
CMST 25(1) 7–15 (2019) DOI:10.12921/cmst.2018.0000038

Alternative route search algorithm for robust
and balanced traffic in telecommunication network

M. Wiktor

ADVA Optical Networking
E-mail: miwiktor@o2.pl

Received: 10 July 2018; revised: 29 January 2019; accepted: 04 February 2019; published online: 31 March 2019

Abstract: This paper discusses routing policy in optical transport networks. Dijkstra’s shortest path algorithm is compared
to a new path computation technique based on heuristics originated from human behavior combined with spectral graph
embedding. The two-step procedure allows one to separate the computationally expensive and computationally cheap parts
for efficient implementation in network infrastructure.
Key words: optical transport networks, path computation, spectral graph embedding

I. INTRODUCTION

Optical transport networks are the core of modern
telecommunication infrastructure. Data transferred over
the network must cross a number of separate optical links
and intermediate nodes, where the data are routed in a de-
sired direction. Compared to computer networks, where each
portion of data is transmitted and routed independently,
in core transport networks there are predefined paths called
tunnels. When a tunnel is put into a service, the data sent
to a transmitter are sent to a receiver at the second end
of the tunnel. Crossing the network is transparent for the data
and the user. Creating a tunnel is a demanding and time-
consuming task, involving path calculation and setting ap-
propriate devices to route the optical signal in a desired
way and equalizing power levels. In general, routing pol-
icy in an optical transport network must meet numerous,
sometimes mutually exclusive requirements. The most obvi-
ous demand is to choose the shortest possible path between
network nodes. This intuitively obvious requirement, how-
ever, is not the most important objective. When planning
a route, many other factors must be considered, like the ex-
istence of a disjoint protection path, global power consump-

tion, or power levels in optical link. The physical distance
is rarely the point; far more important is a parameter called
logical distance, which is measured in the number of routers
and regenerators between ingress and egress nodes [2, 3].
In terms of graph terminology, the distance between nodes
can be defined as the number of intermediate nodes within
the route.

For the purpose of route calculation, Dijkstra’s short-
est path algorithm is extensively used. It guarantees that
the route will be found if only such a route exists. It is also
guaranteed that the route will be the shortest possible
one. By defining appropriate weights of links, represented
as graph edges, one may tune the path in order to satisfy dif-
ferent, previously mentioned, objectives.

II. MOTIVATION AND BACKGROUND

The method of path computing presented in this pa-
per is dedicated to a specific model of a network. A num-
ber of objectives can be assumed for an optical transport
network; however, according to typical patterns of use [8]
the following assumptions can be made:

8 M. Wiktor

II. 1. Equal link weight
Beside very specific applications, like low latency net-

works [11], the time needed for sending the signal from
the source to the destination point can be assumed to be in-
dependent of the physical length of the fiber. This as-
sumption can seem strange. However, even for fully opti-
cally switched network, time required for light propagation
in photonic crystals and prisms, encoding and decoding sig-
nal at ingress and egress nodes lasts longer than its propa-
gation along optical fibres. For this reason we have decided
to neglect the physical length of the link and expose the num-
ber of chops as a route cost [1].

II. 2. Centralized and distributed path calculation
There are two scenarios when an operator wants to cre-

ate a new optical tunnel. The first scenario, for centralized
resource allocation, assumes the request is sent to a master
node of a network where the path is calculated and corre-
sponding signaling is spread over the network. Centralized
management, when a master node knows the network state
is very efficient in terms of load balancing, but centralized
network management is less robust due to possible link mal-
function.

In case of distributed resource allocation, although nodes
are aware of the network resources, they are only partially
aware of the network state, specifically, which of the re-
sources are in use. In other words, two separate nodes can
see a resource as free and request for its use simultaneously.
On the other hand, such a network is much more stable and
robust in case of node or link failure. For our considera-
tions, the distributed model has been chosen. This implies
that the path computation algorithm is not aware of the state
of the network, especially how the traffic is provisioned
when the path is calculated. On the one hand, it deteriorates
global traffic optimization and, on the other hand, this makes
the algorithm fully deterministic.

