from Observer Agents.
2. Integrate gathered observations, summarize the result

of integration, and deliver it to an external user of this
system.

An internal organisation of this agent differs slightly from
the architecture of OAs presented in the previous paragraph.
Both architectures are described separately but in the end they
should be combined within a single agent simply because any
agent is supposed to have a capability of taking the role of
MA.

Due to the similarity of architectures of MA and OA, simi-
lar rules apply. Differences are dictated by a contrast between
goals of MA and OA. Other factors affecting the layout of an
architecture include:

1. Placement of an agent in a hierarchy of the system.
2. A level of communication language used by MA.
MA relies on the observations gathered from OAs and –

in consequence – an interface for communication with other
agents is required. An assumption has been made here that
this interface is fully compatible with OAs communicating
protocol and messages delivery rate is 100%. Such an assump-
tion is required in order to focus on the knowledge integration
process and to set aside the problems concerning communi-
cation itself. More on the topic of communication difficulties
and solutions may be found in [51] or [55].

In order to understand the observations of OAs, MA needs
to be equipped with a ‘similar’ language. As it was mentioned
in OA paragraph of Section 1, a similar language should be
understood as languages being conceptually-consistent. There
are multiple ways to ensure MA shares concepts with the OAs.
In particular, one can implement tNG mentioned in Section 1.

The function of MA differs from OA which causes an in-
ternal organisation to also differ slightly. In MA’s architecture
consecutive layers of processing correspond to steps of an
integration process. In OA, consecutive layers of processing
correspond to the observation process, respectively.

Incoming observations are expressed in a language
of communication employed in the system. They are re-
interpreted into an internal representation using MA’s internal
semantics. Even though observations made by a particular
OA form a base for an original message, the translation pro-
cess within MA always relates to her own knowledge. This
is because of real-life-like assumption that participants of
the communication process assume that the meaning is uni-
versal amongst themselves. Such re-interpretation has to be
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Fig. 3. Observation process

performed in order to initialize the integration process, as it
operates on numerical structures instead of symbolic values.

Knowledge integration proceeds as described in Sec-
tion VI. At this level each of the integration steps corresponds
to a specific architecture layer (see. Figure 2).

At this level of integration a process of clustering is con-
ducted in order to provide a full dendrogram ( [56]) required
within the next layer. The clustering employs a consensus
algorithm [57] and a distance function in order to designate
an appropriate representative of a cluster.

After the dendrogram is computed, corresponding cluster-
isations may be analyzed in order to select the most consistent
yet the least numerous clusterisation. Not every integration
process results in a single consistent cluster since – as men-
tioned in VI – observations may be inconsistent. In conse-
quence, the outcome of the integration process should reflect
those inconsistencies (that is, it may consist of multiple clus-
ters). The reason behind this is clearly explained in a carpet
example presented in [58].

After the cluster analysis, a chosen representative (in
a form of a single or multiple clusters) is supposed to be trans-
lated back to the linguistic form using the exact same internal
representation. This is to aquire a linguistic-level summary
of the result in a form conveyable to the external user of the
system. Naturally, the translation needs to cover a seemingly
unnatural outcome with multiple clusters.

Inconsistencies within the body of knowledge ought to
be externally expressed [5]. It is totally unacceptable that the
inconsistencies are completely omitted during summarization
process.

In order to convey a fact that the original body of knowl-

edge is inconsistent, modal statements may be used when
forming the final summary. For such cases, the paper [58]
proposes an application of auto-epistemic modal operators of
possibility, belief and knowledge. The operators (described
shortly on VI) reflect the degree of uncertainty of MA regard-
ing the received results of observations (as a whole).

After modality-based statements are assigned, they may
be communicated outside of the system.

VIII. LINGUSTIC VARIABLES

Communication with machines has always posed a chal-
lenge. Most desirable approaches would employ a natural
language for this task as it is widely and commonly used
in human-to-human interactions. Various approaches to this
matter have been presented lately featuring neural-networks
and voice commands processing ( [59]) and group decision
making.