II. 3. Existing approaches and industrial
implementations

Despite of the network model, the problem of search-
ing node disjoint or path disjoint paths is critical in network
applications. According to the theoretical background pre-
sented in [9], both formulations are NP-complete, which im-
plies using heuristic algorithms to solve the problem. Inter-
esting results and wider context was presented in [10]. Good
results in terms of both the cost of a generated route and so-
lution time are presented herein. The core of the algorithm
is multiple path calculation with Dijkstra shortest path algo-
rithm and simultaneous reduction of the graph.

The telecommunication applications, however, do not
follow research. The cost of keeping backward compatibil-
ity and protocol support is restriction to Dijkstra algorithm.
However, even for well-defined Dijkstra method, the choice
between paths having the same cost is a task the requires
additional resources. For telecommunication applications

the routing algorithm must be computationally cheap and
easy to implement.

II. 4. Proposed approach
According to the discussion presented in the previous

section, we introduce a routing algorithm for network man-
aged in a distributed manner, and all optical links hav-
ing the same weight, despite of their length. The direct
consequence of this approach is that the algorithm is not
aware of the network state, especially links load. In this
terms the algorithm is deterministic, contrary to nondeter-
ministic approaches, where the links weight can be changed
as the link load grows.

Since all states of the art algorithms [10] are computa-
tionally expensive, we propose the following workaround:
the proposed heuristics is split into two phases: embedding
and searching. The searching part is as simple as possible,
based on the observation from real life: in order to achieve
the destination point one should choose the way, among
others, which best follows the desired direction.

Certainly, one can experience blind corners or other con-
figurations when going in the desired direction is not the op-
timal choice. This is what the embedding part of the algo-
rithm is responsible for: rewriting the graph so that the sim-
ple approach would be successful. The graph embedding
is based on an eigenproblem solution, which is computation-
ally expensive, but calculated once per network life and can
be done by an external unit.

The proposed walker algorithm can be seen as a modifi-
cation of existing searching algorithms, like A-star; however,
it comes with a new geometrical context. The main novelty
proposed in the paper is to combine spectral graph embed-
ding with simple route search, which makes the very simple
search technique efficient and robust.

III. NAIVE WALKER ALGORITHM

At first, the searching part of the method is presented.
The proposed routing algorithm is based on the following
heuristics. Consider a graph shown in Fig. 1. Suppose one
wants to reach node n5 starting from n1. Also assume that
in n5 a big high tower is built, so that the direction one should

n1
n2

n3

n4

n5

n6

Fig. 1. Example graph for naive path search

Alternative route search algorithm for robust and balanced traffic in telecommunication network 9

follow is known. Thus, among all possible intermediate
nodes: n3, n4 and n2 the last one seems the best choice.

Reaching n2, however, is a blind route and a person
must move back and choose either n3 or n4. Thus, there
is no guarantee that the choice of path in the direction closest
to the destination is the optimal choice, but it is more or less
how a human would behave.

The mathematical formulation of such behavior can
be defined as follows: consider a vector ni, pointing from
the origin to the ith node of the graph. Then, standing
at n1, and knowing where the destination node nD is placed,
as the next chop, among nodes incident to n1, one should
choose ni for which the dot product (denoted as ◦), li:

li =
(nD − n1) ◦ (ni − n1)
||nD − n1|| ||ni − n1||

(1)

is maximized. Provided no blind node is reached, the proce-
dure is repeated until the target is reached.

This very simple algorithm has a number of drawbacks.
It is possible not to reach a termination node (as discussed
above), the route does not have to be optimal. However,
the second part of the described technique is the prepara-
tion of graph in a manner which minimizes the risk of such
incidents.

Without modification, it is possible that the naive walker
will not reach the destination even if the path exists. There
are several reasons for which the search procedure can ter-
minate. The proposed remedy is also based on simple hu-
man heuristics: let us move back and try another track. This
trivial observation makes the algorithm more complicated
in implementation, but more reliable. The unmodified algo-
rithm is stateless. Adding a possibility of correcting the path
by moving back and changing another option requires keep-
ing all the track in memory. The modified behavior can
be described in the following points:
• If no further path towards the destination point exists,

move to the previous node.
• Modify the graph so that the edge traversed twice (for

and back) is excluded and not used in further search.
• Call the function with the previous point as a starting

point.
This is a possible situation when the walker algorithm

reaches dead end. Then, one must move back and remem-
ber this direction as forbidden in further search. The path
search finishes in two cases: when the destination point
is reached, or no further move is possible. In fact, this proce-
dure is a guided deep search when the direction of the search
is driven by the previously discussed parameter. The direct
consequence is that the path will always be found, provided
it exists.

III. 1. Embedding the network
Before the second part of the algorithm is presented,

we should discuss an important property of Dijkstra’s algo-
rithm. It does not utilize physical placement of the nodes.

It traverses the graph, but no geometrical information is used.
The a-star algorithm utilizes the geographical information,
but finally for regular structures it should give the same result
as Dijkstra. Since in this paper we tend to replace the physi-
cal node placement with a virtual graph representing the net-
work, real distances are no longer significant for our algo-
rithm. The heuristics we present is based on direction rather
than distance.

The second remark is that given a graph, there are infi-
nite possibilities to draw (embed) it onto a plane. We pro-
pose the embedding for which a simple heuristics defined
as “go towards the destination” works.

0

1

2

3

4

5

6

7

8

10

11

12

13

15

16

19

21

22

27 28

17 20

22

24

14

25

26

23

18
9

Fig. 2. Delaunay triangulation of 30 biggest cities in Poland

Consider a fully connected graph. In this case, all reason-
able algorithms would point the direct path between nodes.
Malfunction of a single edge would affect only one link,
thus such a network is stable, consistent and well-balanced.
For economic reasons, however, a telecommunication net-
work is not a fully connected graph. Another issue related
to a fully connected graph is the case when two paths are
required for protected channels. In that case a direct link
no longer exists and all previously mentioned issues must
be considered.

Now, suppose the network is built according to Delau-
nay triangulation of the physical nodes. This creates a rela-
tively smooth graph (compare Fig. 2, Delaunay triangulation
of the 30 biggest cities in Poland). The optimal (shortest)
route from the source to the destination is as close as pos-
sible to the straight line between these points. By construct-
ing a network in such a manner, intuitively one can achieve
well-balanced traffic, since optimal routes between points
are likely to be disjoint and no “highways” appear.

10 M. Wiktor

Here arises the main concept of the two-phase algorithm:
let us rewrite the existing graph so that it is smooth and reg-
ular. Let us work on a virtual graph where spatial coordi-
nates of the nodes do not need to correspond to their physical
placement. Thus redraw the graph and use the route search
algorithm which results in a well-balanced network. Con-
trary to, say, logistics, for telecommunication traffic such
a virtual graph can be successfully used, since for data trans-
fer physical distance is not a factor determining the cost
of the route. This is also the rationale for weighting all opti-
cal links as one, regardless its physical length.

IV. SPECTRAL GRAPH EMBEDDING

Graph embedding or, in other words, plotting a graph
on a plane (if possible) is a demanding task and has count-
less applications, including efficient and ergonomic visual-
ization [5].

An intuitive approach is based on treating edges
as springs and by finding the stable configuration in terms
of mechanical system. Another approach is spectral embed-
ding, where the coordinates of the nodes are based on values
in eigenvectors of the Laplacian matrix of a graph [7]. Con-
sider the graph shown in Fig. 1. Its Laplace matrix is (2). De-
noting ith component of jth eigenvector vi,j , the coordinates
of nodes for the embedded graph (Fig. 3) are the following:
n1 = (v1,1, v2,1), n2 = (v1,2, v2,2), etc.

n1 n2

n3

n4

n5

n6

Fig. 3. Example graph for a naive path search, spectrally embedded
graph from Fig. 1

L =

−3 1 1 1 0 0
1 −1 0 0 0 0
1 0 −2 0 1 0
1 0 0 −2 0 1
0 0 1 0 −2 1
0 0 0 1 1 −2

 (2)

Spectral embedding, despite some issues described later
in this section, possesses several important properties:

• Strongly connected nodes (i.e. the pairs for which
more different paths exist) are drawn closer to each
other.

• Nodes connected with edge of higher weight are
closer.