Similarly to the mentioned approaches, the proposed solu-
tion is natural-like. That is, it employs the Zadehian linguistic
variable [20], [21], [22] as a base for a semantic model under-
lying the communication between agents. Fuzzy-logic-based
linguistic variables provide a rational interplay between trans-
parency and precision [6]. Linguistic variables have been
successfully applied in a variety of situations, such as the
quantitative processes theory [60].

According to [20] the idea behind the linguistic variable
(and computing with words, in general) is that words (and
complex sentences) are treated as computable values. More
formally, the linguistic variable is defined as a following
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quintuple:

(χ, T (χ), U,G,M) (1)

where χ denotes the variable’s name; T (χ) is a set of terms
for the variable; U represents a universe of discourse; G is
a syntactic rule to generate the terms from T (χ); M is a se-
mantic rule for associating each of the linguistic values from
X ∈ T (χ) its meaning M(X), where M(X) is a fuzzy
subset of U . By the meaning of value of the variable we
understand its compatibility function c : U → [0; 1].

The process of communication is conducted using the lin-
guistic terms T (χ) of the variables as they imitate a natural-
like representation of concepts. It should be ensured (as men-
tioned earlier) that agents require to, at least partially, agree
on the meaning of concepts in order to successfully commu-
nicate with each other.

Linguistic variables are considered here as a reflection of
an agent’s internal semantics resulting from the past experi-
ences. These reflections are stored in a form of compatibility
function c : U → [0; 1] for each of concepts from the term
set. As an agent acts within the environment they may be
modified to adapt accordingly with explorations of the agent.
The process of compatibility function forming and evolution
is going to be separately investigated in future works.

IX. INTERNAL REPRESENTATION

Besides the external representation of a communication
language, there is an indisputable need for a correspond-
ing (and equivalent!) internal representation of the language.
Agents require structures which they are able to naturally
’understand’ and process.

The existence of an internal representation within hu-
man beings has been discussed yet no consensus has been
reached on that matter [61]. Alternative approaches exist
(e.g. a representation-less approach has been proposed by
Brooks [62]).

Although internal representations allow us to perform
more complicated tasks on the knowledge they represent,
there are inevitable losses of accuracy when the knowledge
is translated to and from this form [6]. These are inevitable
tradeoffs justified by the categorization processes as they are
an essential part of high-abstraction cognitive beings.

The integration process requires a specific set of oper-
ations that are performed on particular internal structures.
Let:

λX∈T (χ) ∈ [0; 1] (2)

In this approach an internal representation is highly re-
lated to a compatibility function of X , that is:

X = {x ∈ U ⇒ cX(x) ≥ λX}. (3)

In short, subset X contains empirical values for which the
compatibility is equal or higher than the activation threshold.
X is considered as an internal representation of concept X .

X. DISTANCE FUNCTION

The most important ability required and employed in var-
ious phases of the integration process is an ability to compare
the observations. Among a variety of methods, a common-
sense approach of using a metric function is suitable for this
task. The metric needs to be tailored specifically for the form
of compared knowledge structures.

Regardless of an assumed form of knowledge, any metric
function in any space has to comply with requirements [63]:

1. δ(x, x) = 0,
2. δ(x, y) = δ(y, x),
3. δ(x, y) + δ(y, z) ≥ δ(x, z).

In this particular research, x and y take a form of intervals
x = [x∗;x

∗], y = [y∗; y
∗] where x∗,y∗ and x∗,y∗ denote

lower- and upper- bounds of x and y, respectively.
Specific metrics suitable for various particular purposes

have been presented in the literature. In particular, three fol-
lowing distance functions satisfying mentioned requirements
have been proposed [64] for measuring the similarity between
finite time-intervals:

δ1(x, y) =

{
|x∗ − y∗|+ |x∗ − y∗|
max{x∗, y∗} −min{x∗, y∗}

(4)

δ2(x, y) =
{
|x∗ − y∗|+ |x∗ − y∗| (5)

d3(x, y) = card(x÷ y) (6)

As mentioned in [65], for a case of a real lineR, a distance
function can be directly derived from Minkowski’s family of
distance functions Lm designed for Euclidean spacesRp (nat-
urally, assumingm = 1 and p = 1). The function δ2 has been
analysed and experimented on, while providing promising
results in [66] for a case of a knowledge integration process.