• Regular graphs looks regular.

The idea behind using an eigenvectors as nodes’ coordi-
nates comes from Laplace matrix, representing 2nd order
differential operator [6]. Eigenvectors of this matrix have
form sin(nπx), thus, the ones related to smaller eigenval-
ues are slowly changing, and using them as a coordinates
of nodes results placing the nodes along Lissajous curve. Al-
though the graph Laplace matrix (2) has a different form,
it shares some properties of matrix representing Laplace op-
erator: it is diagonally dominant, sparse and semidefinite.

IV. 1. Dealing with lined up nodes
For regular graphs it is likely that subsequent nodes are

placed in the same point on the plane, which is not a de-
sired behavior. An example of this issue can be seen
in Fig. 6 and 4, which show embedding of K3,3 and K5

graphs, respectively. As seen, nodes x and y are in the same
place. Similarly, it is the case for k1 and k2 nodes for K5

graph. Imagine for a moment that K5 graph is embedded
into 3D space, not in a plane. Then k1 is above the plane
and k2 is below, which results in two joined tetrahedrons,
a perfectly regular structure. However, the scope of this pa-
per is planar embedding, and in such a case, node collocation
on a plane should be avoided. To overcome this issue, eigen-
vectors with related higher eigenvalues are used. In the pre-
sented tests, coordinate of ith node (xi, yi) is found as fol-
lows:

xi − vi,2 + cvi,4,
yi − vi,3 + cvi,5.

(3)

In other words, the coordinates are a combination of 2nd and
4th for x component. and 3rd and 5th vector for y compo-
nent. Coefficient c in (3) is a correction factor, which should
be relatively small in order not to disturb original embedding
significantly. In Fig. 7 and 5, the corrected versions of K3,3

and K5 are shown.

IV. 2. Concluding remarks
As presented, the route searching algorithm is split

into two phases: embedding and searching. The embedding
is done once when the network is put into service, or when
significant changes are applied. It occurs rarely and the spec-
tral embedding, which requires a solution of the matrix
eigenproblem, can be done using resources other than units
built into network nodes.

The searching part is computationally cheap, it is n dot
products in 2D Cartesian space per step, where n is the or-
der of the current node. When, like in real applications,
two paths, edge disjoint or node disjoint should be found,

Alternative route search algorithm for robust and balanced traffic in telecommunication network 11

k1 k2

k3

k4k5

Fig. 4. Embedded K5 graph, withoutout correction

k1

k2

k3

k4k5

Fig. 5. Embedded K5 graph, with correction

a number of “walkers” can be run in different directions (first
best direction, second best direction, etc.). When a number
of “walkers” was equal to the node’s order, eventually the al-
gorithm became equivalent to deep-search. In this context
it could be compared to A-star [13], which also recursively
traverses the graph, driven by estimation of remaining dis-
tance. The presented method is, on the contrary, driven by
direction. Exact steps for naive implementation can be writ-
ten as follows:

1. Let the current node n0 be the starting one.
2. Calculate inner products between normalized vectors
ni−n0 and nD−n0, where nD is a destination node.

3. Choose ni for which the results are the largest, remove
n0 from graph and skip to step 1.

As the naive walker can be spawned multiple times,
in our tests a small number, like 5 to 7, of “walkers”, were
run. Each of them traversed the graph. If it was about to reach
a node visited by another instance of walker, depending
on the configuration, it changed direction of the just termi-
nated one. Not all walkers must succeed, i.e. reach the desti-
nation node. However, a number of routes should be found.
Among several possible routes one can select an edge dis-
joint pair or a node disjoint pair. It was also possible to equal-
ize the length of two paths, which is advantageous in pro-
tected transmission, when a signal is simultaneously trans-
mitted by two separate tunnels. The steps for path calculation
when multiple walkers are used are the following:

1. Set the maximum number of walker instances M .
2. Let the current node n0 be the starting one.
3. Find all adjacent ni nodes, i > 0 to n0.
4. If M is not exceeded, run a naive walker for every ad-

jacent node ni. Update the walker instance counter.
For large M the above scheme would become equivalent

a

x
y

z

bc

Fig. 6. Embedded K3,3 graph, without correction

a

x

y

z

bc

Fig. 7. Embedded K3,3 graph, with correction

to a deep search. However, for a reasonably small number
of instances it rather sends a scout. Among all successful
scouts, pairs with no common edges are built and, depend-
ing on the objective, the first combination or the shortest
(in terms of edges count) is used. The latter makes sense for
bigger M .

The computational complexity of the algorithm is in fact
irrelevant, provided the graph embedding is done once, when
the network is running into service. The embedded graph
operations involve expensive resources; however, the latter
can be calculated externally and distributed among network
slightly cheaper nodes. The walker itself is computationally
cheap.

V. EXAMPLES OF CHANNEL PROVISIONING

As discussed earlier, in telecommunication applications
one can neglect the physical length of a path. The param-
eter of interest is the virtual length of a tunnel, measured
in the number of chops signal must traverse. The physical
length of the fiber has minor importance and can be ne-
glected in most situations. When the signal crosses network
element, which is represented as a node in a graph, it can
be converted into an electrical signal or routed using pure
optics. Both operations involve expensive resources, how-
ever the latter is slightly cheaper.

On the other hand, the equipment kept in safe areas
is much less likely to be accidentally damaged compared
to optical fibers. For this reason a provider usually finds two
disjoint routes between nodes in order to provide a restora-
tion path. There are two types of restoration: the spare chan-
nel is activated on demand, which results in several seconds

12 M. Wiktor

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Fig. 8. Star like graph layout

0 4

1 5

2 6

3 7

8

9

10

11

12

13

15

16

17

14 18

19

Fig. 9. Grid based graph

of data loss, and the second when two tunnels are active and
the signal goes simultaneously. The receiver decodes how-
ever one of them. In case of failure it switches to the second
one. Therefore, the restoration path should also be optimized
in terms of length and resource usage. Moreover, it is a good
idea to make these two paths equal in length due to delays
and buffering in egress and ingress nodes.

V. 1. Testing methodology
We present the results obtained with a naive walker com-

bined with spectral embedding compared to Dijksta shortest
path, as the latter is used in routing in optical networks [12].
The parameter of interest is a distribution of traffic over
the network, measured in a number of paths held in a par-
ticular graph edge (optical fiber).

0

2

8
1013

16

2128

1

12

14

19

22
26

3

15

4

7

17

24

27

5

11

6

9
20

23

25

18

Fig. 10. Graph build using connections among Polish cities

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Fig. 11. Original layout of 24 node USA network

Network topologies are: a simple square grid with ex-
cluded several nodes shown in Fig. 9, a star-like struc-
ture (Fig. 8), a graph of selected Polish towns and, fi-
nally, a 24-node network which operates in the USA [1].
The graph based on Polish towns (Fig. 10) is a rewritten
version of the network shown in Fig. 2. The last network
is shown in Fig. 12, and geographical placement of nodes
is shown in Fig. 11.

Two first graphs are regular, thus the traffic should
be well-balanced regardless of the used algorithm. Polish
towns were built as a Delaunay triangulation of nodes, thus

Alternative route search algorithm for robust and balanced traffic in telecommunication network 13

0

1

2
5

6

3

74

8

9

13

10

11

12

14

15

16

17

23

18

19

20

21

22

Fig. 12. 24 node USA network

this graph is also very regular. Moreover, the number
of equivalent (i.e. having the same length) paths is reduced,
compared to a square-based grid. Again, the 24-node
network is square-based, much more irregular compared
to the square grid.

In each test a few walkers were spawned. The walk-
ers were not aware of any network state, like the existent
load, etc. Therefore, the results are fully deterministic. Some
global optimization could be possible, but in this case pa-
rameters of a path depend on the order of provisioning.

Each of the walkers yielded a single path, and the next
step was choosing two paths from the set of solutions. This

Fig. 13. Load profile of the star-like network shown in Fig. 8

Fig. 14. Load profile of the grid based network shown in Fig. 9

pair was chosen so that the overall length was minimized
or, in the alternative approach, the difference in the number
of chops for both tunnels was minimum or, if possible, zero.
To this end, the latter approach is named as equalized walker.