Unlike a single-feature scenario, where classical distance
functions (like δ2) apply, multiple-feature scenarios call for
more complicated functions to be designed and employed.
Examples on such may be found in [67] where L2 was used.
An observation vectors have to be normalized in order not
to favor any feature over another (due to obvious potential
differences in value ranges). Naturally, if particular features
are to be favoured, one should stray from normalizing and
apply an approach with a vector of weights.
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Fig. 4. Example of classic triangular compatibility functions.

XI. CONSENSUS AND CLUSTERING

XI. 1. Consensus

Integration process may result with a single and eas-
ily interpretable outcome. Unfortunately, it often provides
a group of similar results which require further processing,
e.g. a choice of the final representative [64]. Such a represen-
tative is called a consensus. A wider definition and the theory
of consensus was presented in [68].

The theory of consensus partially derives from social stud-
ies and philosophy where various definitions are presented for
politics, epistemology, justice and information amalgamation
in individuals [69, 70]. It was also employed in [71] to allow
for a collection of machines to work as a coherent group and
to retain an operability under a partial failure.

In an analysed scenario of knowledge provided by a multi-
agent system, the consensus is applied for the purpose of
measuring the distance between whole groups of observa-
tions (called clusters). A consensus-based approach is also
applied during a translation phase in which the final summary
is formed.

A consensus used in an integration process needs to sat-
isfy the following conditions:

1. Consensus resulting from a cluster of elements needs
to retain their theoretical-structure (e.g. a consensus
evaluated on a set of intervals should be an interval),

2. Consensus may, but does not have to, be equal to any
of the elements from an original cluster.

The first condition strays from the general consensus the-
ory [68]. We require the consensus to hold the very same
structure as other elements. By this we understand that the
number of elements of the vector, their order and their do-
mains are strictly preserved.

Let us consider an example where a set consists of
two vectors: ([0; 1], ‘word′, 15.3), ([5; 10], ‘sentence′, 13.5).
Then, a vector ([2; 3], ‘literal′, 12.5) could be considered
a valid consensus fulfilling the first condition. At the same
time, a vector (‘literal′, [2; 3], 12.5) would be considered
invalid due to formal requirements.

The second condition is relatively trivial and requires al-
most no explanation. Simply, whenever the consistency of
a set is sufficiently high, the consensus may be found among
the elements of the set. In an opposite case (that is, when the
consistency is below a desirable threshold), a consensus may
differ (in terms of values) from the elements of the set.

Another algorithm for consensus designation was pre-
cisely described in [64] where it was paired with the distance
function described earlier. It was also used and performed
well in [66] in a simple comparison of cluster analysis meth-
ods.

After adaptation, an algorithm from [64] takes a form
presented in Figure 5.

XI. 2. Clustering

Clustering constitutes the next step specified in an outline
of an integration process. It is required for preparation of
a set of potential clusterings in order to further analyze their
quality (e.g. consistency) and, in consequence, to select the
most appropriate one.

A typical goal of a clustering as a data analysis tool is
to group similar elements together. There is a multitude of
existing solutions tailored specifically for various use cases.
A not-so-recent yet still valid, insightful and thorough review
of clustering methods can be found in [72].

This paper employs a hierarchical agglomerative cluster-
ing [73] in order to accommodate aforementioned needs and
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1: procedure CONSENSUS
2: I = {i1, i2, . . . , in}, in = [in∗; i

∗
n] – set of duplicated observations in internal format

3: d2(x, y) = |x∗ − y∗| + |x∗ − y∗|, for simplicity called d(x, y) = d2(x, y) – distance function adapted to internal
structure

4: C = [C∗;C
∗] – consensus for I

5: if (n = 1) then return C = i1
6: end if
7: L = {l1, l2, . . . , ln}, ld = id∗, i ≤ j =⇒ li ≤ lj containing all the left edges of elements, sorted in ascending order
8: P = {p1, p2, . . . , pn}, pd = i∗d, i ≤ j =⇒ pi ≤ pj containing all the right edges of elements, sorted in ascending

order
9: for lk in L do

10: k = n+1
2

11: k′ = n
2 + 1

12: lk ≥ C∗ ≥ lk′
13: end for
14: for pk in P do
15: k = n+1

2

16: k
′

= n
2 + 1

17: pk ≥ C∗ ≥ pk′
18: end for
19: if C∗ ≥ C∗ then return C = [C∗;C

∗]
20: end if
21: end procedure

Fig. 5. Algorithm for Consensus Evaluation

generate a full dendrogram of potential clusterings, in con-
trast to partitional algorithms [72] which provide only a single
clustering (with a pre-specified number of clusters, too). An-
other advantage speaking for an agglomerative approach is
its simplicity. It is usually much easier to choose the best can-
didates for merging rather than find the best split of a cluster.
A promising example of applications of hierarchical agglom-
erative algorithms can be found in the literature [66, 74].

XII. FINAL CLUSTER ANALYSIS

In order to select a clustering that satisfies the require-
ments specified within an integration process, a method or
algorithm for clustering analysis needs to be provided. Pre-
cisely, it is used in order to assess the consistency (and qual-
ity, in general) of consecutive clusterings from the dendro-
gram. The method needs to be suitable for an assumed form
of knowledge structures. Multiple approaches are available
throughout literature while a well-known method for this task
is silhouette [75]. The silhouette algorithm was compared
in [66] to a novel cluster analysis method which is Gap Statis-
tics [76] based on comparision to null models [77, 78] that
performed better.

This paper employs Gap Statistics. In order to give it
a brief introduction, let

Dr =
∑

i,i′∈ηn

dii′ (7)

be the summaric distance between consecutive pairs of ele-
ments in cluster Kr and dii′ be the distance function defined
earlier in X. Let

Wk =

k∑
r=1

1

2nr
Dr (8)

be a within-cluster distribution of elements where n denotes
a number of clusters in the clustering and k points at a spe-
cific cluster. The idea behind this approach is to maximize
a distance between the real data model and its null reference.
The Gap distance is given as follows:

Gapn(k) = E∗n{log(Wk)} − log(Wk). (9)

An appropriate references for null models are provided
in [77, 78] and are not discussed in this work. A more detailed
description of gap statistic can be found in [76] where the
authors prove a validity of the method.

XIII. TRANSLATION

Integration process provides a numerical summary of
gathered knowledge. Achieving a linguistic form of the sum-
mary requires additional efforts. In fact, this stage should be
seen as a natural inversion of the previous process of transla-
tion into an internal representation of an agent.
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Linguistic summaries of data have already been explored
under different scenarios in [26] where – in contrast to this ap-
proach – data is assumed to be already gathered in a database.
It employs a summarization in Yager’s [79] sense using de-
grees of truth for a measurement of the quality [30].

Unlike in mentioned approaches, the quality of summa-
rization in this paper is computed at the numerical level of
clustering analysis. The translation stage transforms a nu-
merical output of cluster analysis into concepts used in the
communication process.

The translation process can be seen as inversion of an
initial interpretation process which converts concepts into
a form of an internal representation.

The main intuition behind the proposed approach is de-
picted in Figure 6. In order to convert numerical summary
into a corresponding linguistic form, it needs to be matched
against each concept individually. The matching (comparison)
follows natural intuitions, e.g.

1. as the numerical result gets more precise, the chance it
is covered by the core of a single concept grows,

2. it optimizes the worst-case scenario, i.e., it maximizes
the compatibility level at which the whole range of
a numerical result is still covered by a respective con-
cept.

The process of matching against a particular concept is intu-
itively presented in Figure 6. It starts from the initial value
[Figure 6A], pursues towards [Figure 6B] the highest pos-
sible compatibility achievable for that particular linguistic
concept. Shortly, the numerical representation is pushed as
high as possible, but still needs to fully fit within the concept
(in a graphical interpretation it fits under the function plot).
The process stops once the highest value of compatibility is
reached [Figure 6D] for a given numerical representation.

It is also worth noting that the original activation value
of concept may be lower than the achieved one [Figure 6C].
An intuition underlying this statement is that a precise nu-
merical representation may more adequately fit the given
linguistic concept than the one associated with the activa-
tion value meant for standarized interpretation purposes. It
follows an intuition that albeit the standard activation value
governs the concept usage, the essence of the concept itself is
usually more compact. It is naturally reflected numerically in
fuzzy-linguistic modelling by the still-growing compatibility
values. Therefore, a goodness of the match of a summary
against a particular concept may be understood as a possibil-
ity to bring the said summary as close to the concept core as
possible.