The constraint was the following: no pair of the paths
should have a common edge. Note that the choice between
several paths can lead to ambiguity. However, when all edge
weights are set to unity, Dijkstra algorithm is also not unique.
In the tests we have not analyzed this issue in detail.

V. 2. Grid based network
As noted in the introduction to this section, a grid-based

network is subject to ambiguity in path calculation due to ex-
istence of multiple possible paths of the same length (cost).
Depending on how the walker paths were selected, one can
decrease or increase the maximum link load. In terms of load
balancing one can both improve and worsen resource usage,
thus this network is very sensitive to how the resources are
provisioned. This behavior is shown in Fig. 14: the result
obtained with Dijkstra is between two walker formulations.
Detailed results are shown in Tab. 1.

V. 3. Star structure
For a star-like structure shown in Fig. 8, results of sim-

ulation, namely searching all-to-all tunnels are presented
in Tab. 2 and visualized in Fig. 13. In this case a sim-
ple walker does not improve the performance over Dijksta,
even the load of the most used link is increased by approxi-
mately 10 percent (from 49 to 55). With additional constraint
added to walker routine, the results were significantly im-
proved. At this run, the objective was to equalize primary
and restoration path lengths.

14 M. Wiktor

Fig. 15. Load profile of the “Poland” network shown in Fig. 10

V. 4. Network based on Polish cities
The third network chosen as an example is very regular,

thus one can expect good performance of all algorithms. De-
pending on how the tunnel pair was selected, one can slightly
increase or decrease the maximum load. However, in both
cases the traffic was more uniformly distributed over net-
work: it was moved to less used links, as seen in Fig. 15.
What is worth pointing out, for this network it was possi-
ble to almost exactly equalize primary and restoration path
length, as shown in the last row of Tab. 3.

V. 5. 24 node USA network
The last presented example is a real network [1]. This

network is both regular and square based which, as men-
tioned above, leads to ambiguities in path calculation. How-
ever, rewriting the graph in a way described in this pa-
per resulted in a shape where the directions between egress
and ingress are unique and straightforward, which is visible
in the performance of the walker algorithm that bases on di-
rections (Fig. 16).

Tab. 1. Comparison of network parameters for Dijkstra and walker
path search algorithm for network from Fig. 9

Dijkstra Walker
Equalized

walker

Max. link load 95 87 96

Avg. link load 46.13 48.6 48.6

Avg. primary path len. 3.06 3.74 3.63

Avg. restoration path len. 4.22 3.93 4.05

Avg. difference in primary
and restoration path len.

1.15 0.52 0.52

Fig. 16. Load profile of the 24-node USA network shown in Fig. 12

Tab. 2. Comparison of network parameters for Dijkstra and walker
path search algorithm for network from Fig. 8

Dijkstra Walker
Equalized

walker

Max. link load 49 55 46

Avg. link load 24.6 28.8 30.2

Avg. primary path len. 2.28 2.7 3.12

Avg. restoration path len. 2.88 3.36 3.23

Avg. difference in primary
and restoration path len.

0.6 1.06 0.1

VI. SUMMARY

The deterministic algorithm for path calculation has been
presented. It combines very simple “naive walker” heuris-
tics with spectral graph embedding. The graph embedded
according to eigenvectors of its Laplace matrix is usually
regular and has a reasonable shape, which makes the very
simple walker model useful and successful. The two-phase
nature of the algorithm allows one to split the computations
into two separate phases. A solution of the eigenproblem,
which is computationally expensive, is calculated once per
network and the result can be propagated into network nodes.
A direction-based search,which requires only sorting and dot
product calculation is inexpensive and can be easily calcu-
lated on a small units.

The algorithm can be a simple alternative to those cur-
rently used. The proposed technique, compared to exist-
ing algorithms, can be computationally expensive. However,

Alternative route search algorithm for robust and balanced traffic in telecommunication network 15

Tab. 3. Comparison of network parameters for Dijkstra and walker
path search algorithm for network from Fig. 10

Dijkstra Walker
Equalized

walker

Max. link load 97 82 102

Avg. link load 34.3 39.7 38.9

Avg. primary path len. 2.64 3.74 3.453

Avg. restoration path len. 3.44 3.84 4.458

Avg. difference in primary
and restoration path len.