Assume the internal representation process is defined as
follows:

Ψρ(λρ) = {x ∈ U : cρ(x) ≥ λρ}, (10)

where a linguistic variable χ also refers to a single object’s
feature and ρ is a linguistic value from the variable’s term set
T (χ).

Then translation of the result to its linguistic value de-
pends on a statement:

λρ ∈ [0; 1] : Ψ ⊆ Ψρ(λρ) ∧
(
∀L>λ Ψ 6⊆ Ψρ(L)

)
(11)

since the process needs to pay attention to such values of
activating thresholds which are possibly high while still guar-
anteeing that the whole Ψ is covered by Ψρ(λρ).

In consequence, the value of λρ defines an activation
value for ρ on a basis of Ψ referred further as Internal Inte-
gration Outcome (IIO). It is important to clearly state that
the resulting activation value has no connection to the previ-
ously defined value used in an internal representation conver-
sion phase.

To fully translate the result of an integration, a translation
is conducted on each value of the variable. Let

{λρ : ρ ∈ T (χ)} (12)

be the set of activation values for each of the linguistic val-
ues from the variable’s term set. A selection of the linguistic
result for a given variable is then conducted using a formula

ρ∗ = arg max
ρ∈T (χ)

λρ (13)

that is, by selecting of a linguistic value paired with the high-
est activation value.

It is easy to notice that we can reach this result by check-
ing values of membership functions µρ(u) for each particular
ρ over the set Ψ. The minimal value for a particular con-
cept reflects the level up to which we can bring the value of
a threshold for this concept. In consequence, by maximiz-
ing this value over all concepts and checking which concept
allowed us to reach it, we reach the same result:

ρ∗ = arg max
ρ
{min
u∈Ψ

µρ(u)}. (14)

Albeit this equation is more direct, it lacks an interpretational
transparency of the previously derived method. Still, since it
provides us with the same result it should be used in the final
implementation.

Given the selection statement it is easy to notice that it
may produce more than just a single result. An interpretation
of such a situation is relatively straightforward and simply
means that multiple concepts describe an IIO with a simi-
lar level of adequacy. In consequence, a selection should be
based on concepts’ ranges. There are two relatively close
possibilities:

1. Similarity-based approach

γρ =

∣∣Ψρ

∣∣
|Ψρ|

. (15)

2. Distance-based approach

γρ = d
(
Ψρ,Ψρ

)
. (16)
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Fig. 6. Translation process graphical interpretation. Consecutive stages: A) initial position; B) moving towards higher compatibility; C)
passing the activation value; D) end, maximum available compatibility reached

based on measuring, respectively, either a ratio or a distance
between Ψρ and the whole domain range Ψρ achievable at the
given level of adequacy λρ. Naturally, depending on the ap-
proach, we try to either maximize the similarity or minimize
the distance.

XIV. MODALITIES

The translation process results in a linguistic-like sum-
mary representing an outcome of the knowledge integration.
Despite its linguistic-likeness, the summary does not yet re-
flect inconsistencies in an originally-distributed knowledge
source. In order to enrich an informativeness of the final
summary, epistemic modal operators are employed.

An application of epistemic modal operators in linguistic
summaries formed by artificial cognitive agents has been ad-
vocated in literature ( [53], [34]). A considered enrichment
implements the following set of epistemic modal operators:

1. KNOW (ρk) with the meaning that linguistic value
ρk is known to be the correct interpretation of the inte-
gration result.

2. BEL (ρk) with the meaning that linguistic value ρk is
believed to be the correct interpretation of the integra-
tion result.

3. POS (ρk) with the meaning that linguistic value ρk
is possibly the correct interpretation of the integration
result.

Natural order of the operators is given by their reflected belief
strength, that is

POS < BEL < KNOW (17)

It is important to note that the modalities may be applied
at two different ‘levels’:

1. ‘MACRO’ – cross-cluster level – To describe a cer-
tainty assigned to the whole cluster, that is, to reflect an
interplay between relative strengths of different clusters
(from the outcome).

2. ‘MICRO’ – in-cluster level – To describe a certainty
assigned to a single feature of an object (cluster-
representative).

These two different levels are to be considered separately
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due to differences in various definitions and intuitions related
to the meaning and behaviour of modal operators within said
levels and due to a further interplay between operators used
at different levels.

XIV. 1. In-Cluster Level

An in-cluster level could be seen as a cluster-
representative-interior level. It relates to an internal structure
of a representative within a particular cluster.

Two different approaches to grounding modalities are pre-
sented for comparative reasons. The first approach presented
in [5] can be directly adapted for our purposes. Grounding
sets for a given concept ρ can be directly defined as

Aρ = Ψρ (18)

and

A¬ρ = U r Ψρ. (19)

two modified, grounding sets where ρz ∈ U is an object’s
z′th feature value represented in internal representation, com-
puted in the process of translation and then returned back to
internal representation form. These sets hold the activated and
non-activated observed values respectively. For comparison
purposes a definition of the grounding strength is required.

Originally, the grounding strength is understood as a car-
dinality of a corresponding grounding set which, in conse-
quence, translates to a following grounding strengths for an
activated and non-activated concept:

Gρ = card(Aρ), (20)

G¬ρ = card(A¬ρ). (21)

It leads to the following relative grounding strength1:

Lρ =
Gρ

Gρ +G¬ρ
(22)

for a given concept ρ.
A substantial difference proposed in this article is to use

λρ as a grounding strength of a given concept ρ. It is only
natural as, following the assigned interpretation, a value of λρ
reflects the compatibility of an Internal Integration Outcome
(IIO) with the concept.

This grounding strength is further directly compared
against modality thresholds. Different concepts at this level
are treated separately and checked for their respective ‘se-
mantic fitness’. The relative grounding strength cannot (or
should not, to say the least) be computed over all concepts at
the same time as their meaning may be interrelated. In partic-
ular, there may be some close-to-synonimical concepts with

overlapping core regions of meaning. Such concepts may be,
according to their shared meaning, activated in a very same
situation.

Let us consider an example of concepts with overlap-
ping meaning. It can be relatively easily done in a colour do-
main. Figure 7 provides hypothetical compatibility functions
spanned over an abstract domain for the following colours:2

• Magenta,
• FrenchFuchsia,
• Rose.
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Fig. 7. Compatibilities of three almost overlapping concepts.

And now imagine a bunch of fuchsias. An agent observing
the said bouquet may have problems distinguishing between
the above three linguistic values. Due to their close meaning
and agent’s limited colour discerning capabilities, the agent
may find the above three both very fitting and at the same time
equally viable. In the end, picking one from a set of multiple
nearly synonimical terms should not lower the strength of
a final modality. The agent may hold a strong belief regard-
ing his/her colour perception while still being unsure about
a finally chosen language term.

Even for a set of colours less alike, problems may occur.
Consider the following:
• Pink,
• Red,
• Purple.

1Originally relative grounding strengths and – further – modality levels are denoted using λ’s. Due to overlapping notions, these are replaced with L’s.
2Wiki – Category:Shades of violet.
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Very strong correlation between all concepts presented
in Figure 8 is undoubtable and clearly perceivable. These
colours, while somewhat similar, are unique and separable
at higher compatibility levels. Thus, in this scenario all of
the above (Pink, Red, Purple) may be highly compatible with
the IIO while some being more compatible than others due
to their specific, unique properties. In the proposed approach
only one concept is going to be selected while others are go-
ing to be rejected in favour of that one. Let us assume that the
following compatibilities were retrieved during integration
and translation processes:
• Pink − 0.5
• Red− 0.8
• Purple− 0.4
meaning Red is the highest compatibility concept thus

will be representing IIO in further subprocesses. While domi-
nating over other concepts Red has a core meaning with both
other colors Pink and Purple. This leads to the statement
that all these concepts are highly probable based on their
shared core meaning while Red has its unique properties that
fit the IIO better.
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Fig. 8. Compatibilities of less alike colours.