0.807 1.105 0.005

Tab. 4. Comparison of network parameters for Dijkstra and walker
path search algorithm for network from Fig. 12

Dijkstra Walker
Equalized

walker

Max. link load 88 77 85

Avg. link load 44.9 49.3 52.3

Avg. primary path len. 2.99 2.23 4.01

Avg. restoration path len. 4.0 4.45 4.14

Avg. difference in primary
and restoration path len.

1.01 1.42 0.17

the path calculations and graph shape optimization can
be performed in advance, once for the whole network. More-
over, no network resources need to be used for this task.
In that sense the solution is similar to how neural net-
works are implemented in popular devices. Networks’ train-
ing is expensive, but using the trained one is not. Although
it is not formally guaranteed, path calculation using a naive
walker results in better network balance with no global opti-
mization, which means that the path calculation is indepen-
dent of the network state.

The usefulness of this method was presented for several
real-life and similar to real-life networks. The assumptions
and restrictions were based on real telecommunication sce-
narios.

References
[1] J. de Santi, A. Drummond, N. de Fonesca, X. Chen, A. Jukan,

Leveraging Multipath Routing and Traffic Grooming for and
Efficient Load Balancing in Optical Networks, IEEE Trans
on Optical Networks and Systems, 2989–2993 (2012).

[2] A. Rahman, N.M. Sheikh, Modified Bidirectional Reserva-
tion on Burst drop with Dynamic Load Balance in Optical
Burst Switching, 11th Int Conference on Telecommunica-
tions – ConTel 2011, Graz Austria.

[3] J. Zhang, S. Wang, K. Zhu, L. Sone, D. Datta, Y. Kim,
B. Mukherjee, Optimized Routing for Fault Management in
Optical Burst-Switched WDM Networks, IEEE Journal of Se-
lected Areas in Communication 25(6), 111–120 (2007).

[4] M. Chamania, A. Jukan, A Survey of Inter-Domain Peer-
ing and Provisioning Solutions for the Next Generation Opti-
cal Networks, IEEE Communication Surveys and Tutorials,
11(1), 33–51 (2009).

[5] P. Idziaszek et al, Visualisation of Relational Database Struc-
ture by Graph Database, CMST 22(4), 217–224 (2016).

[6] C.D. Meyer, Matrix Analysis and Applied Linear Algebra,
SIAM 2000.

[7] B. Luo, R. Wilson, E.R. Hancock, Spectral embedding of
graphs, Pattern Recognition, 36(10), 2213–2230 (2003).

[8] S. Hardy, Romtelecom taps ADVA FSP 3000 for multiple net-
works, Lightwave, June 2011, https://www.lightwaveonline
.com/articles/2011/06/romtelecom-taps-adva-fsp-3000-for-
multiple-networks-123097013.html, (access 20.11.2018)

[9] T. Eilam-Tzoreff, The disjoint shortest paths problem, Dis-
crete Applied Mathematics, 8(2), 113–138 (1998).

[10] L, Guo, Y. Deng, K. Liao, Q. He, T. Sellis, Z. Hu, A Fast
Algorithm for Optimally Finding Partially Disjoint Shortest
Paths, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI-18).

[11] Ultra low latency networks. Application Note, ADVA Optical
networking 2012 (available online, www.advaoptical.com).

[12] OSPF Version 2, protocol specification, RFC 2328.
[13] R. Dechter, J. Pearl, Generalized best-first search strategies

and the optimality of A*, Journal of the ACM 32(3), 505–536
(1985).

Michał Wiktor received his PhD in Computational Electromagnetics in 2006 at Gdansk University
of Technology. He worked as a researcher and lecturer in the Department of Statistics in Gdansk
Medical University. His research included medical imaging and influence of electromagnetic fields
with living organisms. In 2011 he joined ADVA Optical Networking, where he worked as a software
engineer. Currently he works in the Artificial Intelligence Department at Intel Poland. His interests
include mathematical modelling and functional programming.

CMST 25(1) 7–15 (2019) DOI:10.12921/cmst.2018.0000038