The problem naturally disappears when the concepts are
fully-separable in this case and is neglectable for typical con-
cept spaces.

XIV. 2. Cross-Cluster Level

In contrast to the In-Cluster level, a Cross-Cluster level
uses different definitions of the grounding methods for an
evaluation of an adequate epistemic modal operator of pos-
sibility (POS), belief (BEL), and knowledge (KNOW ).
On this level a cardinality of each cluster is important as it
is directly translating into the grounding strength. As it was
defined in [58], in order to ground the modal statements on
the clustering level the following definition of a grounding

strength λn of a cluster Kn is required:

λn =
card(Kn)∑

j=1

card(Kj)
(23)

where both Kn and Kj denote particular single clusters in
a clustering K:

K = {K1,K2, . . . ,KZ}. (24)

XIV. 3. Modality thresholds

In addition to the order of modality statements, a set of
modality thresholds is required in order to assign an adequate
modal statement. There is a set of requirements which need
to be fulfilled by grounding sets in order to ground a language
statement enhanced by a particular auto-epistemic operator.
For the case of Zadehian fuzzy-linguistic variable they are
described in more detail in [5]. Let us denote a set of modality
thresholds as follows

(λminPos, λmaxPos, λminBel, λmaxBel) . (25)

Above four values denote boundaries within which partic-
ular modal operators of possibility and belief are used. In
order to guarantee that only one modal operator can be cho-
sen at a given time, the intervals [λminPos, λmaxPos) and
[λminBel, λmaxBel) cannot overlap. Particular requirements
used for a choice of the modal operator are defined by a given
further set of relations of epistemic satisfaction [31, 34].

We assume the following set of requirements for the pro-
cess of an assignment of a modal operator:

1. It is possible to ground every particular modal operator.
2. The final description of each particular cluster cannot

contain more than one modal operator.
3. There can be multiple clusters assigned with an opera-

tor POS.
4. Operators KNOW and BEL reflect a dominating

view on the observed object. That is, if one of these op-
erators is assigned to particular clusters, none of these
two operators can be assigned to any other cluster.

5. The model should allow a situation in which one clus-
ter is assigned with an operator BEL and at least one
other cluster is assigned with an operator POS.

6. Modal statements are used only in such cases in
which inconsistency [58] is determined. In situations in
which the result is consistent an operator of knowledge
(KNOW ) is assigned.

In order to facilitate these requirements, the following set of
inequalities (after [5], [58]) needs to be fulfilled by a set of
modality thresholds:

l0 < λminPos ≤ min
{

1

η
,

1− λminBel
η − 1

}
≤ (26)

≤ 0.5 < λmaxPos < λminBel < λmaxBel ≤ 1.
(27)
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In the above formula, η denotes the maximal number of op-
erators POS which can be grounded at the same time, that
is, a maximal number of clusters which can be assigned with
an operator POS at the same time. An example of a set of
modality thresholds fulfilling the above assumptions can be
given as follows3:

(0.1, 0.6, 0.6, 0.95) (28)

XIV. 4. Epistemic satisfaction relations

In order to attain an assumed overall precision of modali-
ties grounding method, an epistemic satisfaction relation is
required for each of the modal operators. The definitions of
epistemic satisfaction relations formalize conditions under
which a specific modal operator is used. Therefore there are
3 epistemic satisfaction relations – one for each particular
operator:

1. Epistemic satisfaction relation λρz |=G KNOW
(
Cl
)

for in-cluster level and λn |=G KNOW
(
Cl
)

for clus-
terization level occurs whenever λmaxBel < λρz ≤ 1
or λmaxBel < λn ≤ 1, respectively.

2. Epistemic satisfaction relation λρz |=G BEL
(
Cl
)

for
in-cluster level and λn |=G BEL

(
Cl
)

for clusteriza-
tion level occurs whenever λminBel ≤ λρz < λmaxBel
or λminBel ≤ λn < λmaxBel, respectively.

3. Epistemic satisfaction relation λρz |=G POS
(
Cl
)

for in-cluster level and λn |=G POS
(
Cl
)

for clus-
terization level occurs whenever λminPos ≤ λρz <
λmaxPos or λminPos ≤ λn < λmaxPos, respectively.

XV. MODALITY PROPAGATION

An extension of linguistic summaries with auto-epistemic
modal operators of possibility, belief, and knowledge pro-
vides a user of the system with an in-depth insight into the
actual uncertainty of information conveyed by the original
summary. Originally the operators are independently applied
at two distinct levels. In consequence, it is important to con-
sider a relation between these layers when evaluating the final
operator to be used within an utterance.

Depending on a focus of attention an agent may intend
to describe its knowledge related to either in-cluster level
(object’s properties) or cross-cluster level (relation between
objects). Since both levels co-exist and influence each other,
it leads to two types of modality propagations:

1. An ascending propagation – epistemic modal operators
on the in-cluster level are propagated onto the cross-
cluster level.

2. A descending propagation – epistemic modal operators
on the cross-cluster level propagated onto the in-cluster
level.

In an ascending propagation an agent focuses mainly –
in terms of summary – on the relations between objects at
the cross-cluster level rather than providing description of
their details. In fact, the nature of the said object and the way
in which it is perceived by the agent may greatly influence
the beliefs formulated at a higher level. Therefore, an agent
should initially analyse modal operators at the in-cluster level
in order to properly adapt them on a cross-cluster level for
the focused object.

In contrast to an ascending propagation, in case of a de-
scending propagation agent’s principal intentions focus on
providing summary about the objects’ specific properties.
Therefore, modal operators applied at the in-cluster level are
the main point of interest of such agent. For a more detailed
summary the agent may include operators from the cross-
cluster level depending on the specific application.

Fig. 9. A choice of a weaker modality in an example of ascending
propagation.

Linguistic summaries in the presented research focus on
the object as a whole. Therefore, modalities on the cross-
cluster level form a direct component of a summary and –
in consequence – ascending propagation is applied. An ex-
emplary approach to ascending propagation is presented in
Figure 9. In this situation, the final operator used in an utter-
ance is influenced by the weakest modal operator related to
a particular object and present at the in-cluster level.

The corresponding algorithm can be formally described
as follows. Each linguistic variable χj (that is, each property
at the in-cluster level) is assigned with a modal operator M j

(e.g. POS(X1 = ρ2) within K1 in Figure 9).
Further, given modal operators assigned to all concepts

within a given object, the choice of a modal operator to ascend
from the in-cluster level follows the equation:

M∗ = min
æ∈{1..n}

M j . (29)

3This set of values may be unsatisfactory for some strict implementation domains with high values of η – for example with η > 10. – but discussions related
to η are beyond the scope of this paper.
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The propagated modality M∗K assigned to a particular clus-
ter K influences the modality MK initially-assigned to this
cluster at the cross-cluster level. The final modality M∗K is
chosen as follows:

M
∗
K = min{M∗K ,MK} (30)

This example presents a cautious approach to an ascend-
ing propagation where the final modality (used in the sum-
mary) is dictated by the weakest of modal operators from
both levels. Different applications may use other variations
of this approach depending on domain requirements.

XVI. FINAL THOUGHTS

An approach to knowledge integration presented in the
paper defines a way to deal with linguistic-based multi-level
knowledge integration. Rather than being considered the uni-
versal solution, it should be perceived as an insightful study
material before designing specific solutions for a particular
application. Multiple further extensions are naturally possible,
especially taking into consideration the nature of the natural
language and its complexity, and they may prove better in
particular application areas.

While an approach to fuzzy knowledge integration based
on consensus and clustering has been presented, many spe-
cific problems remain undiscussed and, in consequence, not
fully dealt with. In particular, an example of ascending modal-
ity propagation does not relate in any way to the fact that a par-
ticular subset of properties may perfectly define a particular
object.

The paper considers an environment limited to a single
object with multiple properties. Such reduction allowed us to
simplify a notation and presented descriptions. Still, the ap-
proach can be almost directly extended to environments with
multiple objects. Naturally, the direct extension would omit
possible relations between real-world objects. While tackling
the problem of inter-object relations would be desirable, to
say the least, it is beyond the scope of this step of the research
and should be left for future consideration.

The process of compatibility function forming and evo-
lution is also going to be separately investigated in future
works.
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